
A High-Level Modular De�nition of
the Semantics of C]

Egon B�orger a, Nicu G. Fruja b, Vincenzo Gervasi a,
Robert F. St�ark b;�

aDipartimento di Informatica, Universit�a di Pisa,
Via F. Buonarroti 2, I-56127 Pisa, Italy

bComputer Science Department, ETH Z�urich, CH-8092 Z�urich, Switzerland

Abstract
We propose a structured mathematical de�nition of the semantics of C] programs
to provide a platform-independent interpreter view of the language for the C] pro-
grammer, which can also be used for a precise analysis of the ECMA standard of
the language and as a reference model for teaching. The de�nition takes care to
re
ect directly and faithfully { as much as possible without becoming inconsistent
or incomplete { the descriptions in the C] standard to become comparable with the
corresponding models for Java in [1] and to provide for implementors the possibil-
ity to check their basic design decisions against an accurate high-level model. The
model sheds light on some of the dark corners of C] and on some critical di�erences
between the ECMA standard and the implementations of the language.

Key words: Semantics of programming languages, Abstract State Machines, C],
Java, .NET

1 Introduction

In this paper the method developed in [1] for a rigorous de�nition and anal-
ysis of Java and its implementation on the Java Virtual Machine (JVM) is
applied to formalize the semantics of the entire language C]. We provide a
� Corresponding author.
Email addresses: boerger@di.unipi.it (Egon B�orger), fruja@inf.ethz.ch

(Nicu G. Fruja), gervasi@di.unipi.it (Vincenzo Gervasi), staerk@inf.ethz.ch
(Robert F. St�ark).

Preprint submitted to Elsevier Science 17 April 2005

succinct, purely mathematical (thus platform-independent) model, which re-

ects as much as possible the intuitions and design decisions underlying the
language as described in the ECMA standard [2] and in [3] and can be used
as accurate and complete reference model by C] programmers, by implemen-
tors of the language and and by students learning it. In Sect. 8 we point to
some challenging applications of the model for proving interesting theorems
about C] and its implementations.

The model clari�es a certain number of semantically relevant issues which
are not handled by the ECMA standard, wherefore we also consulted the Mi-
crosoft Press books [4{6] and the documentation in [7{11]. A series of bugs
and gaps in the ECMA standard for C] and in its implementation in .NET
and incoherences between the two were detected during our attempt to build
for the language a consistent and complete yet abstract ground model (in the
sense described in [12]). Some of them are mentioned in this paper to shed
light on some dark corners of C], for a complete discussion we refer the reader
to the companion paper [13]. As a rule we adhere to an established scienti�c
tradition for which one of the goals of de�ning the meaning of programs is to
accurately specify the freedom the compiler writer has for the implementation.
Nevertheless we also want our model to support the practice of programming.
Therefore, whenever we see for a language construct an incoherence or a to-be-
closed gap between on the one side the view o�ered by the ECMA standard,
which should support the understanding also by programmers, and on the
other side the view current compilers seem to have, we give in our model a
pragmatic preference to abstractly de�ning what the programmer is allowed
to expect from the execution of his code in the current implementations of
C] [7{9]. In each case we explicitly discuss the discovered discrepancy so that
the parameters of the design decision become clear. To support the experimen-
tation with the model a project has been started to re�ne the model developed
here to .NET-executable AsmL code [14], similarly to the AsmGofer re�ne-
ment developed by Joachim Schmid [15,16] for the Java and JVM models
in [1].

To provide the programmer with a transparent view of the intricate interac-
tion of various language features which depend on the run-time environment,
our model comes as an abstract interpreter, which provides a simple way to
re
ect those run-time-related features encountered upon executing a given
C] program. To exploit the
exibility the use of Abstract State Machines
(ASMs) o�ers in high-level system modeling and to obtain the faithfulness
and simplicity of abstract models the ASM method allows one to achieve, the
interpreter takes the form of an ASM. 1 This allows us in particular to specify
the static and the dynamic parts of the semantics separately, due to the ASM

1 See Sect. 8 for more information on our choice of ASMs among the many frame-
works in the literature to deal with language semantics.

2

classi�cation of abstract states into a static and a dynamic part. The dynamic
semantics of the language is captured operationally by ASM rules which de-
scribe the run-time e�ect of program execution on the abstract state of the
program, the static semantics comes as a mainly declarative description of the
relevant syntactical and compile-time checked language features (like typing
rules, rules for de�nite assignment and reachability, name resolution, method
resolution for overloaded methods, etc.) and of pre-processing directives (like
#define, #undef, #if, #else, #endif, etc.), which are mostly re
ected in the
attributed abstract syntax tree our model starts from.

To keep the size of the models small and to facilitate the understanding of clus-
ters of language constructs in terms of local state transformations, similarly to
the decomposition of Java and the JVM in [1] we structure the C] program-
ming language into layered modules of orthogonal language features, namely

� the imperative core, related to sequential control by while programs, built
from statements and expressions over the simple types of C],

� classes, realizing procedural abstraction with global (module) variables and
class initialization,

� object-orientation with class instances, instance methods, inheritance,
� exception handling,
� delegates together with events (including here for convenience also proper-
ties, indexers, attributes),

� concurrency (threads),
� so-called unsafe code with pointers and pointer arithmetic.

This yields a sequence of sublanguages C]I , C]C, C]O, C]E , C]D, C]T , C]U
which altogether describe the entire language C]. Each language L in the
sequence extends its predecessor and for each one we build a submachine
ExecCsharpL which is a conservative (purely incremental) extension of its
predecessor. The model ExecCsharp for the entire language C] is a compo-
sition of all submachines.

ExecCsharp �
ExecCsharpI
ExecCsharpC
ExecCsharpO
ExecCsharpE
ExecCsharpT
ExecCsharpD
ExecCsharpU

This approach supports a systematic piecemeal introduction of the numerous
language constructs in teaching C] (or similar programming languages).

To keep the de�nition of the models succinct, we avoid tedious and routine rep-

3

etitions concerning language constructs which can be reduced in well-known
ways to the core constructs in our models. Whenever instead of a direct for-
malization of a construct we use a syntactical translation to constructs dealt
with in the core model, we have to justify that the translation is correct with
respect to the semantics of the construct as intended by the standard. The
ASM model we de�ne provides a basis to rigorously formulate and mathe-
matically prove the intended equivalence. 2 Since such a justi�cation follows
well-known patterns, it is skipped in this paper, but to remind the reader of
the problem we usually mention it.

The handling of truly concurrent threads, not limited to interleaving or simi-
lar simple scheduling techniques, is closely related to the underlying memory
model. Since the description of this memory model goes much beyond this
paper, the submodel C]T and its further analysis is postponed to a separate
paper [17].

By and large one can correctly understand an ASM as pseudo-code operat-
ing over abstract data (structures in the sense of logic). Therefore we skip
a detailed de�nition of ASMs, which is available in textbook form in Chap-
ter 2 of the AsmBook [18]. Since our paper is not a tutorial or manual on C],
we restrict our explanations of language constructs to features a reader will
appreciate who is already knowledgeable about the basic concepts of object-
oriented programming. In a technical report [19] also the remaining details
which are skipped in this paper are spelt out completely, together with fur-
ther explanations and examples.

The paper is structured by the modularization we propose for the language de-
scription. The basic framework of our model is introduced in Sect. 2 together
with the interpreter for the imperative kernel C]I of the language. Successively
one more section is added for each model re�nement to capture the related
language extension. In general each section has a �rst part where the static
assumptions of the model are formulated, followed by a second part which con-
tains the dynamics expressed by the ASM transition rules operating on the
corresponding state components. In general at each layer the interpreter con-
sists of two submachines, one de�ning expression evaluation and one de�ning
statement execution.

2 One has to de�ne an extension of the core model by a direct formalization of the
construct in question and then to prove that this model is equivalent to the core
model modulo the syntactical translation of the construct.

4

Exp ::= Lit j Vexp j Uop Exp j Exp Bop Exp j Exp `?' Exp `:' Exp
j (Type `)' ExpSexp j `(' Exp `)' j `checked' `(' Exp `)'
j `unchecked' `(' Exp `)'

Vexp ::= Loc
Sexp ::= Vexp `=' Exp j Vexp Aop Exp j Vexp `++' j Vexp `--'
Uop ::= `+' j `-' j `!' j `~'
Bop ::= `*' j `/' j `%' j `+' j `-' j `<<' j `>>' j `<' j `>' j `<=' j `>=' j `=='

j `!=' j `&' j `^' j `|'
Aop ::= `*=' j `/=' j `%=' j `+=' j `-=' j `<<=' j `>>=' j `&=' j `^=' j `|='
Stm ::= `;' j Sexp `;' j `break' `;' j `continue' `;' j `goto' Lab `;'

j `if' `(' Exp `)' Stm `else' Stm
j `while' `(' Exp `)' Stm j `do' Stm `while' `(' Exp `)'
j `for' `(' [Sexps] `;' [Exp] `;' [Sexps] `)' Stm
j `switch' `(' Exp `)' `{' fCase fCaseg Bstm fBstmgg `}'
j `goto' `case' Cexp `;' j `goto' `default' `;'
j `checked' Block j `unchecked' Block j Block

Sexps ::= Sexp f`,' Sexpg
Case ::= `case' Cexp `:' j `default' `:'
Block ::= `{' fBstmg `}'
Bstm ::= Type Loc `;' j `const' Type Loc `=' Cexp `;' j Lab `:' Stm j Stm

Fig. 1. Grammar of expressions and statements in C]I .

