Exploiting Abstraction for Specification Reuse.
The Java/C# Case Study

Egon Borger and Robert F. Stark
March 5, 2004

Abstract

From the models provided in [11] and [4] for the semantics of Java and C# programs
we abstract the mathematical structure that underlies the semantics of both languages. The
resulting model reveals the kernel of object-oriented programming language constructs and
can be used for teaching them without being bound to a particular language. It also allows
us to identify precisely some of the major differences between Java and C#.

1 Introduction

In this work the models developed in [11] and in [4] for a rigorous definition of Java and C# and
their implementation on the Java Virtual Machine (JVM) resp. in the Common Language Run-
time (CLR) of .NET are analyzed to extract their underlying common mathematical structure.
The result is a platform-independent interpreter of high-level programming language constructs
which can be instantiated to concrete interpreters of specific languages like Java, C#, C++. It
is structured into components for imperative, static, object-oriented, exception handling, concur-
rency, pointer related and other special language features (like delegates in C#) and thus can be
used in teaching to introduce step by step the basic concepts of modern programming languages
and to explain the differences in their major current implementations.

The task is supported by the fact that the models in [11, 4] have been defined in terms of
stepwise refined Abstract State Machines (ASMs), which

» separate the static and the dynamic parts of the semantics,

» capture the dynamics by ASM rules, one rule set for each cluster of language constructs,
describing their run-time effect on the abstract program state, guided by a walk through the
underlying attributed abstract syntax tree.

The stepwise refined definitions unfold in particular the following layered modules of orthogonal
language features, which are also related to the historical development of programming concepts
from say FORTRAN, via PASCAL and MODULA, SMALLTALK and EIFFEL, to JAVA and C#:

m imperative constructs, related to sequential control by while programs, built from statements
and expressions over simple types,

» classes with so-called static class features, namely procedural abstraction with class initial-
ization and global (module) variables,

» object-orientation with class instances, instance creation, instance methods, inheritance,

m exception handling,

» concurrency (threads),

» special features like delegates, events, etc.

» so-called unsafe features like pointers with pointer arithmetic.

This leads us to consider a sequence of sublanguages Ly C L¢ C Lo C Le C Ly C Lp C
Ly of a general language L, which can be instantiated to the corresponding sublanguages of Java
and C# defined in [11, 4]. The interpreter EXECLg of each language Ls in the sequence is a
conservative (purely incremental) extension of its predecessor. We show how it can be instantiated
to an interpreter of Javag or C#gs by variations of well-identified state or machine components.
The interpreter EXECL of the entire language L is the parallel composition of those submachines:

ExXeEcCL =
ExXEcL;
ExecL¢
ExecLo
EXECLE
EXECL 7
ExXECLp
ExecLy

Delegates and unsafe code are peculiar features of C# and not included at all into Java, there-
fore we refer for the two corresponding submachines to [4]. Since the thread models of Java and
C# have been analysed and compared extensivley in [11, 1, 10], we skip here to reformulate the
interpreter EXECL 7. The static semantics of most programming languages can be captured ap-
propriately by mainly declarative descriptions of the relevant syntactical and compile-time checked
language features, e.g. typing rules, control-flow analysis, name resolution, etc.; as a consequence
we concentrate our attention here on the more involved language dynamics for whose description
the run-time oriented ASM framework turns out to be helpful. So we deal with the static language
features in the form of conditions on the attributed abstract syntax tree, resulting from parsing
and elaboration and taken as starting point of the language interpreter EXECL.

This paper does not start from scratch. We tailor the exposition for a reader who has some basic
knowledge of (object-oriented) programmming. A detailed definition of ASMs and their semantics
is skipped here, because ASMs can be correctly understood as pseudo-code operating over abstract
(domains of) data. A textbook-style definition is available in Chapter 2 of the AsmBook [5].

2 The imperative core Ly

In this section we define the sequential imperative core Lz of our general language L together with
a model for its semantics. The model takes the form of an interpreter EXECL;, which defines
the basic machinery for the execution of the single language constructs. Lz provides structured
while-programs consisting of to be executed statements (appearing in method bodies), which are
built from to be evaluated expressions, which in turn are constructed using predefined operators
over simple types. The computations of our interpreter are supposed to start with an arbitrary but
fixed L-program. As explained above, syntax and compile-time matters are separated from run-
time issues by assuming that the program is given as an attributed abstract syntax tree, resulting
from parsing and elaboration.

2.1 Static semantics of Lt

Expressions and statements of the sublanguage Lz are defined as usual by a grammar, say the one
given in Fig. 1. We view this figure as defining also the corresponding ASM domains, e.g. the set
Exp of expressions built from Literals and variable expressions using the provided operators (unary,
binary, conditional) and including besides some possibly language-specific expressions the set Sexp
of statement expressions, i.e. expressions than can be used on the top-level like an assignment to
a variable expression using ‘=" (or an assignment operator from a set Aop or one of the typical
prefix/postfix operators ‘++ or ‘-==’). In this model the set Vexp of variable expressions (lvalues)
consists of the local variables only and will be refined below.

The auxiliary sets, like Uop of unary operators, which one may think of as including also
operators to construct type cast expressions of form ‘(" Type ‘)’ Exp, vary from language to lan-
guage. For example SpecificEzp(L) may include expressions that are specific for the language L, like
‘checked’ ‘(" Ezp ‘)’ and ‘unchecked’ ‘(" Ezp)’ in the model C#7 in [4, Fig.1]. In the model Javaz
in [11, Fig.3.1] the set SpecificExp(L) is empty. Similarly, the set JumpStm of jump statements
may vary from language to language; in Javaz it consists of ‘break’ Lab ‘;’ and ‘continue’ Lab ‘;’,
in C#z of ‘break’ ‘;’ | ‘continue’ *;’ | ‘goto’ Lab ‘;’. SpecificStm(L) may contain statements that
are specific to the language L, e.g. ‘checked’ Block | ‘unchecked’ Block for the language C#7.
In the Javas model it is empty. Bstm may also contain block statements for the declaration of
constant expressions whose value is known at compile time, like ‘const’ Type Loc ‘=" Cezp ‘;’ in

C#1z.

Ezp == Lit| Vexp| Uop Exp | Exp Bop Exp | Exp ‘7’ Exp ‘.’ Exp
| Sexp | SpecificExp(L)

Vexp = Loc
Sexp = Vexp‘=s" Exp| Vexp Aop Exp | Vexp ‘++’ | Vexp ‘==’
Stm 7| Sexp‘;’ | Lab ‘2’ Stm | JumpStm

| ‘if’“C Exp ‘)’ Stm‘else’ Stm | ‘while’ ‘C Exp ‘)’ Stm
| SpecificStm(L) | Block

Block := {’{Bstm} ‘¥

Bstm == Type Loc ‘;’ | Stm

Figure 1: Grammar of expressions and statements in L.

Not to burden the exposition with repetitions of similar arguments, we do not list here state-
ments like do, for, switch, goto case, goto default, etc., which do appear in real-life languages
and are treated analogously to the cases we discuss here. When referring to the set of sequences of
elements from a set Item we write Items. We usually write lower case letters e to denote elements
of a set F, e.g. lit for elements of Lit.

Different languages usually exhibit not only differences in syntax, but above all different notions
of types with their conversion and promotion rules (subtype or compatibility definition), different
type constraints on the operand and result values for the predefined operators, different syntactical
constraints for expressions and statements like scoping rules, definite assignment and reachability
rules, etc. As a consequence the static analysis differs, e.g. to establish the correctness of the
definite assignment conditions or more generally of the type safety of well-typed programs (for
Java see the type safety proof in [11, Ch.8], for C# see the proof of definite assignment correctness
in [7]). Since this paper is focussed on modeling the dynamic semantics of a language, we omit
here any general discussion of standard static semantics issues and come back to them only where
needed to explain how the interpreter uses the attributed abstract syntax tree of a well-typed
program. E.g. we will use that each expression node ezp in the attributed syntax tree is annotated
with its compile-time type type(ezp), that type casts are inserted in the syntax tree if necessary
(reflecting type conversions at compile-time), etc.

2.2 Dynamic semantics of Lz

The dynamic semantics for Lz describes the effect of statement execution and of expression eval-
uation upon the program execution state, so that the transition rule for the Lz interpreter (the
same for its extensions) has the form

ExXEcL; =
ExXeEcLEXP;
ExXECLSTM]

The first subrule defines one execution step in the evaluation of expressions; the second subrule
defines one step in the execution of statements.

Syntax tree walk. To facilitate further model refinements by purely incremental extensions, the
definition proceeds by walking through the abstract syntax tree, starting at pos = root-position, to
compute at each node the effect of the program construct attached to the node. We formalize the
walk by a cursor », whose position in the tree — represented by a dynamic function pos: Pos — is
updated using static tree functions, leading from a node in the tree down to its first child, from there
to the next brother or up to the parent node (if any), as illustrated by the following self-explanatory
example. Pos is the set of positions in the abstract syntax tree. A function label: Pos — Label
decorates nodes with the information which identifies the grammar rule associated to the node. For
the sake of notational succinctness we use some concrete syntax from Java or C# to describe the
labels, thus hiding the explicit introduction of auxiliary non-terminals. In the example the label of
the root node is the auxiliary non-terminal If, identifying the grammar rule which produces the
construct if (exp) stmy else stmy—the ‘occurrence’ of which here constitutes what we are really

interested in when considering the tree. As explained below, this construct determines what we
will call the context of the root node or of its children nodes.

