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Abstract. We present a high-level ASM model of C# threads and
the .NET memory model. We focus on purely managed, fully portable
threading features of C#. The sequential model interleaves the compu-
tation steps of the currently running threads and is suitable for unipro-
cessors. The parallel model addresses problems of true concurrency on
multiprocessor systems. The models provide a sound basis for the devel-
opment of multi-threaded applications in C#. The thread and memory
models complete the abstract operational semantics of C# in [2].

1 Introduction

Modern object-oriented programming languages like Java or C# support multi-
threaded programming. They allow several threads to run concurrently sharing
objects on the heap in the same address space. Each thread has its own frame
stack, program counter, local variables and registers. The languages have special
syntactical constructs for synchronization. Java has a synchronized statement
and synchronized methods, while C# has a lock statement and several at-
tributes that can be applied to classes and methods to control their run-time
synchronization behavior.

Although the C# programming languages supports multi-threaded program-
ming directly via special syntax, the underlying thread model is poorly docu-
mented and still considered to be part of the library. The Ecma standards for
C# [4] and the Common Language Infrastructure [5] contain only a few para-
graphs about threads. For example, the lock statement is defined in [4, §15.22]
by a reduction to the library functions Monitor.Enter and Monitor.Exit which
are not further specified there. Important issues, such as the order of writes to
volatile and non-volatile fields, are just briefly mentioned in two paragraphs
in [4, §10.10, §17.4.3]. Hence, a program developer has to rely solely on the class
library documentation that comes with Microsoft’s .NET framework Software
Development Kit [11]. Unfortunately, that documentation is not very precise
with respect to threads, locks and memory issues. Moreover, it is not identi-
cal with the (XML) specification of the types that comprise the standard li-
braries in [5, Partition IV, Profiles and Libraries]. For example, specifications
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of Thread.Interrupt, Thread.Suspend and Thread.Resume are not included
in [5].

If a programmer cannot rely on a simple and precise thread model, the task
of writing reliable multi-threaded applications that are correctly synchronized
and free of data races and deadlocks becomes very difficult and tedious. Multi-
threaded programs depend on the scheduling policy of underlying run-time sys-
tem and therefore synchronization errors are difficult to reproduce and to debug.
Moreover, certain problems may only occur under heavy threading stress in pro-
duction environments like web services which cannot be simulated during the
development cycle. Tools that statically analyze multi-threaded programs for
synchronization problems are in general neither sound nor complete. Neverthe-
less, in some cases the may report a high percentage of all possible conflicts
(see [19]).

The Java Language Specification [7, Ch. 17] devotes a whole chapter to
threads and locks. However, that specification has been found to be hard to
understand and has subtle, often unintended, implications. Therefore, the Java
community has proposed a new specification of the semantics of threads and
locks often referred to as the New Java Memory Model [10]. Whether the new
specification is easier to understand may be doubted. It justifies at least most of
the common compiler optimizations which were prohibited by the old one. For
a comparison and analysis of the different proposals we refer to [1].

The specification of threads in this article extends the modular definition of
the semantics of C# in [2] by a new module C#T for multi-threaded C#. We
focus on purely managed, fully portable threading features of C# and the .NET
common language runtime. We do not consider the .NET equivalents of Win32
threading primitives such as WaitHandle and their derived classes. We also do
not model asynchronous delegates and synchronization domains. The starting
point of our model has been the thread model for Java in [17]. That model
however is only correct for uniprocessor systems and does not address problems
of true concurrency.

For basic terminology on Abstract State Machines we refer the reader to [3,8].

2 Threads in Microsoft’s .NET framework

The thread related features of C# are collected in the System.Threading name-
space (see Fig. 1). The namespace contains the delegate type ThreadStart that
denotes the type of functions with zero arguments and return type void. The
most important classes of the namespace are the Thread and Monitor classes.
Several thread related exception classes derived from SystemException are also
declared in the namespace.

A thread can be in one or more states of the ThreadState enumeration
(listed in Fig. 1). Unfortunately, the documentation does not state clearly which
combinations of states are allowed for a thread and which are not. Moreover,
some of the states are not real execution states of a thread but just boolean flags.
The Background state, for example, tells the run-time system that it can kill the
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thread and exit when all non-background threads have terminated (similar to
the Daemon property of threads in Java). Other states, like StopRequested, are
for internal use only and should not be exposed to the programmer in a public
enumeration. The Aborted state has a rather obscure meaning (see below). If
there is an AbortRequested, why is there no InterruptRequested?

The ThreadState property of the Thread class returns a snapshot containing
the states of a thread as a bitset. This information, however, cannot be used
for synchronization purposes, since it may already been outdated when it is
obtained. Therefore, we do not model the ThreadState property below and use
a different set of execution states in our model.

Threads are represented in C# by instances of class Thread in Fig. 2. Unlike
in Java, this class is sealed (final in Java terminology) and cannot be sub-
classed. The constructor of the class takes a pointer to a ThreadStart function
which will be executed when the new thread is started. The two static methods
of the class, Sleep and ResetAbort, are implicitly called on the current thread.

The constructor of class Monitor in Fig. 2 is private, which means that no
instances of this class can be created. The reason is, that in C# (like in Java)
every object reference can be used as a monitor and therefore there is no need
to create special monitors. The Monitor class contains only static methods. Its
Wait, Pulse and PulseAll methods are similar to Java’s wait, notify and
notifyAll methods of class java.lang.Object.

The Enter and Exit methods of the Monitor class are used to syntactically
reduce the lock statement of C# (where o is a fresh local variable):

lock (exp) stm =⇒


object o = exp;
Monitor.Enter(o);
try { stm }
finally { Monitor.Exit(o); }

Unlike in Java, the Monitor.Enter and Monitor.Exit methods can be called
explicitly in C# programs and hence C# cannot guarantee that a thread holds
no more locks when it has terminated.