2 The imperative core C]I

In this section we de�ne the model for C]I , which de�nes the basic machinery
of the ASM model for C]. It describes the semantics of the sequential impera-
tive core of C] with to be executed statements (appearing in method bodies)
and to be evaluated expressions (appearing in statements) built using prede-
�ned operators over simple types. The computations of this interpreter are
supposed to start with an arbitrary but �xed C] program. We separate syntax
and compile-time matters from run-time issues by assuming that the program
is given as an attributed syntax tree (i.e. annotated abstract syntax tree re-
sulting from parsing and elaboration), trying to achieve model simplicity also
by assuming some useful syntactical simpli�cations which will be mentioned
as we build the model. Before de�ning the transition rules for the dynamic
semantics of C]I , we formulate what has to be said about the static semantics.

5

byte

double

float

long

short

int

sbyte

ulong

decimal

ushort

char

uint

Fig. 2. The simple types of C]I .
2.1 Static semantics of C]I

We view the grammar in Fig. 1, which de�nes expressions and statements of
the sublanguage C]I , as de�ning also the corresponding ASM domains Exp
and Stm. To avoid lengthy repetitions we include here already the distinc-
tions between checked and unchecked expressions and blocks, though they
are semantically irrelevant in the submodel C]I and start to play a role only
with C]E . The set Vexp of variable expressions (lvalues) consists in this model
of the local variables only and will be re�ned below. Sexp denotes the set of
statement expressions than can be used either as (result yielding) expressions
or as (result discarding) statements, such as an assignment to a variable ex-
pression using `=' or an assignment operator from the set Aop or `++' or `--'.
Lit denotes the set of literals, similarly for Type, Lab and the set Cexp of
constant expressions whose value is known at compile time. When referring
to the set of sequences of elements from a set Item we write Items, e.g. Sexps
for the set of sequences of statement expressions. We usually write lower case
letters e to denote elements of a set E , e.g. lit for elements of Lit.

The descriptions of implicit numeric conversions in [2, x13.1] and of binary
numeric promotions in [2, x14.2.6] can be succinctly formulated as follows,
using the type graph in Fig. 2 for the simple types of C], which are the types
of C]I (for a classi�cation of the types of C] see Fig. 4).

De�nition 1 (Implicit conversion [2, x13.1]) We say that there exists an
implicit numeric conversion from type A to B (written A � B) i� there exists
a �nite, non-empty path of arrows from A to B in the type graph in Fig. 2.
We write A � B for A � B or A = B. A type C is called an upper bound
of A and B i� A � C and B � C. A type C is the least upper bound of
A and B i�

� C is an upper bound of A and B and

6

� C � D for each upper bound D of A and B.

We write sup(A;B) for the least upper bound of A and B if it exists.

We assume all the type constraints (on the operand and result values) and
precedence conventions listed in [2] for the prede�ned (arithmetical, relational,
bit and boolean logical) operators and the expression types. As usual each
expression node exp in the attributed syntax tree has as attribute its compile-
time type type(exp).

About type conversions at compile-time we assume that type casts are inserted
in the syntax tree if necessary. For example, if a binary numeric operator bop is
applied to arguments in e1 bop e2, then the least upper bound T of the types of
e1 and e2 must exist and the expression is transformed into (T)e1 bop (T)e2.

De�nition 2 (Binary numeric promotion [2, x14.2.6])
The binary numeric promotion consists of applying the following rules:

� If the least upper bound of A and B exists, then
� if sup(A;B) � int, then A and B are converted to int,
� otherwise, A and B are converted to sup(A;B).

� If the least upper bound of A and B does not exist, then a compile-time
error occurs.

We also assume the syntactical constraints for statements listed in [2], e.g. the
following ones for blocks (where the scope of a local variable (local constant)
is de�ned as the block in which it is declared, the scope of a label is the block
in which the label is declared, and a local variable is identi�ed by its name
and the position of its declaration, so that in particular local variables with
the same name in disjoint blocks are considered as di�erent):

� It is not allowed to refer to a local variable (local constant) in a textual
position that precedes its declaration.

� It is not allowed to declare another local variable or local constant with the
same name in the scope of a local variable (local constant).

� It is not allowed for two labels with the same name to have overlapping
scopes.

� A goto Lab must be in the scope of a label with name Lab.
� Expressions in constant declarations are evaluated at compile-time.

To simplify the exposition of our model we assume some standard syntactical
reductions as indicated in Table 1. The correctness of these replacements with
respect to [2] can easily be checked on the basis of our semantics model for C].

Control-
ow analysis. During the static program analysis where the com-
piler has to verify that the given program is well-typed, predicates reachable

7

Table 1
Standard syntactical reductions.
exp1 && exp2 exp1 ? exp2 : false
exp1 || exp2 exp1 ? true : exp2
if (exp) stm if (exp) stm else ;
++vexp vexp += 1
--vexp vexp -= 1
int x = 1, y, z = x * 2; int x; x = 1; int y; int z; z = x * 2;
for (t loc = exp; tst; step) stm { t loc; for (loc = exp; tst; step) stm }
and normal with the following intended meaning are computed for statements,
using the type information contained in the attributed syntax tree as the result
of parsing and elaboration:

reachable(stm)() stm can be reached
normal(stm) () stm can terminate normally

() the end point of stm can be reached
One of the language design goals was to guarantee the following two properties
for programs to be accepted by the compiler:

� during the program execution, only reachable positions are reached,
� normal termination happens only in normal positions.

These two properties are obtained by checking two su�cient conditions via so-
called reachability rules, which can be inductively de�ned for C]I in Table 2
(similarly for do, for, switch). 3 For constant boolean expressions in condi-
tional and while statements we assume that they are replaced in the abstract
syntax tree by true or false.

Unreachable statements indicate programming errors and therefore generate
compile-time warnings. Function bodies that can terminate normally gener-
ated compile-time errors, since at run-time execution could fall o� the bottom
of the code array.

Another language design goal was to achieve the type safety of well-typed
C] programs, i.e. that a) variables at run-time contain values that are com-
patible with the declared types, and b) expressions are evaluated at run-time
to values that are compatible with their compile-time types. Among the de-
sired consequences of the type safety of a program one has that at run-time
3 We include these rules here to place the corresponding natural language speci�-
cation in [2] on a �rm ground for a mathematical proof of the above two properties
as part of a type safety proof for C].

8

Table 2
Reachability rules for C]I .
s is a function body =) reachable(s)
reachable(;) =) normal(;)
reachable(e;) =) normal(e;)
reachable({}) =) normal({})
reachable({s : : : }) =) reachable(s)
normal(si) in { : : : si si+1 : : : } =) reachable(si+1)
reachable(goto l;) in { : : : l:s : : : } =) reachable(l:s)
normal(s) =) normal({ : : : s})
reachable(if (e) s1 else s2) ^ e 6= false =) reachable(s1)
reachable(if (e) s1 else s2) ^ e 6= true =) reachable(s2)
normal(s1) _ normal(s2) =) normal(if (e) s1 else s2)
reachable(while (e) s) ^ e 6= false =) reachable(s)
reachable(while (e) s) ^ e 6= true =) normal(while (e) s)
reachable(break;) in s =) normal(while (e) s)

its variables will never contain unde�ned values, that there are no dangling
references, that the program cannot corrupt the memory, and that the dy-
namic method lookup always succeeds. Using the notation explained in the
next section such invariants can be made precise and be proven to hold under
appropriate assumptions. 4

To guarantee the type safety the compiler checks a su�cient condition com-
puting predicates before; after (for occurrences of statements and expressions
in a function body) and true; false (for the two possible evaluation results of
boolean expressions), which implement the so-called de�nite assignment rules
to assure that a variable is de�nitely assigned before its value is used. The situ-
ation is illustrated in Fig. 3. Unfortunately the picture does not re
ect reality.
Microsoft has decided that in veri�ed IL (intermediate language) code local
variables are initialized by the run-time system with zero values. 5 Hence, also

4 For example the following invariants can be proved to hold at run-time: a)
before(pos) � De�ned where De�ned = fx 2 Loc j mem(locals(x)) 6= Undef g,
b) after(pos) � De�ned if values(pos) = Norm or values(pos) 2 Value. Speci�cally
for boolean expressions holds true(pos) � De�ned if values(pos) = True, the same
for false. Such proofs can be carried out on the basis of the model developed in this
paper, using the pattern developed in [1, Ch.8] for proving that Java is type safe.
For a di�erent approach see [20].5 Maybe to simplify the job of the JIT veri�ers, as one of our referees suggested.