If

st [up 7 if Cexp) stmy else stmy

next
e——0

e€rp stmq stmy

next °

Local variable values. The next question is what are the values computed for expressions and
how they are stored as current values of local variables, namely upon executing an assignment
statement or as side effect of an expression evaluation. The answer to the second question depends
upon whether such values are stored directly, as for example in Java, or indirectly via an addressing
mechanism, as for example in C#. To capture both possibilities we introduce two domains, namely
of Values and of Adresses, and use the following two dynamic functions

locals: Loc — Adr, mem: Adr — Simple Value U { Undef }
which can be used to assign to local variables memory addresses and to store the values there.
To easen the formulation of how to instantiate our interpreter to one for Java or C# and to
prepare the way for later refinements, we use a macro WRITEMEM (adr, t, val) to denote writing a
value of given type to a given adress. For the sublanguage Lz (as for Java) the macro is only an
abbreviation for mem(adr) := val, which will be refined in the model for Le.

One possible instance of this scheme, namely for Java, is to identify Loc and Adr so that locals
becomes mem. It goes without saying and will not be mentioned any more in the sequel that
a similar simplification applies to all other functions, predicates and macros introduced below in
connection with handling the values stored at addresses.

Since the values we consider in Lz are of simple types, in this model the equation

Value = Simple Value U Adr
holds, which will be refined for Ly to include references (and structs, which appear in C#).
The fact that local variables have to be uniquely identified can be modeled by stipulating Loc =
Identifier x Pos. For the initialization of the interpreter it is natural to require that an address
has been assigned to each local variable, but that the value stored there is still undefined.

» locals(z) € Adr for every variable z
s mem(i) = Undef for every i € Adr

Recording intermediate values. During the walk through the tree, also intermediate results
of the elaboration of syntactical constructs appear, which have to be recorded somewhere, namely
values of evaluated (sub-) expressions, but also possible results of the execution of statements.
Statements may terminate normally, but also abruptly due to jumps (in Lz) or returns from
method calls (in L¢) or to the occurrence of exceptions (in Lg). There are many ways to keep
track of such temporary items, e.g. using a stack (as do many virtual machines, see for example
the Java Virtual Machine operand stack opd in [11, pg.140]) or replacing directly the elaborated
syntactical constructs by their intermediate result (as do SOS-based formalisms, see for example
the restbody concept in [11, pg.38]) or via some dynamic functions defined on the static syntax
tree. We choose here to use a partial function to associate to nodes the values computed for the
syntactic construct labeling each node.

values: Pos — Result.
For Lz, the range Result of this function contains a) Undef, to signal that no value is defined yet, b)
simple values, resulting from expression evaluation, ¢) Norm, for normal termination of statement
execution, and d) reasons for abruption of statement execution. The set Abr of abruptions derives
here from the jump statements (see below) and will be refined in successive models to also contain
statement returns and exceptions.

Result = Value U Abr U {Undef, Norm}.
As intermediate values at a position p the cursor is at or is passing to, the computation may yield
directly a simple value; at AddressPositions as defined below it may yield an address; but it may
also yield a mem Value which has to be retrieved indirectly via the given address (where for Lz the
memory value of a given type t at a given address adr is defined by mem Value(adr, t) = mem(adr);
the parameter ¢ will become relevant only in the refinement of mem Value in Lp). This is described
by the following two macros:

Y1ELD(val, p) =
values(p) := val

pos :=7p

YIELDINDIRECT (adr, p) =
if AddressPos(p) then YIELD(adr, p) else YIELD(mem Value(adr, type(p)), p)

We will use the macros in the two forms YIELD(val) = YIELD(val, pos) and YIELDUP(val) =
YI1ELD(val, up(pos)), similarly for YIELDINDIRECT(adr) and YIELDUPINDIRECT(adr).

A context where an address and not a value is required characterizes the context of first children
of parent nodes labeled with an assignment or prefix/postfix operator. It can thus be defined as
follows:

AddressPos(a)) <= FirstChild(a) A (label(up(a)) € {++,-=} V label(up(c)) € Aop)
where FirstChild(a) <= first(up(a)) = «

Notational conventions. To further reduce any notational overhead not needed by the human
reader, in spelling out the ASM rules below we identify positions with the occurrences of the
syntactical constructs nodes encode via their labels and those of their children. This explains
updates like pos := exp or pos := stm, which are used as shorthand for updating pos to the node
labeled with the corresponding occurrence of exp respectively stm.!

For a succinct formulation of the interpreter rules we use a macro context(pos) to describe the
context of the currently to be handled expression or statement in the syntax tree. context(pos) has
to be matched against the cases appearing in the ASM rules below, choosing for the next computa-
tion step the first possible match following the textual order of the rules. If the elaboration of the
subtree at the position pos has not yet started, then context(pos) is the construct encoded by the
labels of pos and of its children. Otherwise, if pos carries already its result in values, context(pos)
is the pseudo-construct encoded by the labels of the parent node of pos and of its children after
replacing the already evaluated constructs by their values in the corresponding node. This explains
notations like wop ®wval to describe the context of pos, where pos is marked with the cursor (»),
resulting from the successful evaluation of the argument exp of the construct wop exp (encoded by
up(pos) and its child pos), just before uop is applied to val to YIELDUP(Apply(uop, val)).
Expression evaluation rules. We are now ready to define the machine EXeCLEXP; for ex-
pression evaluation. We do this in a compositional way, namely proceeding expression-wise: for
each group of structurally similar expressions, defined by an appropriate parameterization de-
scribed in Fig. 1, there is a set of rules covering each intermediate phase of their evaluation.
(SpecificExpressions of L are separately discussed below.) The machine passes control from un-
evaluated expressions to the appropriate subexpressions until an atom (a literal or a local variable)
is reached. It can continue its computation only as long as no operator exception occurs (see below
for the definition of UopFException and BopEzception). When an operator has to be applied, we
use a static function Apply to determine the value the operator provides for the given arguments.
This function can be separately described, as is usually done in the language manual. Similarly
for the static function defining the ValueOfLiterals.

EXECLEXP; = match contert(pos)
lit — Y1ELD(ValueOfLiteral(lit))
loc — YIELDINDIRECT (locals(loc))
uop eLp — Pos = exp
uop ®val — if = UopFEzception(uop, val) then YIELDUP(Apply(uop, val))
exp1 bop expy — pos := exp;
> val bop exp — pos := exp
valy bop ®valy — if —BopException(bop, valy, valy) then YIELDUP(Apply(bop, valy, valy))
expo T €xpy 1 erpy — POs = expPy
> wval ? expy : expy — if val then pos := exp; else pos := exps
True ? ®wval : exp — YIELDUP(val)
False ? exp : ®val — YIELDUP(val)

LAn identification of this kind, which is common in mathematics, has clearly to be resolved in an executable
version of the model.

2The desired specializations can be obtained expression-wise by mere parameter expansion, a form of refinement
that is easily proved to be correct.

loc = exp — pos = exp
loc = »val — {WRITEMEM (locals(loc), type(loc), val), YIELDUP(val)}
VeTp op= exp — Pos := Vexrp
" adr op= exp — pos := exp
adr op="val — let t = type(up(pos)) and v = mem Value(adr, t) in
if —=BopException(op, v, val) then
let w = Apply(op, v, val) and result = Convert(t, w) in
{WRITEMEM (adr, t, result), YIELDUP(result)}

VeTp op — Pos := VexTp // for postfix operators op € {++,--}
" adr op — let old = memValue(adr, type(pos)) in
if = UopFException(op, old) then
{WRITEMEM (adr, type(up(pos)), Apply(op, old)), YIELDUP(old)}
SPECIFICEXP[

Language-specific expressions. In Javar the set of SpecificEzpressions and therefore the sub-
machine SPECIFICEXP; is empty, whereas the set contains checked and unchecked expressions
‘checked’ ‘" Exp ‘)’ | ‘unchecked’ ‘(" Ezp)’ in the model for C#z defined in [4], because the
notion of Checked positions serves to define when an operator exception occurs due to aritmetical
Overflow (for which case a rule will be added in the model for Lg). The principle is that operators
for integral types only throw overflow exceptions in a checked context except for the division by
zero; operators for the type decimal always throw overflow exceptions. By default every position
is unchecked, unless explicitly declared otherwise. This is formally expressed as follows.