3 An ASM model for threads on uniprocessors

Whenever in C# an object is created on the heap, it gets two additional over-
head fields associated with it. The first field is a pointer to the object’s method
table. This pointer makes it possible to obtain the run-time type (exact type) of
the object. The second field contains an index of a SyncBlock. SyncBlocks are
associated with an object on the fly when the object is used as a monitor. A
SyncBlock structure contains information that is used for thread synchronization
(cf. [14]).
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namespace System.Threading {

delegate void ThreadStart();

enum ThreadState {...}

...

sealed class Thread {...}

sealed class Monitor {...}

...

class ThreadStateException {...}

class ThreadAbortException {...}

class ThreadInterruptedException {...}

class SynchronizationLockException {...}

}

enum ThreadState {

Running = 0,

StopRequested = 1,

SuspendRequested = 2,

Background = 4,

Unstarted = 8,

Stopped = 16,

WaitSleepJoin = 32,

Suspended = 64,

AbortRequested = 128,

Aborted = 256

}

Fig. 1. The System.Threading namespace and the ThreadState enumeration.

sealed class Thread {

Thread(ThreadStart start);

void Start();

bool Join(int msec);

static void Sleep(int msec);

void Abort();

static void ResetAbort();

void Interrupt();

void Suspend();

void Resume();

...

}

sealed class Monitor {

private Monitor() { }

...

static void Enter(object obj);

static void Exit(object obj);

static bool Wait(object obj, int msec);

static void Pulse(object obj);

static void PulseAll(object obj);

...

}

Fig. 2. The Thread class and the Monitor class.

3.1 The vocabulary for threads and monitors

We abstract from implementation details and assume that the dynamic function
runTimeType:Ref → Type returns for every object reference its run-time type.
The set of threads can then be defined as follows:

Thread = {ref ∈ Ref | runTimeType(ref ) = Thread}
The subuniverse Monitor ⊆ Ref is equipped with a dynamic function lockOwner
which returns the thread that currently owns the lock of the monitor, a lockCount
which counts how many times a thread has to exit the monitor before the lock
is released, a readyQueue (also known as lock queue) which holds the ordered
queue of blocked threads that are ready to acquire the lock, and a waitQueue
which holds the ordered queue of threads that are waiting on the monitor.

lockOwner :Monitor → Thread ∪ {None}
lockCount :Monitor × Thread → N
readyQueue:Monitor → List(Thread)
waitQueue:Monitor → List(Thread)
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When an object ref is used as a Monitor the functions are initialized as follows:

lockOwner(ref ) := None
lockCount(ref , thread) := Undef

readyQueue(ref ) := [ ]
waitQueue(ref ) := [ ]

The possible execution states of a thread (explained in detail below) are:

ExecState ::= Unstarted | Active | Suspended | Sleeping | Joined
| Syncing | Waiting | Pulsed | Dead

The function execState returns the unique execution state of a thread.

execState:Thread → ExecState

Every thread has several attributes. The joinSet comprises the threads that are
joined to the current thread and are waiting for its termination. The wakeupTime
stores the time when the current thread expires. The monObj is the monitor the
current thread is waiting for or wants to acquire. The joinedThread is another
thread on which the current thread is joined. Moreover, several flags indicate
whether an abort has been requested or initiated, whether an interrupt has been
requested, or whether a suspend has been requested.

joinSet :Thread → Powerset(Thread)
wakeupTime:Thread → N ∪ {∞}
monObj :Thread → Monitor
joinedThread :Thread → Thread

abortRequested :Thread → Bool
abortInitiated :Thread → Bool
interruptRequested :Thread → Bool
suspendRequested :Thread → Bool

When an object ref of type Thread is created, the dynamic functions are initial-
ized as follows:

joinSet(ref ) := ∅
wakeupTime(ref ) := Undef
monObj (ref ) := Undef
joinedThread(ref ) := Undef
execState(ref ) := Unstarted

abortRequested(ref ) := False
abortInitiated(ref ) := False
interruptRequested(ref ) := False
suspendRequested(ref ) := False

The local state of a thread comprises a frame stack of activation records, the
currently executed method, the current position in the method body (program
counter), the local environment and the already computed values of expressions
(operand stack).

frames:Thread → List(Frame)
meth:Thread → Meth
pos:Thread → Pos

locals:Thread → (Loc → Adr)
values:Thread → (Pos → Result)

The current thread is denoted by ‘self’ in the ASM rules below.
Fig. 3 shows a classification of the execution states of a thread and relates

them to the items of the ThreadState enumeration in Fig. 1. A thread is Running
if it is not Unstarted and not already Dead . A thread is considered to be Passive
(or WaitSleepJoin) if it is Running but neither Active nor Suspended .
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Passive (= WaitSleepJoin)

Running

AbortedStopped

Active

DeadUnstarted

Suspended

Sleeping Joined

PulsedWaitingSyncing

Fig. 3. The execution states of a thread.

Running(thread) ⇐⇒ execState(thread) /∈ {Unstarted ,Dead}
Passive(thread) ⇐⇒ WaitSleepJoin(thread) ⇐⇒

execState(thread) ∈ {Syncing ,Waiting ,Pulsed ,Sleeping , Joined}
The items Stopped and Aborted of the ThreadState enumeration can be ob-
tained as follows:

Stopped(thread) ⇐⇒ execState(thread) = Dead ∧ ¬abortRequested(thread)
Aborted(thread) ⇐⇒ execState(thread) = Dead ∧ abortRequested(thread)

The reason for this separation is not known to us.