9

}

 int i = 7;

IL_0000: ldc.i4.7
IL_0001: stloc.0

C# Compiler

definite
assignment

accepted
by the
IL Verifier

type safe

(undecidable)
programs

void Main() {

C# Programs

Intermediate Language (IL)

 ...

Fig. 3. De�nite assignment and IL veri�cation.

source code programs that do not ful�ll the de�nite assignment constraints
are accepted by the IL veri�er.

A variable occurring in a position is called de�nitely assigned there, if on every
execution path leading to that position (in the abstract syntax tree) a value is
assigned to the variable. Thus the intended meaning of the above predicates
is as follows, where by \elaboration" of an item we mean \execution", if item
is a statement, and \evaluation" if it is an expression.

x 2 before(item): x is de�nitely assigned before the elaboration of item
x 2 after(item) : x is de�nitely assigned after normal elaboration of item
x 2 true(exp) : x is de�nitely assigned after exp evaluates to true
x 2 false(exp) : x is de�nitely assigned after exp evaluates to false

To provide a basis for a mathematical analysis, we turn the verbally stated
de�nite assignment rules of [2, x12.3.3] into a precise set of equational con-
straints, where vars(stm) = fx j stm is in the scope of xg.

Table 3 contains the constraints for the statements. Table 4 contains the equa-
tions for speci�c boolean expressions, which are imposed for the eager (short-
circuit) evaluation of boolean expressions. Note that there is no equation in
Table 4 for after sets since by de�nition after(exp) = true(exp)\ false(exp). If
exp is a boolean expression which is not an instance of one of the expressions
in Table 4, then the following are constraints for exp: true(exp) = after(exp)
and false(exp) = after(exp).

10

Table 3
De�nite assignment for statements.
s is a function body before(s) = ;
; after(;) = before(;)
exp; before(exp) = before(exp;), after(exp;) = after(exp)
break; after(break;) = vars(break;)
continue; after(continue;) = vars(continue;)
goto l; after(goto l;) = vars(goto l;)
stm = {s1 : : : sn} before(s1) = before(stm), after(stm) = after(sn),

before(si+1) = after(si) \ goto(si+1) where
goto(l:s) =Tfbefore(goto l;) j goto l; reachable in stmg
and goto(s) = vars(s) if s is not a labeled statement

stm = if (e) s1 else s2 before(e) = before(stm), before(s1) = true(e)
before(s2) = false(e), after(stm) = after(s1) \ after(s2)

stm = while (e) s before(e) = before(stm), before(s) = true(e),
after(stm) = false(e) \ break(s) where
break(s) = Tfbefore(break;) j break; reachable in sg

Table 4
De�nite assignment for boolean expressions.
true true(true) = before(true), false(true) = vars(true)
false true(false) = vars(false), false(false) = before(false)
exp = !e before(e) = before(exp), true(exp) = false(e)

false(exp) = true(e)
exp = (e1 && e2) before(e1) = before(exp), before(e2) = true(e1),

true(exp) = true(e2), false(exp) = false(e1) \ false(e2)
exp = (e1 || e2) before(e1) = before(exp), before(e2) = false(e1),

true(exp) = true(e1) \ true(e2), false(exp) = false(e2)
exp = (e0 ? e1 : e2) before(e0) = before(exp), before(e1) = true(e0)

before(e2) = false(e0), true(exp) = true(e1) \ true(e2)
false(exp) = false(e1) \ false(e2)

Table 5 contains the equations for non-boolean expressions. In all other cases,
if exp is an expression which has the direct subexpressions e1; e2; : : : ; en , then
the left-to-right evaluation scheme yields

(1) before(e1) = before(exp)
(2) before(ei+1) = after(ei) for i 2 [1 : : n � 1]
(3) after(exp) = after(en)

11

Table 5
De�nite assignment for abitrary expressions.
loc loc 2 before(loc), after(loc) = before(loc)
lit after(lit) = before(lit)
exp = (loc = e) before(e) = before(exp), after(exp) = after(e) [flocg
exp = (loc op= e) loc 2 before(exp), before(e) = before(exp)

after(exp) = after(e)
exp = (e0 ? e1 : e2) before(e0) = before(exp), before(e1) = true(e0)

before(e2) = false(e0), after(exp) = after(e1) \ after(e2)
Due to the goto statement the above constraints do not specify in a unique
way the sets of variables that have to be considered as de�nitely assigned.
Consider the following block (from [21]):
{ int i = 1 ; L : goto L ; }
Then the constraints of the de�nite assignment analysis are satis�ed for both
before(L: goto L;) = ; and before(L: goto L;) = fig. Hence during the
analysis the greatest sets of variables that satisfy the constraints for before
and after have to be computed (cf. [21]). For blocks without goto statements,
however, it can be proved from the above axioms that the before set determines
the after set in a unique way.

2.2 Dynamic semantics for C]I

The dynamic semantics for C]I describes the e�ect of statement execution
and expression evaluation upon the program state, so that the transition rule
for C]I (the same for its extensions) has the form
ExecCsharpI �
ExecCsharpExpI
ExecCsharpStmI

The �rst subrule de�nes one execution step in the evaluation of expressions;
the second subrule de�nes one step in the execution of statements.
To make the further model re�nements possible via purely incremental exten-
sions, our de�nition proceeds by walking through the attributed syntax tree
and computing at each node the e�ect of the program construct attached to
the node. We formalize the walk by a cursor I, whose position in the tree {
represented by a dynamic function pos :Pos { is updated using static tree func-
tions, leading from a node in the tree down to its �rst child, from there to the
next brother or up to the parent node (if any), as illustrated by the following

12

self-explanatory example. The moves of pos contain implicitly the control-
ow
graph of C]. A function label :Pos ! Label decorates nodes with the informa-
tion which identi�es the grammar rule associated to the node. For the sake
of notational succinctness we use concrete syntax of C] to describe the labels,
thus avoiding the explicit introduction of auxiliary non-terminals the reader
probably does not want to see. In the following example the four possible cur-
sor positions are reachable from the root by following the tree functions �rst ,
next and up. The label of the root node is the auxiliary non-terminal If , iden-
tifying the grammar rule which produces in one step if (exp) stm1 else stm2.

Ift����	
6

@@
@I�rst up up

t t t
exp stm1 stm2

- -next next
if (exp) stm1 else stm2

For updating the values of local variables in the memory we use two dynamic
functions locals :Loc ! Adr and mem:Adr ! SimpleValue [fUndef g, which
assign to local variables memory addresses and store the values there. Since in
C]I the values are of simple types, the equation Value = SimpleValue [Adr
holds, which will be re�ned in the extended models to include also references
and structs. The uniquely identi�ed local variables are modeled by stipulating
Loc = Identi�er�Pos , where Pos is the set of positions in the abstract syntax
tree.

The indirection through memory addresses is not really needed in C]I . In
C]I one could assign values directly to local variables without storing them
in an abstract memory. The addresses, however, are needed later for call-by-
reference with ref and out parameters (one of the major di�erences between
C] and Java from the modelling point of view).

Statements can terminate normally or abruptly, where in C]I the reasons of
abruption are from the set Abr = Break j Continue j Goto(Lab), to be re�ned
for the extended models. We use a dynamic function values :Pos ! Result to
store intermediate evaluation results from the set

Result = Value [Abr [fUndef ;Normg:

For the initial state we assume

� mem(i) = Undef for every i 2 Adr
� pos = root position of the attributed syntax tree
� locals(x) 2 Adr for every variable x 6

6 This amounts to assuming that the compiler chooses an address for each variable.

13

As intermediate values at a position p the cursor is at or is passing to, the
computation may yield directly a simple value; at AddressPos itions as de�ned
below it may yield an address; but it may also yield a memValue which has to
be retrieved indirectly via the given address (where for C]I the memory value
of a given type t at a given address adr is de�ned by memValue(adr ; t) =
mem(adr); the parameter t will become relevant only in the re�nement of
memValue in C]O and C]U). This is described by the following two macros:

Yield(val ; p) �
values(p) := val
pos := p

YieldIndirect(adr ; p) �
if AddressPos(p) then Yield(adr ; p)
else Yield(memValue(adr ; type(p)); p)

We will use the macros in the two forms Yield(val) � Yield(val ; pos) and
YieldUp(val) � Yield(val ; up(pos)). Similarly we have two forms also for
the second macro: YieldIndirect(adr) and YieldUpIndirect(adr).