UopEzxception(uop, val) <= Checked(pos) A Overflow(uop, val)

BopFEzxception(bop, valy, valy) <~
DivisonByZero(bop, valy) V DecimalOverflow(bop, valy, valy) V
(Checked(pos) N Overflow(bop, valy, valy))

Checked (o) <= label(a) = Checked V
(label(a) # Unchecked N up(a) # Undef A Checked(up(a)))

As a consequence of these definitions and of the fact that the extension by rules to handle excep-
tions is defined in the model extension EXECL g, the following SPECIFICEXP; rules of EXECC#;
do not distinguish between checked and unchecked expression evaluation.

match context(pos)
checked(exp) — pos 1= exp
checked(®val) — YIELDUP(val)
unchecked(exp) — pos := exp
unchecked(” val) — YIELDUP(val)

Statement execution rules. The machine EXECLSTM; is defined statement-wise. It transfers
control from structured statements to the appropriate substatements, until the current statement
has been computed normally or abrupts the computation. Abruptions trigger the control to prop-
agate through all the enclosing statements up to the target labeled statement. The concept of
propagation is defined for Lz in such a way that in the refined models it is easily extended to
abruptions due to return from procedures or to exceptions. In case of a new execution of the body
of a while statement, the previously computed intermediate results have to be cleared.® Since
we formulate the model for the human reader, we use the ...-notation, for example in the rules
for abruption or for sequences of block statements. This avoids having to fuss with an explicit
formulation of the context, typically determined by a walk through a list.

3CLEARVALUES is needed in the present rule formulation due to our decision to have a static function label and
a dynamic function to record the intermediate values associated to nodes. In a more syntax-oriented SOS-style,
as used for the Java model in [11] where a function restbody combines the two functions label and values into one,
CLEARVALUES results automatically from re-installing the body of the while statement as new rest program.

ExeEcLSTM; = match context(pos)
; — YIELD(Norm)
erp; — pos = erp
> val; — YIELDUP(Norm)
JUMPSTM

if Cexp) stmy else stmy — POS = exp

if (®wval) stmy else stmy — if val then pos := stm; else pos := stmy
if (True) ® Norm else stm — YIELDUP(Norm)

if (False) stm else ® Norm — YIELDUP(Norm)

while (exp) stm — POS := exp

while (®wval) stm — if val then pos := stm else YIELDUP(Norm)
while (True) ® Norm — {pos := up(pos), CLEARVALUES(up(pos))}
while (True) ® Break ~ — YIELDUP(Norm)

while (True) ® Continue — {pos := up(pos), CLEARVALUES(up(pos))}
while (True) ® abr — YIELDUP(abr)

type loc; — YIELD(Norm)

lab: stm — pos := stm
lab: ® Norm — YIELDUP(Norm)
SPECIFICSTM
. ®abr ... — if up(pos) # Undef A PropagatesAbr(up(pos)) then YIELDUP(abr)
{1} — YIELD(Norm)
{stm ...} — pos := stm
{... ®»Norm} — YIELDUP(Norm)
{... " Norm stm ...} — pos := stm
JuMPOUTOFBLOCK
{...%abr ...} — YIELDUP(abr)

In Javaz the set JumpStm consists of jump statements of form break lab; and continue lab;,
so that the set of abruptions is defined as Abr = Break(lab) | Continue(lab). In C#z the set
JumpStm contains break; | continue; | goto lab;, so that Abr = Break | Continue | Goto(Lab).
The differences in the scoping rules for break; and continue; statements in the two languages
are reflected by differences in the corresponding interpreter rules.

JuMPSTM(Java) = match context(pos)
break lab; — YIELD(Break(lab))
continue lab; — YIELD(Continue(lab))

JumMPSTM(C#) = match context(pos)
break; — YIELD(Break)
continue; — YIELD(Continue)
goto lab; — YIELD(Goto(lab))

Due to the differences in using syntactical labels to denote jump statement scopes, the definitions
of how abruptions are propagated upwards differ slightly for Javasy and for C#z, though the
conceptual content is the same, namely to prevent propagation at statements which are relevant for
determining the abruption target. For Javaz we have the simple definition PropagatesAbr(a) <
label () # lab : s,* whereas for C#7 we have the following definition:

PropagatesAbr(a) <= label(a) ¢ {Block, While, Do, For, Switch}

Since Java has no goto lab; statements, it has an empty rule JUMPOUTOFBLOCK, whereas
EXECC#STM; contains the rule

JuMPOUTOFBLOCK = match contezt(pos)
{... ®Goto(l) ...} — let « = GotoTarget(first(up(pos)),)
if o # Undef then {pos := o, CLEARVALUES(up(pos))}
else YIELDUP(Goto(l))

4We disregard here the minor difference in the formulation of PropagatesAbr in [11], where the arguments are
not positions, but syntactical constructs or intermediate values.

where an auxiliary function is needed to compute the target of a label in a list of block statements,
recursively defined as follows:

GotoTarget(a,) =
if label(a) = Lab(l) then «
elseif next(a) = Undef then Undef
else GotoTarget(next(x),l)

Analogously to EXECC#ExXP; also EXECC#STM; has checked contexts and therefore the
following submachine (which in EXECTAVASTM; is empty):

SPECIFICSTM; = match contezt(pos)
checked block — pos := block
checked ® Norm — YIELDUP(Norm)
unchecked block — pos := block
unchecked * Norm — YIELDUP(Norm)

The auxiliary macro CLEARVALUES(«) to clear all values in the subtree at position « can be
defined by recursion as follows, proceeding from top to bottom and from left to right®:

CLEARVALUES(a) =
values(a) := Undef
if first(a) # Undef then CLEARVALUESSEQ(first(«))

CLEARVALUESSEQ(«) =
CLEARVALUES(«)
if next(a) # Undef then CLEARVALUESSEQ(next())

3 Extension L; of L; by procedures (static classes)

In L¢ the concept of procedures (also called subroutines or functions) is added to the purely
imperative instructions of Lz. We introduce the basic mechanism of procedures first for so-called
static methods, which belong to classes playing the role of modules. Different languages have
different mechanisms to pass the parameters to a procedure call. In Java parameters are passed
by-value, whereas in C# also call-by-reference is possible. Classes® come with variables which play
the role of global module variables, called class or static variables or fields to distinguish them
from instance fields provided in Lp. Usually classes come with some special methods, so-called
static initializers, which are used to ‘initialize’ the class. The initialization concepts of different
languages usually differ; in particular through different policies of when a class is initialized. In the
extension EXECL ¢ of EXECL; we illustrate these differences for Java and C#. Normally classes
are also put into a hierarchy, which is used to inherit methods among classes to reduce the labor
of rewriting similar code fragments. As is to be expected, different languages come with different
inheritance mechanisms related to their type concepts. Since the definition of the inheritance
mechanism belongs mainly to the static semantics of the language, we mention it only where it
directly influences the description of the dynamics.

We present the extension as a conservative (purely incremental) refinement of the ASM EXECL;,
which is helpful for proving properties of the extended machine on the basis of properties of the
basic machine. Conservative refinement means that we perform the following three tasks (see [2]
for a general description of the ASM refinement method).

» Extension of the ASM universes and functions, or introducion of new ones, for example to
reflect the grammar extensions for expressions and statements. This goes together with the
addition of the appropriate constraints needed for the static analysis of the new items (like
type constraints, definite assignment rules, etc.).

= Extension of some of the definitions or macros, here for example PropagatesAbr(a), to make
them work also for the newly occurring cases.

» Addition of new ASM rules, in the present case to define the semantics of the new expressions
and statements.

5Intuitively it should be clear that the execution of this recursive ASM provides simultaneously — in one step
— the set of all updates of all its recursive calls, as is needed here for the clearing purpose; see [3] for a precise
definition.

SWe disregard here the slight variations to be made for interfaces.

3.1 Static semantics of L,

In L¢ a program is a set (usually declared as ‘package’) of compilation units (classes and interfaces),
each coming with declarations of names spaces (including a global namespace), types in the global
namespace, using directives, conditions on class extension, accessability, visibility, etc. Since in
this paper the focus is on dynamic semantics, we assume nested namespaces to be realized by
the adoption of fully qualified names. We also do not discuss here the rules for class extensions
(inheritance), for overriding of methods, for the accessibility of types and members via access
modifiers like public, private, etc. This allows us to make use, for example, of a static function
body(m) which associates to a method its code.

The extension of the grammars for Vexp, Sexp, Stm and thereby of the corresponding ASM
domains reflects the introduction of Classes with static Fields and static Methods, which can be
called with various arguments and upon ‘return’ing may pass a computed value to the calling
method. The new set Arg of arguments appearing here forsees that different parameters may be
used. For example, Java provides value parameters (so that Arg::= Exp), whereas C# allows also
ref and out parameters (in which case Arg ::= Exp | ‘ref’ Vexp | ‘out’ Vezp). We do not discuss
here the different static constraints (on types, definite assignment, reachability, etc.) which are
imposed on the new expressions and statements in different languages.” For the instantiation of L
to Java, the set Stm of statements in Javac also contains the special form static stm for static
initialization blocks.

Verp == ...| Field| Class*.’ Field

Sexp == ...| Meth ([Args]) | Class ‘.’ Meth ([Args])
Args = Arg{‘,” Arg}

Stm u= ...|‘return’ Ezp‘;’ | ‘return’‘;’

The presence of method calls and of to-be-initialized classes makes it necessary to introduce
new universes to denote multiple methods (pairs of type and signature), the initialization status of
a type (which may have additional elements in specific languages, e.g. Unusable for the description
of class initialization errors in Java, see below) and the sequence of still active method calls (so-
called frame stack of environments of method executions). One also has to extend the set Abr of
reasons for abruption by returns from a method, with or without a computed value which has to
be passed to the caller.