3.2 An overview of the model

Fig. 4 and 5 contain diagrams for the execution states of a thread. Methods that
are invoked by another thread on the current thread are displayed in grey boxes,
whereas methods invoked by the current thread itself are put into white boxes.
If there is no outgoing arrow for a thread method from an execution state, then
this can mean either that such an invocation is not possible, e.g. since a static
method can only be invoked by an active thread, or that the invocation is not
allowed and throws a ThreadStateException.

The main rule of the ASM model for uniprocessors in Sect. 3.5 below is
the rule ExecSequentialCsharp. It uses the rule ExecCsharp of the ASM
model in [2] which executes one computation step of a single-threaded C# pro-
gram. The rule ExecCsharp has to be parameterized by the current thread in
order to extend the model of [2] to multiple threads. The argument thread of
ExecCsharp becomes then the value of ‘self’ in the rules of [2]. The compo-
nent ExecCsharpT of ExecCsharp which has been left open in [2] has to be
defined as follows:

ExecCsharpT ≡ ExecCsharpStmT
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Thread.Resume

Thread.Start

Thread.Abort

Thread.Start

Thread.Interrupt

Thread.Abort

Thread.Interrupt

Thread.Abort

Thread.Interrupt

ThreadAbortException

Thread.Resume
Thread.Suspend

NotCatchFinallyCode?

Thread.Interrupt

Unstarted

SetInterruptRequest SetSuspendRequest

Active

Dead

SetInterruptRequest

SetInterruptRequest

SetAbortRequest

Suspended

SafePoint?

Fig. 4. Methods invoked by other threads on the current thread.

3.3 The methods of the Thread class

When a thread is created by invoking the constructor of the Thread class,
its execution state is Unstarted . The new thread is later started by invoking
the Thread.Start method. A thread can only be started once, otherwise a
ThreadStateException exception is thrown. If there has already been an abort
requested for the thread, its execution state is immediately changed to Dead .
Otherwise, the execution state of the thread is updated to Active and its lo-
cal state is initiated. The new thread now runs concurrently with the thread
that invoked the Thread.Start method. The YieldUp(Norm) means that the
Thread.Start method returns without blocking.

ThreadStart(thread) ≡
if execState(thread) 6= Unstarted then FailUp(ThreadStateException)
else

if abortRequested(thread) then execState(thread) := Dead
else {ThreadInit(thread), execState(thread) := Active}
YieldUp(Norm)

When a thread is created, a delegate of type ThreadStart has to be provided
to the constructor of the Thread class. This delegate is later invoked, when the
thread is started. Technically, this means the new thread executes the Invoke
method of the ThreadStart delegate. If the invocation list of that delegate con-
sists of a single method, then this method is executed. Otherwise, the methods
of the invocation list are executed sequentially.
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Fig. 5. Methods invoked by the current thread.
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ThreadInit(thread) ≡
let d = getField(thread , Thread::delegate)
let m = ThreadStart::Invoke() in

frames(thread) := [ ]
meth(thread) := m
pos(thread) := body(m)
values(thread) := ∅
InitLocals(thread ,m, [d ])

The InitiLocals macro initializes the local environment of the method, for
example it assigns the delegate d to the this parameter of Invoke.

The Thread.Join method puts the current thread into the join set of another
thread and changes the execution state of the current thread from Active to
Joined . Like every thread method that takes a timeout argument it checks first
whether the argument is in the correct range. If an interrupt has been requested,
then Thread.Join throws a ThreadInterruptedException instead of joining
(Mono 0.26 ignores the interrupt request [12]).

ThreadJoin(thread ,msec) ≡
if msec < −1 then FailUp(ArgumentOutOfRangeException)
elseif execState(thread) = Unstarted then

FailUp(ThreadStateException)
elseif execState(thread) = Dead then YieldUp(True)
elseif interruptRequested(self) then ThrowInterruptedException
else

SetWakeupTime(msec)
joinSet(thread) := joinSet(thread) ∪ {self}
joinedThread(self) := thread
execState(self) := Joined

The thread will become active again, when the other thread has terminated or
msec milliseconds have passed. An argument of −1 milliseconds means an infinite
amount of time.

SetWakeupTime(msec) ≡
if msec = −1 then wakeupTime(self) := ∞
else wakeupTime(self) := currentTime + msec

When an ThreadInterruptedException is thrown, the interrupt request of the
current thread is cleared.

ThrowInterruptedException ≡
FailUp(ThreadInterruptedException)
interruptRequested(self) := False

When the Thread.Join method returns, it indicates with a boolean result,
whether the other thread is dead. If the other thread is not dead, then it follows
from the definition of the predicate Expired and the Wakeup rule in Sect. 3.5
that the amount of time has expired.

9



ThreadJoinReturn ≡
if execState(joinedThread(self)) = Dead then YieldUp(True)
else YieldUp(False)

The Thread.Sleep method puts the current thread to sleep for the specified
amount of milliseconds. The execution state of the current thread is changed
from Active to Sleeping . If an interrupt has been requested, the current thread
throws a ThreadInterruptedException instead of going to sleep.

ThreadSleep(msec) ≡
if msec < −1 then FailUp(ArgumentOutOfRangeException)
elseif interruptRequested(self) then ThrowInterruptedException
else

execState(self) := Sleeping
SetWakeupTime(msec)
YieldUp(Norm)

In order to abort another thread with the Thread.Abort method, the current
thread needs the appropriate security permission. If the other thread is sus-
pended, a ThreadStateException is thrown, although the documentation [11]
says that in that case the other thread is resumed by the system. Otherwise
Thread.Abort sets an abort request for the other thread. The effect of this re-
quest is that a ThreadAbortException is thrown asynchronously in the other
thread (see Sect. 3.5).