Being in a context where an address and not a value is required can be de�ned
as follows:

AddressPos(�) () FirstChild(�)^
(label(up(�)) 2 f++; --g _ label(up(�)) 2 Aop)

where FirstChild(�) () �rst(up(�)) = �

To further reduce any notational overhead not needed by the human reader,
in spelling out the rules below we identify positions with the occurrences of
the syntactical constructs nodes are decorated with. This explains updates
like pos := exp or pos := stm, which are used as shorthand for updating
pos to the node labeled with the corresponding occurrence of exp respectively
stm. 7 Furthermore, for a succinct formulation we use a macro context(pos)
to describe the context of the currently to be handled expression or state-
ment or intermediate result, which has to be matched against the syntacti-
cally possible cases (in the textual order of the rule) to select the appropriate
computation step. If the elaboration of the subtree at the position pos has
not yet started, then context(pos) is the construct encoded by the labels of
pos and of its children. Otherwise, if pos carries already its result in values ,
context(pos) is the pseudo-construct encoded by the labels of the parent node
of pos and of its children after replacing the already evaluated constructs by
their values in the corresponding node. This explains notations like uop Ival
7 An identi�cation of this kind, which is common in mathematics, has clearly to be
resolved in an executable version of the model. See for example the formulation of
the ASM model for Java in [1].

14

to describe the context of pos , where pos is marked with the cursor (I), re-
sulting from the successful evaluation of the argument exp of the construct
uop exp (encoded by up(pos) and its child pos), just before uop is applied to
val to YieldUp(Apply(uop; val)).

It thus remains to de�ne the two submachines for expression evaluation and
statement execution. This is done in a modular fashion, grouping behaviorally
similar instructions into one parameterized instruction. 8

Expression evaluation rules. We are now ready to de�ne the machine
ExecCsharpExpI in a compositional way, namely proceeding expression-
wise: for each syntactical form of expressions there is a set of rules covering
each intermediate phase of their evaluation. The machine passes control from
unevaluated expressions to the appropriate subexpressions until an atom (a
literal or a local variable) is reached. It can continue its computation only
as long as no operator exception occurs, as a consequence it does not distin-
guish between checked and unchecked expression evaluation { the extension
by rules to handle exceptions is de�ned in the model extension C]E . The ex-
pressions for numeric casts will be re�ned in C]O and in C]E . The macro
WriteMem(adr ; t ; val) denotes here mem(adr) := val ; it will be re�ned in
the model for C]O.

ExecCsharpExpI �match context(pos)
lit ! Yield(ValueOfLiteral(lit))
loc ! YieldIndirect(locals(loc))
uop exp ! pos := exp
uop Ival ! if :UopException(uop; val) then YieldUp(Apply(uop; val))
exp1 bop exp2 ! pos := exp1Ival bop exp ! pos := exp
val1 bop Ival2 ! if :BopException(bop; val1; val2) then

YieldUp(Apply(bop; val1; val2))
exp0 ? exp1 : exp2 ! pos := exp0Ival ? exp1 : exp2 ! if val then pos := exp1 else pos := exp2
True ? Ival : exp ! YieldUp(val)
False ? exp : Ival ! YieldUp(val)
loc = exp ! pos := exp
loc = Ival ! fWriteMem(locals(loc); type(loc); val); YieldUp(val)g
(type) exp ! pos := exp
(type) Ival ! if type(pos) 2 NumericType ^ type 2 NumericType then

if :UopException(type; val) then
YieldUp(Convert(type; val))

8 The specializations can be regained instruction-wise by mere parameter expan-
sion, a form of re�nement that is easily proved to be correct.

15

vexp op= exp ! pos := vexp
Iadr op= exp ! pos := exp
adr op= Ival ! let t = type(up(pos)) and v = memValue(adr ; t) in

if :BopException(op; v ; val) then
let w = Apply(op; v ; val) and r = Convert(t ;w) in
fWriteMem(adr ; t ; r); YieldUp(r)g

vexp op ! pos := vexp// for post�x operators op 2 f++; --g
Iadr op ! let old = memValue(adr ; type(pos)) in

if :UopException(op; old) then
WriteMem(adr ; type(up(pos))
Apply(op; old))
YieldUp(old)

checked(exp) ! pos := exp
checked(Ival) ! YieldUp(val)
unchecked(exp) ! pos := exp
unchecked(Ival)! YieldUp(val)

Being in a checked context is used to de�ne whether operators throw an over-

ow exception (in which case a rule will be added in the model for C]E). The
general rule is that operators for the type decimal always throw over
ow ex-
ceptions whereas operators for integral types only throw over
ow exceptions
in a checked context except for the division by zero. By default every position
is unchecked, unless explicitly declared otherwise.

Checked(�) () label(�) = Checked _
(label(�) 6= Unchecked ^ up(�) 6= Undef ^ Checked(up(�)))

UopException(uop; val) () Checked(pos) ^Over
ow(uop; val)
BopException(bop; val1; val2) ()
DivisonByZero(bop; val2) _ DecimalOver
ow(bop; val1; val2) _
(Checked(pos) ^Over
ow(bop; val1; val2))

Statement execution rules. The machine ExecCsharpStmI is de�ned
below statement-wise. It transfers control from structured statements to the
appropriate substatements, until the current statement has been computed
normally or abrupts the computation. Abruptions trigger the control to prop-
agate through all the enclosing statements up to the target labeled statement.
The concept of propagation is de�ned for C]I in such a way that in the re-
�ned models it is easily extended to abruptions due to return from procedures
or to exceptions. 9 In case of a new execution of the body of a while state-
ment, the previously computed intermediate results have to be cleared. 10 For

9 For C]I alone it would be simpler to transfer control directly by updating pos to
the value of a corresponding static function.10ClearValues is needed in the present rule formulation, which is close to an

16

the sake of brevity we skip the analogous transition rules for statements do,
for, switch, goto case, goto default. Since we formulate the model for
the human reader, we also use the : : :-notation, for example in the rules for
abruption or for sequences of block statements. This avoids having to fuss with
an explicit formulation of the context, typically determined by a walk through
a list. This simpli�cation, which is tailored for the human reader, can easily
be resolved for an executable model version without increasing the number of
rules.

ExecCsharpStmI �match context(pos)
;! Yield(Norm)
exp; ! pos := exp
Ival;! YieldUp(Norm)
break; ! Yield(Break)
continue;! Yield(Continue)
goto lab; ! Yield(Goto(lab))
if (exp) stm1 else stm2 ! pos := exp
if (Ival) stm1 else stm2 ! if val then pos := stm1 else pos := stm2
if (True) INorm else stm ! YieldUp(Norm)
if (False) stm else INorm ! YieldUp(Norm)
while (exp) stm ! pos := exp
while (Ival) stm ! if val then pos := stm

else YieldUp(Norm)
while (True) INorm ! fpos := up(pos); ClearValues(up(pos))g
while (True) IBreak ! YieldUp(Norm)
while (True) IContinue ! fpos := up(pos); ClearValues(up(pos))g
while (True) Iabr ! YieldUp(abr)
type loc;! Yield(Norm)
lab: stm ! pos := stm
lab: INorm ! YieldUp(Norm)
checked block ! pos := block
checked INorm ! YieldUp(Norm)
unchecked block ! pos := block
unchecked INorm ! YieldUp(Norm)
: : : Iabr : : :! if up(pos) 6= Undef ^ PropagatesAbr(up(pos)) then

YieldUp(abr)

executable format. In a more abstract SOS-style, as used for the Java model in [1],
it wouldn't be necessary because there the intermediate values can be written into
a dynamic function for the still to be executed rest program.

17

{ } ! Yield(Norm)
{stm : : : } ! pos := stm
{ : : : INorm} ! YieldUp(Norm)
{ : : : INorm stm : : : }! pos := stm
{ : : : IGoto(l) : : : } ! let � = GotoTarget(�rst(up(pos)); l)

if � 6= Undef then
fpos := �; ClearValues(up(pos))g

else YieldUp(Goto(l))
{ : : : Iabr : : : } ! YieldUp(abr)

In C]I abruptions are propagated upwards except at the following statements:

PropagatesAbr(�) () label(�) =2 fBlock ;While;Do;For ; Switchg

To compute the target of a label in a list of block statements we de�ne:

GotoTarget(�; l) =
if label(�) = Lab(l) then �
elseif next(�) = Undef then Undef
else GotoTarget(next(�); l)

The auxiliary macro ClearValues(�) to clear all values in the subtree at
position � can be de�ned by recursion as follows, proceeding from top to
bottom and from left to right: 11

ClearValues(�) �
values(�) := Undef
if �rst(�) 6= Undef then ClearValuesSeq(�rst(�))

ClearValuesSeq(�) �
ClearValues(�)
if next(�) 6= Undef then ClearValuesSeq(next(�))

3 C]C: re�ning C]I by static class features

In this section we re�ne the imperative core C]I to C]C by adding classes (mod-
ules) concentrating upon their static features (static �elds, methods, construc-
tors), including their initialization and the parameter mechanism that provides
value, ref and out parameters. For such a re�nement we a) extend the ASM

11 Intuitively it should be clear that the execution of this recursive ASM provides
simultaneously { in one step { the set of all updates of all its recursive calls, as is
needed here for the clearing purpose; see [22] for a precise de�nition.