Meth = Type x Msig
TypeState = Linked | InProgress | Initialized
Frame = Meth x Pos x Locals x Values
where Values = (Pos — Result) and Locals = (Loc — Adr)

A method signature Msig consists of the name of a method plus the sequence of types of the
arguments of the method. A method is uniquely determined by the type in which it is declared
and its signature. The reasons for abruptions are extended by method return:

Abr = ... | Return | Return(Value)

3.2 Dynamic semantics of L¢

To dynamically handle the (addresses of) static fields, the initialization state of types, the current
method and the execution stack we use the following new dynamic functions:

globals: Type x Field — Adr frames: List(Frame)
typeState: Type — TypeState meth: Meth

To allow us to reuse without any rewriting the EXECL; rules as part of the EXECL ¢ rules, we
provide a separate notation (meth, pos, locals, values) for the current frame, instead of having it on
top of the frame stack. We extend the stipulations for the initial state as follows:

» typeState(c) = Linked for each class ¢

7See for example [7] for a detailed analysis of the extension of the definite assignment rules needed when allowing
besides by-value parameter passing (as does Java) also call-by-reference (as does C#).

s meth = EntryPoint::Main() [EntryPoint is the main class]
» pos = body(meth) [The root position of the body]
s [ocals = values = () and frames = ||

The submachine EXECL ¢ extends the interpreter EXECL; for Lz by additional rules for the
evaluation of the new expressions and for the execution of return statements. In the same way the
further refinements in the sections below consist in the parallel addition of appropriate submachines.

ExEcL¢ =
ExXEcL;
ExXeEcCLEXPo
ExXECLSTM ¢

Expression evaluation rules. The rules for class field evaluation in EXECLEXP ¢ are analogous
to those for the evaluation of local variables in EXECLEXP;, except for using globals instead
of locals and for the additional clause for class initialization. The rules for method calls use the
macro INVOKESTATIC explained below, which takes care of the class initialization. The submachine
ARGEVAL for the evaluation of sequences of arguments depends on the evaluation strategy of L.
The definition of the submachine PARAMEXP for the evaluation of special parameter expressions
depends on the parameter types provided by the language L. If Arg = Ezp as in Java, this machine
is empty; for the case of C#, where Arg ::= Exp | ‘ref’ Vexp | ‘out’ Vexp, we show below its
definition.

EXECLEXP ¢ = match context(pos)
c.f — if Initialized(c) then YIELDINDIRECT(globals(c::f)) else INITIALIZE(c)
c.f =exp — pos:= exp
c.f =" wval — if Initialized(c) then
WRITEMEM (globals(c::f), type(c::f), val)
YIELDUP(val)
else INITIALIZE(c)
c.mC(args) — pos := (args)
c.m” (vals) — INVOKESTATIC(c::m, vals)
ARGEVAL
PARAMEXP

Once the arguments of a method call are computed, the macro INVOKESTATIC invokes the
method if the initialization of its class is not triggered, otherwise it initializes the class. In both
Java and C#, the initialization of a class is not triggered if the class is already initialized.® For
methods which are not declared external or native, INVOKEMETHOD updates the frame stack
and the current frame in the expected way (the same in both Java and C#), taking care also
of the initialization of local variables, which includes passing the call parameters. Consequently
the definition of the macro INITLOCALS depends on the parameter passing mechanism of the
considered language L, which is different for Java and for C#. Since we will also have to deal
with external (native) methods — whose declaration includes an extern (native) modifier and
which may be implemented using a language other than L — we provide here for their invocation
a submachine INVOKEEXTERN, to be defined separately depending on the class of external /native
(e.g. library) methods. The predicate StaticCtor recognizes static class constructors; their implicit
call interrupts the member access at pos, to later return to the evaluation of pos instead of up(pos).

INVOKESTATIC(c::m, vals) =
if not triggerinit(c) then INVOKEMETHOD(c::m, vals) else INITIALIZE(c)
where triggerInit(c) = —Initialized(c)

INVOKEMETHOD(c::m, vals) =
if extern € modifiers(c::m) then INVOKEEXTERN(c::m, vals)
else let p = if StaticCtor(c::m) then pos else up(pos) in

8See [8] for other cases where the initialization is not triggered in C#, in particular the refinement for classes
which are marked with the implementation flag beforefieldinit to indicate that the reference of the static method
does not trigger the class initialization.

10

frames := push(frames, (meth, p, locals, values))

meth :=c:m
pos = body(ci:m)
values =0

INtTLOCALS(c::m, vals)

The definition of the macro INITLOCALS for the initialization of local variables depends on the
parameter passing mechanism. In Java the macro simply defines locals (which assumes the role of
mem in our general model) to take as first arguments the actual values of the call parameters (the
ValueParams for call-by-value). In C# one has to add a mechanism to pass reference parameters,
including so-called out parameters, which can be treated as ref parameters except that they need
not be definitely assigned until the function call returns. In the following definition of INITLOCALS
for C+#, all (also simultaneous) applications of the external function new during the computation
of the ASM are supposed to provide pairwise different fresh elements from the underlying domain
Adr.® paramIndex(c::m,) yields the index of the formal parameter z in the signature of c::m.

INITLOCALS(c::m, vals)(C#) =

forall z € LocalVars(c::m) do // addresses for local variables
locals(z) := new(Adr, type(z))
forall z € ValueParams(c::m) do // copy value arguments

let adr = new(Adr, type(z)) in
locals(x) := adr
WRITEMEM (adr, type(x), vals(paramIndex(c::m,)))
forall € RefParams(c::m) U OutParams(c::m) do // ref and out arguments
locals(z) := vals(paramIndex(c::m, x))

The difference between ref and out parameters at function calls and in function bodies of C#
is reflected by including as AddressPositions all nodes whose parent node is labeled by ref or out
and by adding corresponding definite assignment constraints (listed in [4]):

AddressPos(a)) <= FirstChild(a) A
label(up(a)) € {ref,out, ++,--} V label(up(a)) € Aop

Therefore the following rules of PARAMEXP for C# can ignore ref and out:

PARAMEXP(C#) = match context(pos)
ref vexp — pos := vexp
ref » adr — YIELDUP(adr)

out vexp — pos := verp
out ®adr — YIELDUP(adr)

For the sake of illustration we provide here a definition for the submachine ARGEVAL with
left-to-right evaluation strategy for sequences of arguments. The definition has to be modified in
case one wants to specify another evaluation order for expressions, involving the use of the ASM
choose construct if some non-deterministic choice has to be formulated. For a discussion of such
model variations we refer to [12] where an ASM model is developed which can be instantiated to
capture the different expression evaluation strategies in Ada95, C, C++, Java, C# and Fortran.

ARGEVAL = match contezt(pos)

O — Y1ELD([])
Carg, ...) — pos := arg
(valy, ... ,%val,) — YIELDUP([valy,. .., val,))

(...%wval,arg...) — pos := arg

Statement execution rules. The semantics of static initialization is language dependent and
is further discussed below for Java and C#. The rules for method return in EXECLSTM ¢ trigger
an abruption upon returning from a method. Via the RETURNPROPAGATION submachine defined
below, an abruption Return or Return(val) due to method return is propagated to the beginning of

9See [9] and [5, 2.4.4] for a justification of this assumption. See also the end of Sect. 4 where we provide an
abstract specification of the needed memory allocation.

11

the body of the method one is returning from. There an execution of the submachine EXITMETHOD
is triggered, which restores the environment of the caller. This abruption propagation mechanism
allows one an elegant refinement for Lg, where the method exit is subject to the prior execution of
so-called finally code which may be present in the method. The rule to YIELDUP(Norm) does
not capture falling off the method body, but yields up the result of the normal execution of the
invokation of a method with void return type in an expression statement.

EXECCSHARPSTM ¢ = match context(pos)
STATICINITIALIZER(L)
return erp; — pPos:= exp
return ®val; — YIELDUP(Return(val))
return; — YIELD(Return)
RETURNPROPAGATION(L)
> Norm; — YIELDUP(Norm)

The return propagation machine for C# is simpler than (in fact part of) that for Java due to
static differences (including the different use of labels) in the two languages. As mentioned above,
both machines, instead of transfering the control from a return statement directly to the invoker,
propagate the return abruption up to the starting point of the current method body, from where
the method ist exited.

RETURNPROPAGATION(C'#) = match context(pos)
Return — if pos = body(meth) A = Empty(frames) then EXITMETHOD(Norm)
Return(val) — if pos = body(meth) A =Empty(frames) then EXITMETHOD(val)

RETURNPROPAGATION(Java) = match context(pos)
lab : » Return — Y1ELDUP(Return)
lab : ® Return(val) — YIELDUP(Return(val))
RETURNPROPAGATION(C'#)

To complete the return propagation in Java one still has to treat the special case of a re-
turn from a class initialization method. In [11, Fig.4.5] this has been formulated as part of the
STATICINITIALIZER machine, which also realizes the condition for the semantics of Java that before
initializing a class, all its superclasses have to be initialized. To stop the return propagation at the
point of return from a class initialization, in the case of Java the predicate PropagatesAbr has to be
refined to PropagatesAbr(a) <= label(a) # lab : sAlabel(a) # static s. In C# the initialization
of a class does not trigger the initialization of its direct base class, so that STATICINITIALIZER(C#)
is empty.