ThreadAbort(thread) ≡
if ¬SecurityPermission(self, ControlThread) then

FailUp(SecurityException)
elseif execState(thread) = Suspended then

FailUp(ThreadStateException)
else

if ¬abortRequested(thread) ∧ ¬abortInitiated(thread) then
abortRequested(thread) := True

YieldUp(Norm)

The static method Thread.ResetAbort can be invoked by the current thread
to cancel the automatic re-throwing of a ThreadAbortException at the end of
catch blocks. It clears the flag that indicates that the abort has been initiated.
Only threads that have the appropriate security permission can cancel an abort.
The documentation [11] says that the method throws a ThreadStateException
if the method was not invoked on the current thread. This can never happen,
since it is a static method.

ThreadResetAbort ≡
if ¬SecurityPermission(self, ControlThread) then

FailUp(SecurityException)
elseif ¬abortInitiated(self) then FailUp(ThreadStateException)
else {abortInitiated(self) := False, YieldUp(Norm)}
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The Thread.Interrupt method sets an interrupt request for another thread.
The effect of the request is that a ThreadInterruptedException is injected
into the other thread, if it is in a passive state (see Sect. 3.5). Otherwise, the
exception is thrown by the other thread, when it changes its execution state
from running into a passive state. If the other thread stays active forever, the
interrupt request is ignored.

ThreadInterrupt(thread) ≡
if ¬SecurityPermission(self, ControlThread) then

FailUp(SecurityException)
else

if ¬interruptRequested(thread) then
interruptRequested(thread) := True

YieldUp(Norm)

The Thread.Suspend method sets a suspend request for another thread, if it is
running. The request will asynchronously be processed by the run-time system
(see Sect. 3.5).

ThreadSuspend(thread) ≡
if ¬SecurityPermission(self, ControlThread) then

FailUp(SecurityException)
elseif execState(thread) ∈ {Unstarted ,Dead} then

FailUp(ThreadStateException)
else

if ¬suspendRequested(thread) ∧ execState(thread) 6= Suspended
then suspendRequested(thread) := True
YieldUp(Norm)

A thread can be resumed by invoking Thread.Resume only if it is suspended
or a suspend request is pending. If the thread is suspended, then its execution
state is changed back to active such that it can be scheduled for execution by the
run-time system again. If a suspend has been requested, the request is cleared.

ThreadResume(thread) ≡
if ¬SecurityPermission(self, ControlThread) then

FailUp(SecurityException)
elseif execState(thread) 6= Suspended ∧ ¬suspendRequested(thread)
then FailUp(ThreadStateException)
else

if execState(thread) = Suspended then execState(thread) := Active
if suspendRequested(thread) then suspendRequested(thread) := False
YieldUp(Norm)

If a ThreadSuspend(t) is executed in parallel with a ThreadResume(t) on
a thread t that already has a suspend request, the resume has priority over the
suspend.3

3 One could as well forbid the parallel execution by a run constraint (see Sect. 4.1).
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3.4 The methods of the Monitor class

The methods of the Monitor class are static and are used to acquire and release
locks of monitors. If they are invoked with the null reference, an exception is
thrown. The Monitor.Enter method is used to acquire the lock of a monitor.
If the current thread already owns the lock, the lockCount is increased. If the
lock is free and the readyQueue of the monitor is empty, the thread immediately
gets the lock. Otherwise, the thread changes its state from Active to Syncing
and the thread is added to the readyQueue of the monitor. In case of a pending
interrupt, a ThreadInterruptedException is thrown.

MonitorEnter(mon) ≡
if mon = Null then FailUp(ArgumentNullException)
elseif lockOwner(mon) = self then

lockCount(mon, self) := lockCount(mon, self) + 1
YieldUp(Norm)

elseif lockOwner(mon) = None ∧ Empty(readyQueue(mon)) then
Lock(self,mon)
lockCount(mon, self) := 1
YieldUp(Norm)

elseif interruptRequested(self) then ThrowInterruptedException
else

readyQueue(mon) := readyQueue(mon) · [self]
monObj (self) := mon
execState(self) := Syncing
YieldUp(Norm)

To lock a monitor means to update the lockOwner of the monitor.

Lock(thread ,mon) ≡ lockOwner(mon) := thread

The Monitor.Exit method decrements the lock count by one. If the lock count
becomes 0, the lock is released.

MonitorExit(mon) ≡
if mon = Null then FailUp(ArgumentNullException)
elseif lockOwner(mon) 6= self then

FailUp(SynchronizationLockException)
else

if lockCount(mon, self) = 1 then Unlock(self,mon)
lockCount(mon, self) := lockCount(mon, self)− 1
YieldUp(Norm)

To release a lock means to update the lockOwner of the monitor to None.

Unlock(thread ,mon) ≡ lockOwner(mon) := None

The documentation [11] says that a thread can only exit a monitor if it owns
the lock. The following code, however, runs in the .NET framework 1.1 as well
as in Rotor [16] without throwing a SynchronizationLockException.
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Object o = new object();
Monitor.Enter(o);
Monitor.Exit(o);
Monitor.Exit(o); // Bug. Thread does not own lock.

The Monitor.Wait method appends the current thread to the waitQueue of the
monitor and temporarily releases the lock of the monitor. The execution state
of the current thread is changed from Active to Waiting .