18

universes and functions, or introduce new ones, to re
ect the grammar ex-
tensions for expressions and statements, b) add the appropriate constraints
needed for the static analysis of the new items (type constraints, de�nite as-
signment rules), c) extend some of the macros, e.g. PropagatesAbr(�), to make
them work also for the newly occurring cases, d) add rules which de�ne the
semantics of the new instructions that operate over the new domains.

3.1 Static semantics of C]C

In C]C a program is a set of compilation units, each coming with \using direc-
tives" and declarations of names spaces (including a global namespace) and
types (for classes and interfaces 12) in the global namespace. For simplicity
of exposition we disregard \using" directives and nested namespaces by as-
suming everywhere the adoption of (equivalent) fully quali�ed names. The
precise syntax of classes and their static members, the rules for the accessibil-
ity of types and members via the access modi�ers (public, internal, protected,
private) and illustrating examples are spelt out in [19]. We de�ne here the ex-
tension of the grammars for Vexp, Sexp, Stm and thereby of the corresponding
ASM domains, which re
ects the introduction of sets of Classes with static
Fields and static Methods in C]C. The new set Arg of arguments appearing
here re
ects that besides value parameters also ref and out parameters can
be used.

Vexp ::= : : : j Field j Class `.' Field
Sexp ::= : : : j Meth ([Args]) j Class `.' Meth ([Args])
Arg ::= Exp j `ref' Vexp j `out' Vexp
Args ::= Arg f`,' Argg
Stm ::= : : : j `return' Exp `;' j `return' `;'

The type constraints for the new expressions and the return statement are
spelt out in [19]. The di�erence between ref and out parameters at function
calls and in function bodies is re
ected by including as AddressPos itions all
nodes whose parent node is labeled by ref or out and by adding the following
de�nite assignment constraints:

� ref arguments must be de�nitely assigned before the function call.
� out arguments are de�nitely assigned after the function call.
� ref parameters and value parameters of a function are de�nitely assigned
at the beginning of the function body.

� out parameters must be de�nitely assigned when the function returns.
12Note that struct and enum types and delegates are introduced by further re�ne-
ment steps below.

19

Therefore the de�nite assignment constraints for expressions are extended by
the following constraints for general argument expressions in function calls
and for ref and out argument expressions:

� For exp = M (args):
� before(args) = before(exp)
� RefParams(args) � after(args)
� after(exp) = after(args) [OutParams(args)

� For exp = (ref e) or exp = (out e):
� before(e) = before(exp)
� after(exp) = after(e)

The de�nite assignment constraints for statements are extended for function
bodies and return statements as follows:

� If s is the body of M , then
� before(s) = ValueParams(M) [RefParams(M)

� If stm = return; is in M , then
� OutParams(M) � before(stm)
� after(stm) = vars(stm)

� If stm = return e; is in M , then
� before(e) = before(stm)
� OutParams(M) � after(e)
� after(stm) = vars(stm)

The presence of to-be-initialized classes and of method calls is re
ected by the
introduction of new universes to denote methods, the initialization status of
a type (which will be re�ned below by exceptions) and the sequence of still
active method calls (frame stack):

Meth = Type �Msig
TypeState = Linked j InProgress j Initialized
Frame = Meth � Pos � Locals � Values
where Values = (Pos ! Result) and Locals = (Loc ! Adr)

A method signature Msig consists of the name of a method plus the sequence
of types of the arguments of the method. A method is uniquely determined by
the type in which it is declared and its signature. The reasons for abruptions
are extended by method return:

Abr = : : : j Return j Return(Value)

20

3.2 Dynamic semantics of C]C

To dynamically handle the addresses of static �elds (global or class variables),
the initialization state of types, the current method, the execution stack and
the (initially) to be initialized type we use the following new dynamic func-
tions:

globals :Type � Field ! Adr
typeState:Type ! TypeState

frames :List(Frame)
meth:Meth

We extend the stipulations for the initial state as follows:

� typeState(c) = Linked for each class c
� meth = EntryPoint ::Main() [EntryPoint is the main class]
� pos = body(meth) [The root position of the body]
� locals = values = ; and frames = []

The submachine ExecCsharpC extends the machine ExecCsharpI for C]I
by additional rules for the evaluation of the new expressions and for the ex-
ecution of return statements. In the same way the further re�nements in the
sections below consist in the parallel addition of appropriate submachines.

ExecCsharpC �
ExecCsharpI
ExecCsharpExpC
ExecCsharpStmC

Expression evaluation rules. The rules for class �eld evaluation in the
submachine ExecCsharpExpC are analogous to those for the evaluation of
local variables in ExecCsharpExpI , except for using globals instead of locals
and for the additional clause for class initialization. The rules for method calls
use the macro InvokeStatic de�ned below and re
ect that the arguments
are evaluated from left to right. 13

ExecCsharpExpC �match context(pos)
c:f ! if Initialized(c) then YieldIndirect(globals(c::f))

else Initialize(c)
13 These are the rules to be modi�ed in case one wants to specify another evaluation
order for expressions, involving the use of the ASM choose construct if some non-
deterministic choice has to be formulated. For a discussion of such model variations
we refer to [23] where an ASM model is developed which can be instantiated to
capture the di�erent expression evaluation strategies in Ada95, C, C++, Java, C]
and Fortran.

21

c:f = exp ! pos := exp
c:f = Ival ! if Initialized(c) then

WriteMem(globals(c::f); type(c::f); val)
YieldUp(val)

else Initialize(c)
c:m(args) ! pos := (args)
c:mI(vals)! InvokeStatic(c::m; vals)
ref vexp ! pos := vexp
ref Iadr ! YieldUp(adr)
out vexp ! pos := vexp
out Iadr ! YieldUp(adr)
() ! Yield([])
(arg, : : :) ! pos := arg
(val1, : : : ,Ivaln) ! YieldUp([val1; : : : ; valn])
(: : : Ival,arg : : :)! pos := arg

The macro InvokeStatic invokes the method if the initialization of its class
is not triggered, otherwise it initializes the class. The initialization of a class
(or struct, see Sect. 4) is not triggered if the class is already initialized. 14 For
methods which are not declared external, InvokeMethod updates the frame
stack and the current frame in the expected way, allocating via InitLocals
for every local variable or value parameter a new address and copying every
value argument there. Since we will also have to deal with external methods {
whose declaration includes an externmodi�er and which may be implemented
using a language other than C] { we provide here for their invocation a sub-
machine InvokeExtern, to be de�ned separately depending on the class of
external (e.g. library) methods. 15 The predicate StaticCtor recognizes static
class constructors; their implicit call interrupts the member access at pos , to
later return to the evaluation of pos instead of up(pos). We separate the cur-
rent frame|consisting of meth, pos , locals and values|from the stack of such
frames to notationally smoothen the transition from C]I to C]C.

InvokeStatic(c::m; vals) �
if not TriggerInit(c) then InvokeMethod(c::m; vals)
else Initialize(c)
where TriggerInit(c) = :Initialized(c)

14As analyzed in [13], it is also not triggered if the class is marked with the imple-
mentation
ag before�eldinit , indicating that the reference of the static method does
not trigger the class (or struct) initialization. If one wants to model this
ag the
de�nition has to be re�ned to TriggerInit(c) = :Initialized(c)^ :before�eldinit(c)
and furthermore in Sect. 5.)15 For an illustration of this use of external methods see below the model for dele-
gates.

22

InvokeMethod(c::m; vals) �
if extern 2 modi�ers(c::m) then InvokeExtern(c::m; vals)
else let p = if StaticCtor(c::m) then pos else up(pos) in
frames := push(frames ; (meth; p; locals ; values))
meth := c::m
pos := body(c::m)
values := ;
InitLocals(c::m; vals)

The following de�nition for the initialization of local variables re
ects that C]
permits to pass function call parameters by value, as Java does, but also by
reference. Also out parameters are allowed, treated as ref parameters except
that they need not be de�nitely assigned until the function call returns. 16

In the following de�nition, all (also simultaneous) applications of the external
function new during the computation of the ASM are supposed to provide
pairwise di�erent fresh elements from the underlying domain Adr . See [24]
and [18, 2.4.4] for a justi�cation of this assumption. See also the end of Sect. 4
where we provide an abstract speci�cation of the needed memory allocation
to addresses of references and objects of struct type and to their instance
�elds. paramIndex (c::m; x) yields the index of the formal parameter x in the
signature of c::m.