STATICINITIALIZER(Java) = match context(pos)
static stm —let ¢ = classNm(meth)
if ¢ = Object V Initialied(super(c)) then pos := stm
else INITIALIZE(super(c))
static Return — YIELDUP(Return)

The machine EXITMETHOD, which is the same for Java and for C# (modulo the submachine
FREELOCALS), restores the frame of the invoker and passes the result value (if any). Upon normal
return from a static constructor (in Java called clinit method) it also updates the typeState of
the relevant class as Initialized. We also add a rule FREELOCALS to free the memory used for local
variables and value parameters, using an abstract notion FREEMEMORY of how addresses of local
variables and value parameters are actually de-allocated.'®

EXITMETHOD(result) =
let (oldMeth, oldPos, oldLocals, oldValues) = top(frames) in
meth := oldMeth
POS oldPos
locals := oldLocals
frames := pop(frames)

10Under the assumption of a potentially infinite supply of addresses, which is often made when describing the
semantics of a programming language, one can dispense with FREELOCALS.

12

if StaticCtor(meth) A result = Norm then
typeState(type(meth)) := Initialized
values := old Values

else
values := oldValues @ {oldPos — result}
FREELOCALS
FREELOCALS =

forall = € LocalVars(meth) U ValueParams(meth) do
FREEMEMORY (locals(x), type(x))

For both Java and C#, a type c is considered as initialized if its static constructor has termi-
nated normally, as is expressed by the update of typeState(c) to Initialized in EXITMETHOD above.
In addition, c is considered as initialized already if its static constructor has been invoked, to guar-
antee that during the execution of the static constructor accesses to the fields of ¢ or invokations
of methods of ¢ do not trigger a new initialization of ¢. This explains the update of typeState(c)
to InProgress in the definition of INITIALIZE and the following definition of Initialized:

Initialized(c) < typeState(c) = Initialized V typeState(c) = InProgress

To initialize a class its static constructor is invoked (denoted <clinit> in Java and .cctor in
C+#). All static fields of the class are initialized with their default value. The typeState of the
class is updated to prevent further invokations of INITIALIZE(c) during the execution of the static
constructor of ¢. The macro will be further refined in Lg to account for exceptions during an
initialization.

INITIALIZE(c) =
if typeState(c) = Linked then
typeState(c) := InProgress
forall f € staticFields(c) do
let ¢ = type(c::f) in WRITEMEM(globals(c::f), t, default Value(t))
INVOKEMETHOD(¢:: . cctor, [])

With respect to the execution of initializers of static class fields the ECMA standard [6,
§17.4.5.1] for C# says that the static field initializers of a class correspond to a sequence of as-
signments that are executed in the textual order in which they appear in the class declaration. If
a static constructor exists in the class, execution of the static field initializers occurs immediately
prior to executing that static constructor. Otherwise, the static field initializers are executed at an
implementation-dependent time prior to the first use of a static field of that class. Our definitions
above for C# expresse the decision taken by Microsoft’s current C# compiler, which in the second
case creates a static constructor. If one wants to reflect also the non-determinism suggested by
the ECMA formulation, one can formalize the implementation-dependent external control by a
monitored function typeToBelnitialized (which by the way can also be used for the classes and
structs classified by an implementation flag as beforefieldinit type). The C# interpreter then takes
the following form:'!
if typeToBelnitialized # Undef then

INITIALIZE(type To Belnitialized)
else EXECC#

4 Extension Lo of L by object oriented features

In this section we extend L¢ to an object-oriented language Lo by adding objects for class instances,
formally represented as elements of a new set Ref of references. The extension provides new
expressions, namely for instance fields, instance methods and constructors and for the dynamic
creation of new class instances. The inheritance mechanism we consider supports overriding and

1 This is discussed in detail in [8]. The reader finds there also a detection of further class initialization features
that are missing in the ECMA specification, related to the definition of when a static class constructor has to be
executed and to the initialization of structs.

13

overloading of methods and dynamic type checks and type casts. We skip the (via syntactical
differences partly language-specific) treatment of arrays; their description for Java and C# can be
found in [11, 4]. The interpreter EXECL(is defined as a refinement of EXECL ¢, obtained from
the latter by extending its universes, functions, macros and rules to make them work also for the
new expressions.

4.1 Static semantics of Lo

The first extension concerns the sets FExp, Vexp, Sexp where the new reference types appear.
‘null’ denotes an empty reference, ‘this’ is interpreted as the current reference. A RefEzp is an
expression of a reference type. We use ‘pred’ to denote a predecessor class, in Java written ‘super’
and in C# ‘base’.

Ezp == ...|‘null’|‘this’|‘C Type ‘)’ Ezp | SpecificExp(L)
Verp == ...| Vexp‘.’ Field| RefExp ‘.’ Field | ‘pred’ ‘.’ Field
Sexp = ...|‘new’ Type ([Args]) | Exp ‘.’ Meth ([Args]) | ‘pred’ ‘.’ Meth ([Args])

The specific expressions of Javay and C#7 are extended by specific object-oriented expressions
of these languages as follows:

SpecificExp(Java) = ...| Ezp ‘instanceof’ ‘C Type)’
SpecificExp(C#) == ...| ‘typeof’ ‘C RetType ‘)’ | Exp ‘is’ Type | Exp ‘as’ RefType

Type structure. To be able to explain by variations of our interpreter EXECL the major differ-
ences between Java and C+#, we need to mention here some of the major differences in the type
structure underlying the two languages. For efficiency reasons C# distinguishes between value
types and reference types. When a compiler encounters the declaration of a variable of value type,
it directly allocates the memory to that variable, whereas for declarations of variables of reference
type it creates a pointer to an object on the heap. A mediation between the two types is provided,
known under the name of boxing, to convert values into references, and of an inverse operation
called unboxing. At the level of Ly, besides the new type of References present in both languages,
C# also introduces so-called Struct types, a value-type restricted version of classes, to circumvent
the overhead associated with class instances.

Therefore, to be prepared to instantiate our L-interpreter to an interpreter for both Java and
C+#, the domain of values of Lz is extended to also contain not only References (with a special
value null € Ref to denote a null reference), as would suffice for interpreting Javao, but also struct
values. For the case of C# we assume furthermore references to be different from addresses, i.e.
Ref N Adr = 0.

Value = Simple Value U Adr U Ref U Struct.

The set Struct of struct values can be defined as the set of mappings from StructType::Field to
Value. The value of an instance field of a value of struct type T can then be extracted by applying
the map to the field name, i.e. structField(val, T,f). We abstract from the implementation-
dependent layout of structs and objects and use a function fieldAdr: (Adr U Ref) x Type::Field —
Adr to record addresses of fields. This function is assumed to satisfy the following properties,
where the static function instanceFields: Type — Powerset(Type::Field) yields the set of instance
fields of any given type ¢; if ¢ is a class type, it includes the fields declared in all pred(ecessor)
classes of t:

m If ¢ is a struct type, then fieldAdr(adr, t::f) is the address of field f of a value of type ¢ stored
in mem at address adr.

= A value of struct type t at address adr occupies the following addresses in mem:

{fieldAdr(adr,f) | f € instanceFields(t)}

n If runTimeType(ref) is a class type, then fieldAdr(ref, t::f) is the address of field ¢::f of the
object referenced by ref.

= An object of class ¢ is represented by a reference ref with runTimeType(ref) = ¢ and occupies
the following addresses in mem:

{fieldAdr(ref,f) | f € instanceFields(c)}

14

return type

value type reference type

class type
interface type
array type

delegate type
null type

[enum type] [struct type]

simple type

Cboo 1) Cnumeri‘c type)

[integral type] [ﬂoating—point type] Cdecimal]

byte float
ushort double

uint
ulong

Figure 2: The classification of types of C#.

For our language L we do not specify types further. For the sake of illustration see Fig. 2 with

the extended type classification of C#, where the simple types of Lz became aliases for struct
types.
Syntax-tree information. According to our assumption that the attributed syntax tree has exact
information, for the formulation of our model we assume as result of field and method resolution
that each field access has the form T::f, where f is a field declared in the type T'. Similarly, each
method call has the form T::m (args), where m is the signature of a method declared in type T.
Moreover, for the access of fields and methods via the current instance or the predecessor class we
know the following:

m pred.f in class C has been replaced by this. B::f, where B is the first predecessor class
of C where the field f is declared.

m pred.m(args) in class C has been replaced by this. B:: M (args), where B::M is the method
signature of the method selected by the compiler (the set of applicable methods is constructed
starting in the pred class of C).

n If f is a field, then f has been replaced by this. T::f, where f is declared in T.