MonitorWait(mon,msec) ≡
if mon = Null then FailUp(ArgumentNullException)
elseif msec < −1 then FailUp(ArgumentOutOfRangeException)
elseif lockOwner(mon) 6= self then

FailUp(SynchronizationLockException)
elseif interruptRequested(self) then ThrowInterruptedException
else

SetWakeupTime(msec)
waitQueue(mon) := waitQueue(mon) · [self]
Unlock(self,mon)
monObj (self) := mon
execState(self) := Waiting

The thread remains in the waitQueue of the monitor until the monitor is pulsed
or msec milliseconds have passed. At the return, the method indicates with a
boolean result whether the time has expired.

MonitorWaitReturn ≡
if wakeupTime(self) < currentTime then YieldUp(True)
else YieldUp(False)

The Monitor.Pulse method moves the first element of the waitQueue of the
monitor to the readyQueue. If the waitQueue is empty, the method just returns.
Note, that we allow also that a thread with an abort or an interrupt request can
be pulsed (this point is discussed also in [10]).

MonitorPulse(mon) ≡
if mon = Null then FailUp(ArgumentNullException)
elseif lockOwner(mon) 6= self then

FailUp(SynchronizationLockException)
else

if ¬Empty(waitQueue(mon)) then
MoveToReadyQueue(first(waitQueue(mon)),mon)

YieldUp(Norm)

When a thread is moved from the waitQueue to the readyQueue, its execution
state is changed from Waiting to Pulsed .

MoveToReadyQueue(thread ,mon) ≡
readyQueue(mon) := readyQueue(mon) · [thread ]
waitQueue(mon) := delete(thread ,waitQueue(mon))
execState(thread) := Pulsed
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The Monitor.PulseAll methods moves all waiting threads into the readyQueue
of the monitor.

MonitorPulseAll(mon) ≡
if mon = Null then FailUp(ArgumentNullException)
elseif lockOwner(mon) 6= self then

FailUp(SynchronizationLockException)
else

forall thread ∈ waitQueue(mon) do execState(thread) := Pulsed
readyQueue(mon) := readyQueue(mon) · waitQueue(mon)
waitQueue(mon) := [ ]
YieldUp(Norm)

In Java, the wait and the ready queues are not FIFO queues but unordered
sets. The Object.notify method of Java chooses an arbitrary element from the
wait set of an object and it is not guaranteed that every thread in the wait set
is ever chosen. The proposal for the new Java memory model [10] even allows
so-called spurious wake-ups. This means that the system is allowed to remove a
thread from the wait set of an object without any reason. Note, that the POSIX
thread function pthread cond signal() is also allowed to wake up more than
one thread.

3.5 Scheduling of threads, timing, locking and asynchronous
exceptions

Although priorities can be assigned to threads in C#, it is not guaranteed that
they are honored by the scheduling algorithm. The main ASM rule for sequential
C# therefore chooses repeatedly one of the possible threads and executes one
(small) step in the computation of the thread. In this way the computation steps
of the currently running threads are interleaved.

ExecSequentialCsharp ≡
choose thread ∈ Thread do ExecStep(thread)

The next computation step of a thread depends on its current execution state.

ExecStep(thread) ≡
if execState(thread) = Active then ExecActive(thread)
elseif Expired(thread) then Wakeup(thread)
elseif CanAcquireLock(thread) then AcquireLock(thread)
elseif Passive(thread) ∧HasRequest(thread) then

AbortOrInterruptPassive(thread)
A thread is expired, if its wakeup time has been passed. The system time in
milliseconds is given by the monitored function currentTime.

Expired(thread) ⇐⇒ execState(thread) ∈ {Waiting ,Sleeping , Joined} ∧
wakeupTime(thread) ≤ currentTime

A thread can acquire the lock, if it can acquire the lock of its current monitor
object monObj that was set in MonitorEnter or MonitorWait.
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CanAcquireLock(thread) ⇐⇒ CanAcquireLock(thread ,monObj (thread))
The lock of a monitor can be acquired, if the lock is free and the thread is the
first thread in the readyQueue of the monitor.

CanAcquireLock(thread ,mon) ⇐⇒
execState(thread) ∈ {Syncing ,Pulsed} ∧ lockOwner(mon) = None ∧
thread = first(readyQueue(mon))

A thread has a request, if it has an abort or an interrupt request.
HasRequest(t) ⇐⇒ abortRequested(t) ∨ interruptRequested(t)

When the execution state of the chosen thread is Active, the next step in the
computation of the thread is executed by the rule ExecCsharp(thread). In case
of a pending abort the system waits until the thread has left any finally block
or catch clause before it aborts the threads. In case of a pending suspend, the
system waits until the thread reaches a so-called safe point before suspending
the thread. Safe points are points that are also safe for garbage collection.

ExecActive(thread) ≡
if abortRequested(thread) ∧ ¬CatchFinallyCode(thread) then

AbortActive(thread)
elseif suspendRequested(thread) ∧ SafePoint(thread) then

Suspend(thread)
else ExecCsharp(thread)

A thread aborts by throwing a ThreadAbortException. The fact that the thread
is responding to the abort request is recorded in the abortInitiated flag.

AbortActive(thread) ≡
Fail(thread , ThreadAbortException)
ClearAbortRequest(thread)
abortInitiated(thread) := True

When the abort request is cleared, any pending interrupt request is also cleared.
ClearAbortRequest(thread) ≡

abortRequested(thread) := False
if interruptRequested(thread) then

interruptRequested(thread) := False
Like any other exception, a ThreadAbortException is propagated upwards in
the frame stack of the thread. If it crosses a try block with catch clauses and
a possible finally block, the catch clauses are searched for a matching han-
dler. If there exists one, the corresponding catch block is executed. The fi-
nally block is executed afterwards. At the end of the catch block, however, the
ThreadAbortException is re-thrown by the system. More precisely, if an abort
has been initiated and a catch block terminates but not with an exception, then
a new ThreadAbortException is thrown at the end of the catch block. If the
catch block terminates abruptly with an exception, that exception is propagated
upwards. Hence, the rules for exception handling of C#E of [2] have to be re-
fined. If the current position of the thread (indicated by the black triangle)
is at the end of a catch block with result res and res is not an exception, a
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ThreadAbortException is thrown. Hence a ThreadAbortException cannot be
swallowed unless the Thread.ResetAbort method is called (see Sect. 3.3).