InitLocals(c::m; vals) �
forall x 2 LocalVars(c::m) do // addresses for local variables
locals(x) := new(Adr ; type(x))

forall x 2 ValueParams(c::m) do // copy value arguments
let adr = new(Adr ; type(x)) in
locals(x) := adr
WriteMem(adr ; type(x); vals(paramIndex (c::m; x)))

forall x 2 RefParams(c::m) [OutParams(c::m) do // ref, out arguments
locals(x) := vals(paramIndex (c::m; x))

Statement execution rules. The rules for method return in the submachine
ExecCsharpStmC trigger an abruption upon returning from a method, re-
sulting (via the propagation of this abruption to the beginning of the method
body where it occurred) in the execution of the machine ExitMethod. The
rule to YieldUp(Norm) does not capture falling o� the method body, but
yields up the result of the normal execution of the invocation of a method
with void return type in an expression statement.

ExecCsharpStmC �match context(pos)
16 To re
ect di�erent parameter passing mechanisms as encountered in other pro-
gramming languages, due to the modular character of our model essentially only
the above submachine InitLocals would have to be appropriately modi�ed.

23

return exp; ! pos := exp
return Ival;! YieldUp(Return(val))
return; ! Yield(Return)
Return ! if pos = body(meth) ^ :Empty(frames) then

ExitMethod(Norm)
Return(val)! if pos = body(meth) ^ :Empty(frames) then

ExitMethod(val)
INorm;! YieldUp(Norm)

The machine ExitMethod restores the frame of the invoker and passes the
result value (if any). Upon normal return from a static constructor it also
updates the typeState of the relevant class as Initialized . We also add a rule
FreeLocals to free the memory used for local variables and value parame-
ters, using an abstract notion FreeMemory of how addresses of local vari-
ables and value parameters are actually de-allocated. 17

ExitMethod(result) �
let (oldMeth; oldPos ; oldLocals ; oldValues) = top(frames) in
meth := oldMeth
pos := oldPos
locals := oldLocals
frames := pop(frames)
if StaticCtor(meth) ^ result = Norm then
typeState(type(meth)) := Initialized
values := oldValues

else
values := oldValues � foldPos 7! resultg

FreeLocals

FreeLocals �
forall x 2 LocalVars(meth) [ValueParams(meth) do
FreeMemory(locals(x); type(x))

Following [2, x17.11,17.4.5.1,10.11,10.4.5.1] a type c is considered as initialized
if its static constructor has been invoked (see the update of typeState(c) to
InProgress in Initialize below) or has terminated normally (see the update
of typeState(c) to Initialized in ExitMethod above). We therefore de�ne:

Initialized(c) () typeState(c) = Initialized _ typeState(c) = InProgress

To initialize a class its static constructor is invoked (.cctor = class construc-
tor). This macro will be further re�ned in C]E to account for exceptions during
17Under the assumption of a potentially in�nite supply of addresses, which is often
made when describing the semantics of a programming language, one can dispense
with FreeLocals.

24

an initialization.

Initialize(c) �
if typeState(c) = Linked then
typeState(c) := InProgress
forall f 2 staticFields(c) do
let t = type(c::f) inWriteMem(globals(c::f); t ; defaultValue(t))

InvokeMethod(c::.cctor; [])

Note that in C] the initialization of a class does not trigger the initialization
of its direct base class, di�ering on this point from Java where the rule for
calling static constructors (see [1, Fig.4.5]) triggers the initialization of the
superclass in case the superclass is not yet initialized.

With respect to the execution of initializers of static class �elds the ECMA
standard [2, x17.4.5.1] says that the static �eld initializers of a class correspond
to a sequence of assignments that are executed in the textual order in which
they appear in the class declaration. If a static constructor exists in the class,
execution of the static �eld initializers occurs immediately prior to executing
that static constructor. Otherwise, the static �eld initializers are executed
at an implementation-dependent time prior to the �rst use of a static �eld
of that class. Our model expresses the decision taken by Microsoft's current
C] compiler, which in the second case creates a static constructor. If one wants
to re
ect also the non-determinism suggested by the ECMA formulation, one
can formalize the implementation-dependent external control by a monitored
function typeToBeInitialized (which by the way can also be used for the classes
and structs classi�ed by an implementation
ag as before�eldinit type). The
C] interpreter then takes the following form: 18

if typeToBeInitialized 6= Undef then
Initialize(typeToBeInitialized)

else ExecCsharp

4 Re�nement C]O of C]C by object related features

In this section we re�ne the static class features of C]C by adding objects
(for class instances, comprising arrays and structs) together with instance
�elds, methods and constructors 19 as well as inheritance (including overriding
18 This is discussed in detail in [13]. The reader �nds there also a detection of further
class initialization features that are missing in the ECMA speci�cation, related to
the de�nition of when a static class constructor has to be executed and to the
initialization of structs.19Destructors or �nalizers which relate to garbage collection are not modeled here.

25

and overloading of methods). Accordingly we extend the ASM universes and
functions of C]C to re
ect the new expressions and statements together with
the appropriate constraints and new rules, using appropriate re�nements of
some of the macros to de�ne the semantics of the new instructions of C]O.
For the detailed de�nition of the syntax of (members of) classes, interfaces,
structs, etc., and of the constraints for the new modi�ers (abstract, sealed,
readonly, volatile, virtual, override) together with illustrating examples,
we refer the reader to [19].

4.1 Static semantics of C]O

The �rst extension concerns the sets Exp, Vexp, Sexp where the new reference
and array types appear. Rank serves to denote the dimension of array types;
NonArrayType stands for value types, classes and interfaces and will be ex-
tended in C]D to comprise also delegates. Value types represent a feature that
distinguishes C] from Java. In C]I we have cast expressions (t)exp where the
type t and the type of exp are numeric types. Here, we extend the grammar to
(t)exp where t and the type of exp can be any type. A RefExp is an expression
of a reference type and an ArrayExp is an expression of an array type.

Exp ::= : : : j `null' j `this' j `typeof' `(' RetType `)' j Exp `is' Type
j Exp `as' RefType j `(' Type `)' Exp j Exp `.' Field
j `new' NonArrayType `[' Exps `]' fRankg [ArrayInitializer]

Vexp ::= : : : j Vexp `.' Field j RefExp `.' Field j `base' `.' Field
j ArrayExp `[' Exps `]'

Sexp ::= : : : j `new' Type ([Args]) j Exp `.' Meth ([Args])
j `base' `.' Meth ([Args])

Exps ::= Exp f`,' Expg
Rank ::= `[' f `,' g `]'

A this in an instance constructor or instance method of a struct is considered
to be a Vexp. When a this occurs in a class it is not a Vexp.

The extended type classi�cation where simple types become aliases for struct
types is re-assumed by Fig. 4. We refer the reader to [19] for the detailed list
of new type constraints. Also the constraints for overriding and overloading of
methods and the resolution of overloaded methods at compile-time are spelt
out there.

The subtype relation (i.e. the standard implicit conversion) is based on the
inheritance relation { de�ned as a �nite tree with root object { together
with the \implements" relation between classes and interfaces. It is de�ned as

26

null type
delegate type
array type
interface type
class type

decimal

return type

integral type

sbyte
short
int
long
char

byte
ushort
uint
ulong

floating−point type

float
double

numeric typebool

simple type

value type reference type

typevoid

enum type struct type

Fig. 4. The classi�cation of types of C].
follows (and should not be confused with the classi�cation of types in Fig. 4):

� T any type =) T � object and T � T
� class S derived from T =) S � T
� class, interface or struct S implements interface T =) S � T
� T array type =) T � System.Array
� T delegate type =) T � System.Delegate
� T value type =) T � System.ValueType
� T array or delegate type =) T � System.ICloneable
� T reference type =) � � T [� is the null type]
� S and T reference types, S � T =) S[R1] � � � [Rk] � T[R1] � � � [Rk]

Note that types of one category in Fig. 4 can be subtypes of another (disjoint)
category. For example, if a struct type S implements the interface I , then (the
value type) S is considered to be a subtype of (the reference type) I .

We list here the additional de�nite assignment rules for local variables of struct
type:

� If p is a local variable of a struct type S , then p:f is considered as a local
variable for each instance �eld f of S .

� A local variable p of struct type S is de�nitely assigned ()
p:f is de�nitely assigned for each instance �eld f of S .

27

We assume that as a result of �eld and method resolution the attributed syntax
tree has exact information. Each �eld access has the form T ::f where f is a
�eld declared in the type T . Each method call has the form T ::m(args) where
m is the signature of a method declared in type T . Moreover, at compile-time
certain expressions are reduced to basic expressions as follows.

For the base access of �elds and methods we have:

� base.f in class C is replaced by this.B ::f , where B is the �rst base class
of C where the �eld f is declared.