Instance creation expressions are treated like ordinary method invocations, splitting an instance
creation expression into a creation part and an invocation of an instance constructor. To make
the splitting correctly reflect the intended meaning of new T::M (args), we assume in our model
without loss of generality that class instance constructors return the value of this.'?

m Let T be a class type. Then new T::M (args) is replaced by new T.T::M (args).

Also for constructors of structs we assume that they return the value of this. For instance
constructors of structs one has to reflect that in addition they need an address for this. Let S be
a struct type. Then:

m verp = new S::M (args) has been replaced by vexp.S::M (args). This reflects that such a new
triggers no object creation or memory allocation since structs get their memory allocated at
declaration time.

» Other occurrences of new S::M (args) have been replaced by z.S::M (args), where z is a
new temporary local variable of type S.

For automatic boxing we have:

12The result of a constructor invocation with new is the newly created object, which is stored in the local envi-
ronment as value for this. Therefore one can equivalently refine the macro EXITMETHOD for constructors to pass
the value of this upon returning from a constructor, see [11, pg.82].

15

» verp = exp is replaced by vexp = (T)exp if type(exp) is a value type, T = type(vexp) and
T is a reference type. In this case we must have type(ezp) < T, where < denotes the here
not furthermore specified subtype relation (standard implicit conversion) resulting from the
inheritance and the ‘implements’ relation between classes and interfaces.

» arg is replaced by (T)arg if type(arg) is a value type, the selected method expects an
argument of type T and T is a reference type. In this case we must have type(arg) = T.

4.2 Dynamic semantics of Ly

Two new dynamic functions are needed to keep track of the runTimeType: Ref — Type of references
and of the type object typeObj: RetType — Ref of a given type, where RetType ::= Type | ‘void’.
The memory function is extended to store also references:

mem: Adr — SimpleValue U Ref U { Undef}.
For boxing we need a dynamic function valueAdr: Ref — Adr to record the address of a value in a
box. If runTimeType(ref) is a value type t, then valueAdr(ref) is the address of the struct value
of type t stored in the box.

The this reference is treated as first parameter and is passed by value. Therefore this is an
element of ValueParams(c::m) and paramIndez(c::m,this) = 0.

For the refinement of the EXECL ¢ transition rules it suffices to add the new machine EXECLEXP o
for evaluating the new expressions, since Ly introduces no new statements.

ExecLop =
ExecL¢
ExecLExpPo

In EXECLEXPo the type cast rule contains three clauses concerning value types, which are
needed for C# but are not present for Java. In fact for Java the first RefType subrule suffices,
the one where both the declared type and the target type are compatible reference types and the
reference is passed through. FIELDEXPo contains the rules for field access and assignment as
needed for C#, where for Java the additional access rule for value types is not needed (and the
macros for getting and setting field values are simplified correspondingly). NEw differ for Java
and C#, reflecting the different scheduling for the initialization, as specified below. The rules for
instance method invokation are the same for Java and C# modulo different definitions for the
macro INVOKE and except that for C# an additional clause is needed for StructValuelnvokations.
A struct value invocation is a method invocation on a struct value which is not stored in a variable.
For such struct values a temporary storage area (called ‘home’) has to be created, to be passed in
the invocation as value of this. The submachine SPECIFICEXP(is specified below for Java and

C#.

EXECEXPo = match context(pos)

null — YIELD(null)
this — YIELDINDIRECT(locals(this))
(t)exp — pos := exp
(t)*val — if type(pos) € RefType then

if ¢ € RefType A (val = null V runTime Type(val) < t) then

Y1ELDUP(val) // pass reference through
if t € ValueType A val # null A t = runTimeType(val) then
YIELDUP(mem Value(valueAdr(val),t)) // un-box a copy of the value
if type(pos) € Value Type then

if ¢ = type(pos) then YIELDUP(val) // compile-time identity

if t € RefType then YIELDUPBOX(type(pos), val) // box value
FIELDEXPo
NEWo
exp. T::M Cargs) — pos := exp
»val.T::M Cargs) — pos := (args)

if StructValuelnvocation(up(pos)) then
let adr = new(Adr, type(pos)) in // create home for struct value
WRITEMEM (adr, type(pos), val)
values(pos) := adr

val. T::M™ (vals) — INVOKE(wal, T, M, vals)

16

SPECIFICEXP o

The following definition formalizes that a struct value invocation is a method invocation on a
struct value which is not stored in a variable.

StructValueInvocation(exp . T::M Cargs)) <= type(exp) € StructType N exp ¢ Vexp

The rules for instance field access and assignment in FIELDEXP are equivalent for Java and
C# modulo two differences. The first difference comes through the different definitions for the
macro SETFIELD explained below. The second difference consists in the fact that C# needs the
struct type clause formulated below (in the second rule for field access), which is not needed for
Java.'® We use type(exp.t::f) = type(t::f).

FIELDEXP o = match context(pos)
exp.t::f — pos:= exp
>val.t::f — if type(pos) € ValueType A val ¢ Adr then
YIELDUP(structField(val, type(pos), t::f))
elseif val # null then
YIELDUPINDIRECT(fieldAdr(val, t::f))
expy . t::f = exps — pos = exp;
“wval.t::f = exp — pos := exp
valy . t::f =®valy — if val; # null then
SETFIELD(valy, t::f , valy)
Y1ELDUP(valy)

The different schedules for the initialization of classes in Java and C# appear in the different
definitions for their submachines NEw and INVOKE. When creating a new class instance, Java
checks whether the class is initialized. If not, it initializes the class. Otherwise it does what also
the machine NEW o (C#) does, namely it creates a new class instance on the heap, initializing all
instance fields with their default values. See below for the detailed definition of HEAPINIT.

NEW (Java) = match context(pos)
new ¢ — if Initialized(c) then
let ref = new(Ref, ¢) in
HEeAPINIT(ref, c)
Y1ELD(ref)
else INITIALIZE(¢)

NEW o (C#) = match context(pos)
new ¢ — let ref = new(Ref, c) in
runTime Type(ref) := ¢
forall f € instanceFields(c) do
let adr = fieldAdr(ref, f) and t = type(f) in
WRITEMEM (adr, ¢, default Value(t))
YIELD(ref)

The INVOKE rule for Java is paraphrased from [11, Fig.5.2]. The compile-time computable
static function lookup yields the class where the given method specification is defined in the class
hierarchy, depending on the run-time type of the given reference.

INVOKE(val, ¢, m, vals)(Java) =
let ¢/ = case callKind(up(pos)) of
Virtual — lookup(runTime Type(val), ¢/m)
Super — lookup(super(classNm(meth)), ¢/m)
Special — ¢
INVOKEMETHOD(¢ /m, [val]vals)

13As in most parts of this paper, we disregard merely notational differences between the two models, here
the fact that due to the presence of both memory addresses and values, the C#» model uses the machine
YIELDUPINDIRECT(fieldAdr(val, t::f) where the Javap model has the simpler update YIELDUP(getField(val, t::f).

17

C# performs the initialization test only in the very moment of performing INVOKE, after the
evaluation of the constructor arguments. Thus the invocation of an instance constructor of a class
may trigger the class initialization (see the detailed analysis in [8]). The split into virtual and
non-virtual method calls is reflected in the submachine INVOKEINSTANCE.

INVOKE(val, T, M, vals)(C#) =
if InstanceCtor(M) A triggerInit(T) then INITIALIZE(T)
elseif val # null then INVOKEINSTANCE(T:: M, val, vals)

INVOKEINSTANCE(T:: M, val, vals) =
if callKind(T::M) = Virtual then // indirect call, val € Ref
let S = lookup(runTimeType(val), T::M) in
let this = if S € StructType then valueAdr(val) else val in
INVOKEMETHOD(S:: M, [this] - vals)
if callKind(T::M) = NonVirtual then // direct call, val € Adr U Ref
INVOKEMETHOD(T:: M, [val] - vals)

The machines SPECIFICEXP define the semantics of the language-specific expressions listed
above, which are all related to type checking.

SPECIFICEXP o (Java) = match context(pos)
exp instanceof { — pos := exp
> val instanceof ¢t — YIELDUP(val # null A runTimeType(val) < t)

SPECIFICEXP o (C#) contains SPECIFICEXP o (Java) as a submachine (modulo notational dif-
ferences), namely consisting of the first and the third rule for the is-instruction. In addition we
have rules to yield the type of an object and for type conversion between compatible types, which
needs a new macro YIELDUPBOX defined below for yielding the reference of a newly created box.