ExecCsharpStmT ≡ match context(pos)
try Exc(ref ) . . . catch( . . . ) Ires . . . →

excStack := pop(excStack)
if abortInitiated(self) ∧ res /∈ Exc then

FailUp(ThreadAbortException)
else YieldUp(res)

When a suspend request is pending and the thread has reached a safe point,
the system changes its execution state from Active to Suspended and clears the
request.

Suspend(thread) ≡
execState(thread) := Suspended
suspendRequested(thread) := False

If a sleeping, joined or waiting thread has expired, the system has to wakeup
the thread. If the thread is Sleeping , its execution state is changed to Active.
If the thread is Joined , it is removed from the joinSet and returns from the
Thread.Join method (see Sect. 3.3). If the thread is Waiting it is moved to the
readyQueue of the monitor and has to re-acquire the lock (its state is changed
to Pulsed).

Wakeup(thread) ≡
if execState(thread) = Sleeping then execState(thread) := Active
if execState(thread) = Joined then let t = joinedThread(thread) in

joinSet(t) := joinSet(t) \ {thread}
execState(thread) := Active

if execState(thread) = Waiting then
MoveToReadyQueue(thread ,monObj (thread))

If a thread can acquire the lock, it becomes the owner of the lock. Its execution
state is changed from Pulsed or Syncing to Active. If it acquires the lock for
the first time, the lockCount is initialized to 1. Otherwise, when the thread has
temporarily released the lock by invoking the Monitor.Wait method, the old
lock count is still valid.

AcquireLock(thread) ≡
let mon = monObj (thread) in

Lock(thread ,mon)
if execState(thread) 6= Pulsed then lockCount(mon, thread) := 1
readyQueue(mon) := tail(readyQueue(mon))
execState(thread) := Active

If a passive thread has an abort or an interrupt request, an exception is injected
into the thread. If both, an abort request and an interrupt request are pending,
the abort request has priority (unless the thread executes catch or finally code).

AbortOrInterruptPassive(thread) ≡
if abortRequested(thread) ∧ ¬CatchFinallyCode(thread) then
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InjectException(thread , ThreadAbortException)
ClearAbortRequest(thread)
abortInitiated(thread) := True

elseif interruptRequested(thread) then
InjectException(thread , ThreadInterruptedException)
interruptRequested(thread) := False

Injecting a ThreadAbortException or a ThreadInterruptedException into a
thread means to create a new excpetion object and to force the thread to throw
the exception (using Fail). If the thread is Syncing , Sleeping or Joined , its
execution state is changed to Active in order that the exception can propagate
upwards and probably terminate the thread. If the thread is Waiting , it is moved
to the readyQueue and has to re-acquire the lock, since in this case the thread
is still in a critical section of code and possible exception handlers and finally
blocks should only be executed under the exclusive control of the monitor. If
the thead is Pulsed , its execution state is not updated, since the thread has to
re-acquire the lock before propagating the exception.

InjectException(thread , exception) ≡
Fail(thread , exception)
if execState(thread) ∈ {Syncing ,Sleeping , Joined} then

execState(thread) := Active
if execState(thread) = Waiting then

MoveToReadyQueue(thread ,monObj (thread))
A thread terminates when the frame stack of the thread is empty again and
the Invoke method of the delegate of the thread terminates. The method can
terminate normally or abruptly with an exception. In any case, the execution
state of the thread is updated from Active to Dead and the threads that are
joined are notified by changing their states from Joined to Active such that
they can return from the Thread.Join method. If the thread terminates with
an exception, the exception may or may not be reported as unhandled exception
to the console.

ExecCsharpStmT ≡ match context(pos)
res → if pos = body(meth) ∧ Empty(frames) then

forall thread ∈ joinSet(self) do execState(thread) := Active
joinSet(self) := ∅
execState(self) := Dead
if exception(res) then ReportUnhandledExc(res)

When a thread is Dead , it remains in this execution state and cannot be re-
activated (see also Fig. 4).

4 A parallel model for C# threads

On a multiprocessor system different threads can execute code concurrently on
different processors. We model this case using a special kind of distributed ASMs
that are executable in tools like AsmL [6]. The main rule for the parallel thread
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model chooses repeatedly an arbitrary set of possible threads and executes in
parallel the next computation step for each of the chosen threads.

ExecParallelCsharp ≡
choose T ⊆ Thread do

forall thread ∈ T do ExecStep(thread)
The ExecStep rule is the same as in the sequential model. However, since
the computation steps are executed in parallel, conflicts can occur if the same
location is updated by different threads to different values. Updates of the local
state of a thread (frame stack, program counter, local environment, operand
stack) are not critical, since the local state is parameterized by the thread (see
Sect. 3.1). Updates to the shared memory are discussed in Sect. 5 below. An
analysis of the transition rules shows that the following conflicts have to be
avoided by imposing run constraints on ExecParallelCsharp.

4.1 Run constraints for the parallel thread model

1. The rule AcquireLock(thread) is not allowed to run in parallel with the
rule MonitorEnter(mon), if monObj (thread) = mon. Otherwise, there
would be a conflict for lockOwner(mon).