� base.m(args) in class C is replaced by this.B ::M (args), where B ::M
is the method signature of the method selected by the compiler (the set
of applicable methods is constructed starting in the base class of C). This
selection algorithm is described in [19], formalizing the conditions stated
in [2, x14.4.2/3].

For instance �eld access and class instance creation we have:

� If f is a �eld, then f is replaced by this.T ::f , where f is declared in T .
� Let T be a class type. Then the instance creation new T ::M (args) is re-
placed by new T.T ::M (args).

Hence we split an instance creation expression into a creation part and an
invocation of an instance constructor. To make the splitting correctly re
ect
the intended meaning of new T ::M (args), we assume in our model that class
instance constructors return the value of this.

For instance constructors of structs one has to re
ect that in addition they
need an address for this. Also for constructors of structs we assume that
they return the value of this. Let S be a struct type. Then the following
transformations are applied:

� An assignment vexp = new S ::M (args) is replaced by vexp.S ::M (args).
This re
ects that such a new triggers no object creation or memory alloca-
tion since structs get their memory allocated at declaration time.

� Other occurrences of new S ::M (args) are replaced by x.S ::M (args), where
x is a new temporary local variable of type S .

For automatic boxing we have:

� An assignment vexp = exp is replaced by vexp = (T)exp if type(exp) is a
value type, T = type(vexp) and T is a reference type. In this case we must
have type(exp) � T .

� An argument arg is replaced by (T)arg if type(arg) is a value type, the
selected method expects an argument of type T and T is a reference type.
In this case we must have type(arg) � T .

28

4.2 Dynamic semantics for C]O

We are now ready to describe the extension of the dynamic state for the model
of C]O. The domain of values is extended to contain also references (assuming
Ref \ Adr = ; and null 2 Ref) and struct values: Value = SimpleValue [
Adr [Ref [Struct . The set Struct of struct values can be de�ned as the set
of mappings from StructType::Field to Value. The value of an instance �eld
of a value of struct type T can then be extracted by applying the map to the
�eld name, i.e. structField(val ;T ; f).

Two dynamic functions keep track of the runTimeType:Ref ! Type of ref-
erences and of the type object typeObj :RetType ! Ref of a given type,
where RetType ::= Type j `void'. The memory function is extended to store
also references: mem:Adr ! SimpleValue [Ref [fUndef g. For boxing we
need a dynamic function valueAdr :Ref ! Adr to record the address of a
value in a box. If runTimeType(ref) is a value type t , then valueAdr(ref)
is the address of the struct value of type t stored in the box. The static
function instanceFields :Type ! Powerset(Type::Field) yields the set of in-
stance �elds of any given type t ; if t is a class type, it includes the �elds
declared in base classes of t . We use the common programming notation
Type::Field instead of the set-theoretic product set notation. We abstract
from the implementation-dependent layout of structs and objects and use a
function �eldAdr : (Adr [Ref) � Type::Field ! Adr to record addresses of
�elds. This function satis�es the following properties:

� If t is a struct type, then �eldAdr(adr ; t ::f) is the address of �eld f of a
value of type t stored in mem at address adr .

� A value of struct type t at address adr occupies the following addresses in
mem:

f�eldAdr(adr ; f) j f 2 instanceFields(t)g

� If runTimeType(ref) is a class type, then �eldAdr(ref ; t ::f) is the address
of �eld t ::f of the object referenced by ref .

� An object of class c is represented by a reference ref with the property
runTimeType(ref) = c and occupies the following addresses in mem:

f�eldAdr(ref ; f) j f 2 instanceFields(c)g

A function elemAdr :Ref �N� ! Adr records addresses of array elements. The
this reference is treated as �rst parameter and is passed by value. Therefore
paramIndex (c::m; this) = 0 and this is an element of ValueParams(c::m).

For the re�nement of the ExecCsharpC transition rules it su�ces to add the
new rule ExecCsharpExpO for evaluating the new expressions, since C]O

29

introduces no new statements.

ExecCsharpO �
ExecCsharpC
ExecCsharpExpO

For better readability we organize the numerous ExecCsharpExpO rules for
each of the new expressions into parallel submachines each of which collects
the rules for expressions which belong to the same category (for type testing
and casting, for �elds, for arrays). As analyzed in [13], the invocation of an
instance constructor of a class may trigger the class initialization.

ExecCsharpExpO �match context(pos)
null! Yield(null)
this! YieldIndirect(locals(this))
TestCastExpO
FieldExpO
new c ! let ref = new(Ref ; c) in

runTimeType(ref) := c
forall f 2 instanceFields(c) do
let adr = �eldAdr(ref ; f) and t = type(f) in
WriteMem(adr ; t ; defaultValue(t))

Yield(ref)
exp.T ::M (args) ! pos := exp
Ival.T ::M (args)! if StructValueInvocation(up(pos)) then

// create home for struct value
let adr = new(Adr ; type(pos)) in
WriteMem(adr ; type(pos); val)
values(pos) := adr

pos := (args)
val.T ::MI(vals) ! if InstanceCtor(M) ^ TriggerInit(T) then

Initialize(T)
elseif val 6= null then
InvokeInstance(T ::M ; val ; vals)

ArrayExpO

A struct value invocation is a method invocation on a struct value which is not
stored in a variable. For such struct values the above rule creates a temporary
storage area (called \home") to be passed in the invocation as value of this.

StructValueInvocation(exp.T ::M (args)) ()
type(exp) 2 StructType ^ exp =2 Vexp

The rules for casting in TestCastExpO use the new macro YieldUpBox
de�ned below. Note that in expressions `exp is t ' and (t)exp the type t can

30

be any type, whereas in `exp as t ' the type t must be a reference type. The
type of `exp is t ' is bool, while the type of (t)exp and `exp as t ' is t .

TestCastExpO �
typeof(t)! Yield(typeObj (t))
exp is t ! pos := exp
Ival is t ! if type(pos) 2 ValueType then

YieldUp(type(pos) � t) // compile-time property
else
YieldUp(val 6= null ^ runTimeType(val) � t)

exp as t ! pos := exp
Ival as t ! if type(pos) 2 ValueType then

YieldUpBox(type(pos); val) // box a copy of the value
elseif (val 6= null ^ runTimeType(val) � t) then
YieldUp(val) // pass reference through

else YieldUp(null) // convert to null reference
(t)exp ! pos := exp
(t)Ival ! if type(pos) 2 ValueType then

// compile-time identity
if t = type(pos) then YieldUp(val)
// box value
if t 2 RefType then YieldUpBox(type(pos); val)

if type(pos) 2 RefType then
if t 2 RefType ^ (val = null _ runTimeType(val) � t) then
YieldUp(val) // pass reference through

if t 2 ValueType ^ val 6= null ^ t = runTimeType(val) then
// un-box a copy of the value
YieldUp(memValue(valueAdr(val); t))

The rules for instance �eld access and assignment in FieldExpO are analo-
gous to those for class variables, adding the evaluation of the instance, using
�eldAdr instead of globals , and instead of WriteMem the macro SetField
de�ned below. The second rule for instance �eld access has to distinguish two
cases, depending upon the statically known instance type. Since this type in-
formation is already known at the time of static analysis, it could be resolved
by introducing two separate constructs for �eld access, as one of our refer-
ees observed pointing also out that in fact the CLI has a single, overloaded
instruction for �eld access with overloading to be resolved by the JIT. How-
ever from the modeling point of view, having two separate constructs for �eld
access would lead to essentially the same two rules we have formulated here,
except for having as rule guard a matching condition for the two constructs
instead of the type test. We use type(exp.t ::f) = type(t ::f).

FieldExpO �

31

exp.t ::f ! pos := exp
Ival.t ::f ! if type(pos) 2 ValueType ^ val =2 Adr then

YieldUp(structField(val ; type(pos); t ::f))
elseif val 6= null then
YieldUpIndirect(�eldAdr(val ; t ::f))

exp1.t ::f = exp2 ! pos := exp1Ival.t ::f = exp ! pos := exp
val1.t ::f = Ival2 ! if val1 6= null then

SetField(val1; t ::f ; val2)
YieldUp(val2)

C]O supports single dimensional as well as multi-dimensional arrays. Array
types are read from right to left. For example, int[][,] is the type of single-
dimensional arrays of two-dimensional arrays with elements of type int. By
dim(n) we denote a sequence of n�1 commas, hence T[dim(n)] is the type of
n-dimensional arrays with elements of type T . The length of the ith dimension
of an n-dimensional array represented by a reference ref is stored as the value
of dimLength(ref ; i). Note that the rules for using array indexing expressions
as rvalue respectively as lvalue appear together as subgroups of ArrayExpO ,
separated by pattern matching.