SPECIFICEXP o (C#) = match contezt(pos)
typeof (t) — YIELD(typeObj(t))
exp ist — pos := exp
»val is t — if type(pos) € Value Type then
YIELDUP(type(pos) < t) // compile-time property
else
YIELDUP(val # null A runTimeType(val) < t)
exp ast — pos := exp
> val as t — if type(pos) € ValueType then
YIELDUPBOX(type(pos), val) // box a copy of the value
elseif (val # null A runTimeType(val) < t) then
YIELDUP(val) // pass reference through
else YIELDUP(null) // convert to null reference

Memory refinement. Due to the appearance of reference (and in C# also struct) types an
extension of the memory notion is needed. To model the dynamic state of objects, storage is
needed for all instance variables and to record to which class an object belongs. The model for
Javao in [11] provides for this reason a dynamic function heap: Ref — Heap to record every class
instance together with the values of its fields. Heap can be considered as an abstract set of elements
of form Object(t, fields), where fields is a map associating a value to each field in instanceFields(t).
One can then define two simple macros SETFIELD and GETFIELD to manipulate references on this
abstract heap as follows (where @& denotes adding a new (argument,value)-pair to a function, or
overwriting an existing value by a new one):

GETFIELD(ref, f)(Java) = case heap(ref) of
Object(t, fields) — fields(f)

SETFIELD(ref, f, val)(Java) = let Object(t, fields) = heap(ref) in
heap(ref) := Object(t, fields & {(f,val)})

18

For modeling C# ¢ a further refinement of both reading from and writing to memory is needed,
due to the presence of struct types. The notion of reading from the memory is refined by extending
the simple equation mem Value(adr, t) = mem(adr) of C#z to fit also struct types, in addition to
reference types. This is done by the following simultaneous recursive definition of mem Value and
getField along the given struct type.

mem Value(adr, t) =
if t € SimpleType U RefType then mem(adr)
elseif t € StructType then {f — getField(adr,f) | f € instanceFields(t)}

getField(adr, t::f) = memValue(fieldAdr(adr, t::f), type(t::f))

Similarly, writing to memory is refined from WRITEMEM(adr, t, val) = mem(adr) := val in C#z,
recursively together with SETFIELD along the given struct type:

WRITEMEM (adr, t, val) =
if ¢ € SimpleType U RefType then mem(adr) := val
elseif ¢t € StructType then
forall f € instanceFields(t) do SETFIELD(adr, f, val(f))

SETFIELD (adr, t::f , val) = WRITEMEM(fieldAdr(adr, t::f), type(t::f), val)

The notion of AddressPos from C# is refined to include also lvalue nodes of StructType, so that ad-
dress positions are of the following form: ref O, out O, O++, O--, O op= exp, O.f, O.m(args).

AddressPos(a)) <= FirstChild(a) A
label(up(a)) € {ref, out, ++,--} V label(up(a)) € Aop V
(label(up(a)) ="." AN € Veap A type(a) € StructType)

YIELDUPBOX creates a box for a given value of a given type and returns its reference. The
run-time type of a reference to a boxed value of struct type ¢ is defined to be t. The struct is
copied in both cases, when it is boxed and when it is un-boxed.

YIELDUPBOX(t, val) = let ref = new(Ref) and adr = new(Adr, t) in
runTimeType(ref) :=t
valueAdr(ref) := adr
WRITEMEM(adr, t, val)
YieLpUP(ref)

5 Extension L¢ of Lo by exceptions

L¢ extends Ly with exceptions, designed to provide support for recovering from abnormal situa-
tions, separating normal program code from exception handling code. When an L-program violates
certain semantic constraints at run-time, the interpreter signals this as an exception. The control
is transferred, from the point where the exception occurred, to a point that can be specified by the
programmer. An exception is said to be thrown from the point where it occurred, and it is said to
be caught at the point to which control is transferred. The model for Le¢ makes explicit how jump
statements from Lz, return statements from L¢ and the initialization of classes from L interact
with catching and handling exceptions.

Technically, exceptions are represented as objects of predefined system exception classes (in
Java Throwable and in C# System.Exception) or of user-defined application exception classes.
Once created (‘thrown’), these objects trigger an abruption of the normal program execution to
‘catch’ the exception — in case it is compatible with one of the exception classes appearing in the
program in an enclosing try-catch-finally statement. Optional finally statements are guaranteed
to be executed independently of whether the try statement completes normally or is abrupted.
We consider run-time exceptions, which correspond to invalid operations violating the semantic
constraints of the language (like an attempt to divide by zero or to index an array outside its
bounds) and user-defined exceptions. We do not treat errors which are failures detected by the
underlying virtual machine machine (JVM or CLR).

19

5.1 Static semantics of L¢

For the refinement of EXECL o by exceptions, it suffices to extend the static semantics and to add
the new rules for exception handling. The set of statements is extended by throw and try-catch-
finally statements as defined byt he folowing grammar (where the ‘throw’ ‘;’ statement without
expression and so-called general catch clauses of form catch block) are present only in C#, not in

Java):

Stm = ...|‘throw’ Exzp‘;’| ‘throw’ ‘;’
| ‘try’ Block { Catch} [‘catch’ Block] [‘finally’ Block]
Catch == ‘catch’ ‘C ClassType [Loc])’ Block

Various static constraints are imposed on try-catch-finally statements in L-programs, like the
following ones we need below to explain the correctness of the transition rules below:

m every try-catch-finally statement contains at least one catch clause, general catch clause, or
finally block
» the exception classes in a Catch clause appear there in a non-decreasing type order, more pre-
cisely for every try-catch statement try block catch (Fy 1) block; ...catch (E, z,) block,
holds: i < j = E; A E;
Some static constraints on try-catch-finally statements are language-specific. We only list the
following three specific constraints of C# which will be needed to justify the correctness of the
transition rules below.

= no return statements are allowed in finally blocks
m a break, continue, or goto statement is not allowed to jump out of a finally block
= a throw statement without expression is only allowed in catch blocks

To simplify the exposition we assume that general catch clauses ‘catch block’ are replaced
at compile-time by ‘catch (Object z) block’ with a new variable z and that try-catch-finally
statements have been reduced to try-catch and try-finally statements, e.g. as follows:

try {
try TryBlock
catch (E; x1) CatchBlocky

try TryBlock
catch (£] z1) CatchBlock;

catch (E, z,) CatchBlock,

finally FinallyBlock catch (Bn z,) CatchBlock,

} finally FinallyBlock

Since throwing an exception completes the computation of an expression or a statement abruptly,
we introduce into the model a new type of reasons of abruptions and type states, namely references
Ezxc(Ref) to an exception object. Due to the presence of throw statements without expression in
C#, also a stack of references is needed to record exceptions which are to be re-thrown.

Abr = ... | Exc(Ref), TypeState =...| Exc(Ref), excStack: List(Ref)

5.2 Dynamic semantics of L¢

The transition rules for EXECL g are defined by adding two submachines to EXECL . The first one
provides the rules for handling the exceptions which may occur during the evaluation of expressions,
the second one describes the meaning of the new throw and try-catch-finally statements.

ExEcLg =
ExecLo
ExXeEcLEXPrg
EXECLSTME

Expression evaluation rules. EXECLEXPg contains rules for each of the forms of run-time
exceptions forseen by L. We give here some characteristic examples and group them for the ease
of presentation into parallel submachines by the form of expression they are related to, namely

20

for arithmetical exceptions and for those related to cast and reference expressions. The notion
of FAILUP we use is supposed to execute the code throw new F () at the parent position, which
allocates a new object for the exception and throws the exception (whereby the execution of the
corresponding finally code starts, if there is some, together with the search for the appropriate
exception handler. Therefore one can define the macro by invoking an internal method ThrowFE
with that effect for each of the exception classes £ used as parameter of FAILUP.

In the formulation of the following rules we use the exception class names from C+#, which are
often slightly different from those of Java. A binary expression throws an arithmetical exception, if
the operator is an integer division or remainder operator and the right operand is 0. The overflow-
clause for unary or binary operators is expressed using the above defined Checked predicate from

C#.

EXECLEXPE = match context(pos)
valy bop »valy —
if DivisionByZero(bop, valy) then FAILUP(DivideByZeroException)
elseif DecimalOverflow(bop, valy, valy) V (Checked(pos) A Overflow(bop, valy, valy))
then FAILUP(OverflowException)
uop ®val — if Checked(pos) A Overflow(uop, val) then FAILUP(OverflowException)
CASTEXCEPTIONS
NULLREFEXCEPTIONS

In Java, a reference type cast expression throws a ClassCastException, if the value of the direct
subexpression is neither null nor compatible with the required type. This is the first clause in the
rule below which is formulated for C#, where additional clauses appear due to value types.

CASTEXCEPTIONS = match context(pos)
®)*val —
if type(pos) € RefType then
if t € RefType A val # Null A runTimeType(val) A t then
FArLUP(InvalidCastException)
if t € ValueType then // attempt to unbox
if val = Null then FAILUP(NullReferenceException)
elseif t # runTimeType(val) then FAILUP(InvalidCastException)
if type(pos) € SimpleType A t € Simple Type A Checked(pos) A Overflow(t, val)
then FAILUP(OverflowException)

An instance target expression throws a NullReferenceException, if the operand is null.

NULLREFEXCEPTIONS = match context(pos)
»ref . t:f — if ref = Null then FAILUP(NullReferenceException)
ref .t::f =®wval — if ref = Null then FAILUP(NullReferenceException)
ref . T::M (® vals) — if ref = Null then FAILUP(NullReferenceException)

Statement execution rules. The statement execution submachine splits naturally into subma-
chines for throw, try-catch, try-finally statements and a rule for the propagation of an exception
(from the root position of a method body) to the method caller. We formulate the machine below
for C# and then explain its simplification for the case of Java (essentially obtainable by deleting
every exception-stack-related feature).