2. It is not allowed that two different threads execute MonitorEnter(mon)
in parallel. Otherwise, conflicts for lockOwner(mon) and readyQueue(mon)
could occur.

3. The rules AcquireLock(thread) and MoveToReadyQueue(t ,mon) are
not allowed to run in parallel, if monObj (thread) = mon. Otherwise, there
is a conflict for readyQueue(mon).

4. The rule MonitorPulse(mon) or MonitorPulseAll(mon) is not al-
lowed to run in parallel with the rule MoveToReadyQueue(t ,mon). Oth-
erwise, there would be a conflict for readyQueue(mon).

5. MoveToReadyQueue(t1,mon) and MoveToReadyQueue(t2,mon) are
not allowed to run in parallel for t1 6= t2. Otherwise, there would be a conflict
for readyQueue(mon).

6. The rules Suspend(thread) and ThreadResume(thread) are not allowed to
run in parallel. Otherwise, the ThreadResume(thread) would be ignored
by the system.

Note, that MoveToReadyQueue(t ,mon) is used in the rules Wakeup(t) and
AbortOrInterruptPassive(t) in case that the execution state of t is Waiting .

5 The .NET memory model

The .NET memory model is outlined in [5, Partition 1, §11.6.5, §11.6.7]. Ac-
cording to [13,15], it gives the following (weak) guarantees about the ordering
of memory reads and writes:

– Reads and writes from the same thread to a location cannot be re-ordered.
– No read can move before a lock acquire (or volatile read).
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– No write can move after a lock release (or volatile write).
– Writes cannot cross a Thread.WriteMemoryBarrier().
– Neither reads nor writes can cross a Thread.MemoryBarrier().

To application programmers the memory model is often (wrongly) explained in
a stronger form. Each thread has its local cache. After acquiring the lock the
thread’s cache is invalidated, so that reads afterward are done from the main
memory. After releasing the lock the thread’s cache is flushed to main memory.
Note that in .NET a read or write of a volatile location affects also the ordering
of reads and writes of other locations.

For the ASM specification of the .NET memory model we follow the ASM
specification of the Local Consistency Memory Model for Java in [1] and use a
universe of events that is divided into disjoint subuniverses as follows:

Event ::= WriteEvent | LockEvent | UnlockEvent | ReadVolatileEvent
| BarrierEvent | WriteBarrierEvent

Events are ordered during a run of a multi-threaded C# program by a dynamic
predicate ≺. We denote by ≺+ the transitive closure and by ≺∗ the reflexive,
transitive closure of ≺. Each WriteEvent has two attributes, an address and a
value, adr :WriteEvent → Address val :WriteEvent → Value. The latest event
of a thread is recorded in latest :Thread → Event .

The memory model is now reduced to the question: “Which write event(s)
can be seen by a memory read?” When a thread writes a value to an address, a
new WriteEvent is created.

Write(adr , val) ≡ let e = new(WriteEvent) in
{adr(e) := adr , val(e) := val}
InsertAfterLatest(self, e)

The new WriteEvent is inserted in the event order immediately after the latest
event of the current thread.

InsertAfterLatest(thread , e) ≡
if latest(thread) 6= Undef then latest(thread) ≺ e := True
latest(thread) := e

Reading a value from an address means choosing an appropriate WriteEvent for
that address and returning the value that has been written to that address.

Read(adr) ≡
choose e ∈ WriteEvent with adr(e) = adr ∧ ¬Overwritten(self, e) do

return val(e)

A read cannot see arbitrary write events but only those that are not overwritten
with respect to the latest event of the current thread or any memory barrier.

Overwritten(t , e) ⇐⇒
∃w ∈ WriteEvent (adr(w) = adr(e) ∧ e ≺+ w ∧ Previous(t ,w))

Previous(t ,w) ⇐⇒ w ≺∗ latest(t) ∨ ∃b ∈ BarrierEvent (w ≺∗ b)
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class Foo {

private Helper helper;

public Helper GetHelper() {

if (helper == null) // quick check

lock (this)

if (helper == null) { // double check

Helper o = new Helper();

Thread.MemoryBarrier();

helper = o;

}

return helper;

}

}

Fig. 6. The double checked locking pattern.

When a monitor is locked a new LockEvent is created and inserted in the event
order after the latest UnlockEvent of the monitor as well as after the latest event
of the current thread (in this way the write events of the last thread that owned
the lock are synchronized with the current thread).

Lock(thread ,mon) ≡ let e = new(LockEvent) in
if latestUnlock(mon) 6= Undef then latestUnlock(mon) ≺ e := True
InsertAfterLatest(thread , e)
forall b ∈ WriteBarrierEvent do b ≺ e := True
lockOwner(mon) := thread

The function latestUnlock :Monitor → UnlockEvent records the latest unlock
event of a monitor. The UnlockEvent created at the monitor exit prevents over-
written write events from being seen by the next thread that aquires the lock of
the monitor.

Unlock(thread ,mon) ≡ let e = new(UnlockEvent) in
latestUnlock(mon) := e
InsertAfterLatest(thread , e)
lockOwner(mon) := None

The function Thread.MemoryBarrier creates a new BarrierEvent which is in-
serted in the event order after the latest event of the current thread. (Barrier
events are used in the definition of the Overwritten predicate above.)

MemoryBarrier ≡ let e = new(BarrierEvent) in
InsertAfterLatest(self, e)

The function Thread.WriteMemoryBarrier creates a WriteBarrierEvent which
are inserted in the event order before any future lock event.

WriteMemoryBarrier ≡ let e = new(WriteBarrierEvent) in
InsertAfterLatest(self, e)
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A read of a volatile field creates a new ReadVolatileEvent . The choosen write
event (which was a volatile write) is inserted in the event ordering before the
read event.

ReadVolatile(adr) ≡
let r = new(ReadVolatileEvent) in

InsertAfterLatest(self, r)
forall b ∈ WriteBarrierEvent do b ≺ r := True
choose e ∈ WriteEvent with adr(e) = adr ∧ ¬Overwritten(self, e) do

e ≺ r := True
return val(e)

A write to a volatile field uses the normal Write rule.
The so-called double-checked locking pattern in Fig. 6 uses a memory barrier

to prevent another thread from seeing a non-null value of the helper field while
the fields of the Helper object itself still contain their default null values which
are overwritten in the constructor of the Helper class. (The constructor may be
inlined by the JIT compiler.) Instead of using the memory barrier the helper
field could be declared volatile.

It is not clear to us, whether the following example is allowed by the Ecma
.NET memory model. Consider two threads that concurrently execute the fol-
lowing instructions, where initially p.x == 0, p.y == 0:

Thread 1

r1 = p.x;
p.y = 1;

Thread 2

r2 = p.y;
p.x = 2;

Is the result r1 == 2 and r2 == 1 possible? According to our specification of the
memory model, it is not possible. However, if we allow the compiler to switch
the assignments in both threads (under the assumption that p.x and p.y are
independent variables), the result is plausible. Maybe the result is justified by
the paragraph about execution order in [4, §10.10].

6 Conclusion

The ASM method forces the person who writes a specification to think in terms
of an abstract implementation. This leads to questions and cases that are usually
forgotten in other formal or informal approaches. Fig. 7 contains a bug in Mi-
crosoft’s .NET Framework 1.1 [11] which was detected during the construction
of our thread model. The bug shows a situation where a thread executes code in
a critical sections proteced by a monitor without owning the lock of the monitor.

The main function in Fig. 7 creates an account, starts another thread with
the Deposit method of the account and sleeps for 100 milliseconds. During
the sleep, the deposit thread acquires the lock of the account and waits on
the account in order to later deposit 100 dollars when it is pulsed. After the
sleep, the main thread locks the account and executes its critical section. At the
beginning, the balance is still 0. The main thread pulses the account and moves
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class Account {

private decimal balance = 0.0M;

public void Deposit() {

lock (this) {

try { Monitor.Wait(this); }

finally { balance += 100.00M; }

}

}

public static void Main() {

Account a = new Account();

Thread t = new Thread(new ThreadStart(a.Deposit));

t.Start();

Thread.Sleep(100);

lock (a) {

Console.WriteLine(a.balance); // Output: 0

Monitor.Pulse(a);

t.Interrupt();

Thread.Sleep(100);

Console.WriteLine(a.balance); // Output: 100.00 (bug)

}

}

}

Fig. 7. A bug in Microsoft’s .NET Framework version 1.1

the deposit thread from the wait queue into the ready queue of the account.
Then it interrupts the deposit thread and sleeps again for 100 milliseconds (still
holding the lock of the account). When it awakes, the balance has changed to
100.0M. Why?

The change of the balance is only possible if the deposit thread executes the fi-
nally block, which is in its critical section, without owning the lock of the account.
The same problem occurs if Thread.Interrupt is replaced by Thread.Abort.
The Rotor SSCLI implementation [16] correctly prints 0 at the end of the lock
statement in the main function. After that, however, it deadlocks for unknown
reasons.
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The following invariants are satisfied (where t ∈ Thread and mon ∈ Ref ):

(thread) x ∈ Thread ⇐⇒ execState(x ) 6= Undef
(join1) execState(t) ∈ {Unstarted ,Dead} =⇒ joinSet(t) = ∅
(join2) execState(t) = Joined =⇒ t ∈ joinSet(joinedThread(t))
(join3) x ∈ joinSet(t) =⇒ x ∈ Thread ∧ execState(x ) = Joined
(wait1) execState(t) = Waiting =⇒

t ∈ waitQueue(monObj (t)) ∧ lockCount(monObj (t), t) ≥ 1
(wait2) x ∈ waitQueue(mon) =⇒ x ∈ Thread ∧ execState(x ) = Waiting
(sync) execState(t) = Syncing =⇒

t ∈ readyQueue(monObj (t)) ∧ lockCount(monObj (t), t) ∈ {Undef , 0}
(pulse) execState(t) = Pulsed =⇒

t ∈ readyQueue(monObj (t)) ∧ lockCount(monObj (t), t) ≥ 1
(ready) x ∈ readyQueue(mon) =⇒

x ∈ Thread ∧ execState(x ) ∈ {Syncing ,Pulsed}
(lock1) lockCount(mon, x ) 6= Undef =⇒ x ∈ Thread
(lock2) execState(t) = Unstarted =⇒ lockCount(mon, t) = Undef
(lock3) lockOwner(mon) 6= None =⇒

lockOwner(mon) ∈ Thread ∧ lockCount(mon, lockOwner(mon)) ≥ 1
(lock4) lockCount(mon, t) ≥ 1 ∧ execState(t) = Active =⇒

lockOwner(mon) = t
(abort) abortInitiated(t) =⇒ ¬abortRequested(t)
(suspend) execState(t) = Suspend =⇒

¬suspendRequested(t) ∧ ¬abortRequested(t)
(time) execState(t) ∈ {Waiting ,Sleeping , Joined} =⇒ wakeupTime(t) ≥ 0

The most important invariant is (lock4) which says that among the threads
that have entered a given monitor only the thread that owns the lock of the
monitor can be active at any time. Hence, the locks are exclusive and can be
used to protect critical sections.
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