When the exception value ref of a throw statement has been computed, and if it turns out
to be null, a NullReferenceException is reported to the enclosing phrase using FAILUP, which
allocates a new object for the exception and throws the exception. If the exception value ref
of a throw statement is not null, the abruption Ezc(ref) is passed up to the (position of the)
throw statement, thereby abrupting the control flow with the computed exception as reason. The
semantics of the parameterless throw; statement is explained as throwing the top element of the
exception stack excStack.

Upon normal completion of a try statement, the machine passes the control to the parent
statement, whereas upon abrupted completion the machine attempts to catch the exception by
one of the catch clauses. The catching condition is the compatibility of the class of the exception
with one of the catcher classes. If the catching fails, the exception is passed to the parent statement,
as is every other abruption which was propagated up from within the try statement. Otherwise the

21

control is passed to the execution of the relevant catch statement, recording the current exception
object in the corresponding local variable and pushing it on the exception stack (thus recording
the last exception in case it has to be re-thrown). Upon completion of this catch statement, the
machine passes the control up and pops the current exception object from the exception stack—
the result of this statement execution may be normal or abrupted, in the latter case the new
exception is passed up to the parent statement. No special rules are needed for general catch
clauses ‘catch block’ in try-catch statements, due to their compile-time transformation mentioned
above.

For a finally statement, upon normal or abrupted completion of the first direct substatement,
the control is passed to the execution of the second direct substatement, the finally statement
proper. Upon normal completion of this statement, the control is passed up, together with the
possible reason of abruption, the one which was present when the execution of finally statement
proper was started, and which in this case has to be resumed after execution of the finally
statement proper. However, should the execution of this finally statement proper abrupt, then
this new abruption is passed to the parent statement. The constraints listed above for C# restrict
the possibilities for exiting a finally block to normal completion or triggering an exception, whereas
in Java also other abruptions may occur here.

In Java there is an additional rule for passing exceptions when they have been propagated to
the position directly following a label, namely:

lab : ® Exc(ref) — YIELDUP(Ezc(ref))

If the attempt to catch a thrown exception in the current method fails, the exception is propagated
to the caller using the submachine explained below.

EXECCSHARPSTM g = match context(pos)
throw exp; — pos := exp
throw ®ref ; — if ref = Null then FATLUP(NullReferenceException)
else YIELDUP(Exc(ref))
throw; — YIELD(Ezc(top(excStack)))

try block catch (E z) stm ... — pos := block
try ® Norm catch (E) stm ... — YIELDUP(Norm)
try ® Exc(ref) catch(E) 1) stmy ... catch(E, z,) stm, —

if 3i € [1..n] runTimeType(ref) = E; then
let j = min{i € [1..n] | runTimeType(ref) < E;} in
pos := stm;
excStack := push(ref, excStack)
WRITEMEM (locals(z;), object, ref)
else YIELDUP(Exzc(ref))
try ®abr catch(E; 1) stmy ... catch(E, z,) stm, — YIELDUP(abr)
try Fzc(ref) ... catch(...) ®res ... — {excStack := pop(excStack), YIELDUP(res)}

try tryBlock finally finallyBlock — pos := tryBlock
try ®res finally finallyBlock — pos := finallyBlock
try res f£inally ™ Norm — YIELDUP(res)

try res finally * Exzc(ref) — YI1ELDUP(Ezc(ref))

PROPAGATETOCALLER(Exc(ref))

If the attempt to catch a thrown exception in the current method fails, the exception is passed
by PROPAGATETOCALLER(Exc(ref)) to the invoker of this method (if there is some), to continue
the search for an exception handler there. In case an exception happened in the static construc-
tor of a type, in C# its type state is set to that exception to prevent its re-initialization and
instead to re-throw the old exception object, performed by an extension of INITIALIZE(c) by the
clause if typeState(c) = Ezc(ref) then YIELD(Ezc(ref)). In Java, the corresponding type be-
comes Unusable, meaning that its initialization is not possible, which is realized by the additional
INITIALIZE(c)-clause if typeState(c) = Unusable then FAIL(NoClassDefFoundErr).

PROPAGATETOCALLER(Ezc(ref)) = match context(pos)
Ezc(ref) — if pos = body(meth) A = Empty(frames) then
if StaticCtor(meth) then typeState(type(meth)) := Exc(ref)
EXITMETHOD(Exc(ref))

22

The model EXECJAVASTMg in [11, Fig.6.2] has the following rule for uncaught exceptions
in class initializers, which is inserted before the general rule PROPAGATETOCALLER(Exc(ref)).
For this case Java specifies the following strategy. If during the execution of the body of a
static initializer an exception is thrown, and if this is not an Error or one of its subclasses,
ExceptionInInitializerError is thrown. If the exception is compatible with Error, then the
exception is rethrown in the directly preceding method on the frame stack.

match context(pos)
static Exzc(ref) — if runTimeType(ref) <}, Error then YIELDUP(Ezc(ref))
else FAILUP(ExceptionInInitializerError)

An alternative treatment appears in the model EXECC#STM in [4] where unhandled excep-
tions in a static constructor are wrapped into a TypeInitializationException by translating
static T'() { BlockStatements } into

static T() {
try { BlockStatements }
catch (Exception e) {
throw new TypeInitializationException(7,e);

¥
X

The interpreter for Javag needs also a refinement of the definition of propagation of abruptions,
to the effect that try statements suspend jump and return abruptions for execution of relevant
finally code. For C# this is not needed due to the constraints cited above for finally code in
C#. As explained above, after the execution of this finally code, that abruption will be resumed
(unless during the finally code a new abruption did occur which cancels the original one).

PropagatesAbr(a) <—
label(a) # lab : s A label(a) # static s A label(a) # try... A label(a) # s; £inally so

6 Conclusion

We have defined hierarchically structured components of an interpreter for a general object-oriented
programmming language. In doing this we have identified a certain number of static and dynamic
parameters and have shown that they can be instantiated to obtain an interpreter for Java or
C#. As a by-product this pinpoints in a precise and explicit way the main semantical differences
between the two languages. The work confirms the idea that one can use ASMs to define in an accu-
rate way appropriate abstractions to support the development of precise patterns for fundamental
computational concepts in the fields of hardware and software, reusable for design-for-change and
useful for communicating and teaching design skills.

Acknowledgement. We gratefully acknowledge partial support of this work by a Microsoft grant
within the ROTOR project during the year 2002-2003.

References

[1] V. Awhad and C. Wallace. A unified formal specification and analysis of the new Java memory models.
In E. Borger, A. Gargantini, and E. Riccobene, editors, Abstract State Machines 2003-Advances in
Theory and Applications, volume 2589 of Lecture Notes in Computer Science, pages 166—185. Springer-
Verlag, 2003.

[2] E. Borger. The ASM refinement method. Formal Aspects of Computing, 15:237-257, 2003.

[3] E. Borger and T. Bolognesi. Remarks on turbo ASMs for computing functional equations and recursion
schemes. In E. Borger, A. Gargantini, and E. Riccobene, editors, Abstract State Machines 2003 —
Advances in Theory and Applications, volume 2589 of Lecture Notes in Computer Science, pages
218-228. Springer-Verlag, 2003.

[4] E. Borger, N. G. Fruja, V. Gervasi, and R. Stirk. A high-level modular definition of the semantics of
CH#t. Theoretical Computer Science, 2004.

[5] E. Borger and R. F. Stark. Abstract State Machines. A Method for High-Level System Design and
Analysis. Springer, 2003.

23

[6]

[10]
[11]

[12]

C# Language Specification. Standard ECMA-334, 2001.
http://www.ecma-international.org/publications/standards/ECMA-334.HTM.

N. G. Fruja. The correctness of the definite assignment analysis in C#. Technical report, Computer
Science Department, ETH Ziirich, 2004.

N. G. Fruja. Specification and implementation problems for C#. In B. Thalheim and W. Zimmermann,
editors, Abstract State Machines 2004, LNCS. Springer, 2004.

N. G. Fruja and R. F. Stdark. The hidden computation steps of turbo Abstract State Machines. In
E. Borger, A. Gargantini, and E. Riccobene, editors, Abstract State Machines 2003 — Advances in
Theory and Applications, volume 2589 of Lecture Notes in Computer Science, pages 244-262. Springer-
Verlag, 2003.

R. F. Stark and E. Bérger. An ASM model for C# threads. In B. Thalheim and W. Zimmermann,
editors, Abstract State Machines 2004, LNCS. Springer, 2004.

R. F. Stérk, J. Schmid, and E. Borger. Java and the Java Virtual Machine—Definition, Verification,
Validation. Springer-Verlag, 2001.

W. Zimmermann and A. Dold. A framework for modeling the semantics of expression evaluation
with Abstract State Machines. In E. Borger, A. Gargantini, and E. Riccobene, editors, Abstract State
Machines 2003—-Advances in Theory and Applications, volume 2589 of Lecture Notes in Computer
Science, pages 391-406. Springer-Verlag, 2003.

24

http://www.ecma-international.org/publications/standards/ECMA-334.HTM