ArrayExpO �
new T[exp1, : : : ,expn][R1] � � � [Rk]! pos := exp1
new T[l1, : : : ,Ili,expi+1, : : : ,expn][R1] � � � [Rk]! pos := expi+1
new T[l1, : : : ,Iln][R1] � � � [Rk]!
if 8i 2 [1 : : n] (0 � li) then
let S = T[R1] � � � [Rk] in
let ref = new(Ref ; [l1; : : : ; ln]; S) in
runTimeType(ref) := T[dim(n)][R1] � � � [Rk]
forall i 2 [1 : : n] do dimLength(ref ; i � 1) := li
forall � 2 [0 : : l1 � 1]� � � � � [0 : : ln � 1] do
WriteMem(elemAdr(ref ; �); S ; defaultValue(S))

YieldUp(ref)
exp0[exp1, : : : ,expn] ! pos := exp0Iref [exp1, : : : ,expn]! pos := exp1
ref [i1, : : : ,Iik,expk+1, : : : ,expn]! pos := expk+1
ref [i1, : : : ,Iin]!
if ref 6= null ^ 8k 2 [1 : : n] (0 � ik < dimLength(ref ; k � 1)) ^
(RefOrOutArg(up(pos)) ^ type(up(pos)) 2 RefType !
elementType(runTimeType(ref)) = type(up(pos)))

then
YieldUpIndirect(elemAdr(ref ; (i1; : : : ; in)))

exp0[exp1, : : : ,expn] = exp ! pos := exp0Iref [exp1, : : : ,expn] = exp ! pos := exp1

32

ref [i1, : : : ,Iik,expk+1, : : : ,expn] = exp ! pos := expk+1
ref [i1, : : : ,Iin] = exp ! pos := exp
ref [i1, : : : ,in] = Ival !
let T = elementType(runTimeType(ref)) in
if ref 6= null ^ 8k 2 [1 : : n] (0 � ik < dimLength(ref ; k � 1)) ^
(type(pos) 2 RefType ! runTimeType(val) � T)

then
WriteMem(elemAdr(ref ; (i1; : : : ; in));T ; val)
YieldUp(val)

Re�nement of macros. Invocation of instance methods splits into virtual
and non-virtual calls. The function lookup yields the class where the given
method speci�cation is de�ned in the class hierarchy, depending on the run-
time type of the given reference.

InvokeInstance(T ::M ; val ; vals) �
if callKind(T ::M) = Virtual then // indirect call, val 2 Ref
let S = lookup(runTimeType(val);T ::M) in
let this = if S 2 StructType then valueAdr(val) else val in
InvokeMethod(S ::M ; [this] � vals)

if callKind(T ::M) = NonVirtual then // direct call, val 2 Adr [Ref
InvokeMethod(T ::M ; [val] � vals)

In C]O the notion of reading from the memory is re�ned by extending the
simple equationmemValue(adr ; t) = mem(adr) of C]I to �t also reference and
struct types. This is done by the following simultaneous recursive de�nition
of memValue and getField along the given struct type.

memValue(adr ; t) =
if t 2 SimpleType [RefType then mem(adr)
elseif t 2 StructType then ff 7! getField(adr ; f) j f 2 instanceFields(t)g

getField(adr ; t ::f) = memValue(�eldAdr(adr ; t ::f); type(t ::f))

Writing to memory is re�ned recursively together with SetField along the
given struct type:

WriteMem(adr ; t ; val) �
if t 2 SimpleType [RefType then mem(adr) := val
elseif t 2 StructType then
forall f 2 instanceFields(t) do SetField(adr ; f ; val(f))

SetField(adr ; t ::f ; val) �WriteMem(�eldAdr(adr ; t ::f); type(t ::f); val)

The notion of AddressPos from C]C is re�ned to include also lvalue nodes of
StructType, so that address positions are of the following form: ref 2, out 2,

33

2++, 2--, 2 op= exp, 2.f , 2.m(args).

AddressPos(�) () FirstChild(�) ^
label(up(�)) 2 fref; out; ++; --g _ label(up(�)) 2 Aop _
(label(up(�)) = '.' ^ � 2 Vexp ^ type(�) 2 StructType)

YieldUpBox creates a box for a given value of a given type and returns
its reference. The run-time type of a reference to a boxed value of struct
type t is de�ned to be (the value type) t of the value. There is no need to
introduce special reference types for boxed values. If type(exp) is a value type
that implements the interface I , then type(exp) � I and the value can be
boxed using `(I)exp' or `exp as i '.

YieldUpBox(t ; val) � let ref = new(Ref) and adr = new(Adr ; t) in
runTimeType(ref) := t
valueAdr(ref) := adr
WriteMem(adr ; t ; val)
YieldUp(ref)

The struct value is copied in both cases, when it is boxed and when it is
un-boxed.

ASM function new. We now justify in the context of the basic parallel
execution mechanism of ASM rules the sequentiality which is used in the
following macros:

let adr = new(Adr ;T) in P
let ref = new(Ref ;T) in P
let ref = new(Ref ; [l1; : : : ; ln];T) in P

In the context of the machine ExecCsharp this comes up to specify an
abstract memory management. In fact let adr = new(Adr ;T) in P stands
for the sequential execution of a new address allocation (which uses the ASM
construct import to provide a completely fresh element) followed by P :

let adr = new(Adr ;T) in P � (import adr do AllocAdr(adr ;T)) seq P

where the operator seq for sequential execution of two ASMs M ;N is to be
understood as de�ned for turbo ASMs in [25] (alternatively see [18, Ch.4.1]),
namely as binding into one overall ASM step the two steps of �rst executingM
in the given state and then N in the resulting state. Similarly let ref =
new(Ref ;T) in P stands for the sequential execution of address allocation for
all instance �elds of a given type followed by P :

let ref = new(Ref ;T) in P �
import ref do

34

Ref (ref) := True
AllocFields(ref ; instanceFields(T))

seq P

Similarly we de�ne the address allocation for elements of an n-dimensional
array:

let ref = new(Ref ; [l1; : : : ; ln];T) in P �
import ref do
Ref (ref) := True
forall � 2 [0 : : l1 � 1]� � � � � [0 : : ln � 1] do
import adr do
elemAdr(ref ; �) := adr
AllocAdr(adr ;T)

seq P

The two macros for allocation of addresses and �elds can be recursively de�ned
as follows, relying again upon the de�nition of recursive turbo ASMs in [22]
(or see alternatively [18, Ch.4.1.2]):

AllocAdr(adr ;T) �
Adr(adr) := True
if T 2 StructType then AllocFields(adr ; instanceFields(T))

AllocFields(x ; fs) �
forall f 2 fs import adr do
�eldAdr(x ; f) := adr
AllocAdr(adr ; type(f))

5 Re�nement C]E of C]O by exception handling

In this section we extend C]O with the exception handling mechanism of C],
which separates normal program code from exception handling code. To this
purpose exceptions are represented as objects of prede�ned system exception
classes or of user-de�ned application exception classes. Once created (thrown),
these objects trigger an abruption of the normal program execution to catch
the exception { in case it is compatible with one of the exception classes
appearing in the program in an enclosing try-catch-�nally statement. Optional
�nally statements are guaranteed to be executed independently of whether the
try statement completes normally or is abrupted.

35

5.1 Static semantics of C]E

For the re�nement of ExecCsharpO by exceptions, as in the previous section
it su�ces to add the new rules for exception handling and to extend the static
semantics. The set of statements is extended by throw and try-catch-�nally
statements satisfying the following constraints:

Stm ::= : : : j `throw' Exp `;' j `throw' `;'
j `try' Block fCatchg [`catch' Block] [`finally' Block]

Catch ::= `catch' `(' ClassType [Loc] `)' Block

� every try-catch-�nally statement contains at least one catch clause, general
catch clause (i.e. of form catch block), or �nally block

� no return statements are allowed in �nally blocks
� a break, continue, or goto statement is not allowed to jump out of a �nally
block

� a throw statement without expression is only allowed in catch blocks
� the exception classes in a Catch clause appear there in a non-decreasing
type order, more precisely, for every try-catch statement of the form

try block catch (E1 x1) block1 : : : catch (En xn) blockn

the following holds i < j =) Ej 6� Ei (and Ei � System.Exception).

In our model the sets of abruptions and type states have to be extended by
exceptions. Due to the presence of throw statements without expression, a
stack of references is needed to record exceptions which are to be re-thrown.

Abr = : : : j Exc(Ref); TypeState = : : : j Exc(Ref); excStack :List(Ref)

To simplify the exposition we assume that general catch clauses `catch block '
are replaced at compile-time by `catch (Object x) block ' with a new vari-
able x . We also reduce try-catch-�nally statements to try-catch and try-�nally
statements as follows. Both reductions can easily be shown to correctly express
the ECMA speci�cation.

try TryBlock
catch (E1 x1) CatchBlock1...
catch (En xn) CatchBlockn
finally FinallyBlock

=)

try {
try TryBlock
catch (E1 x1) CatchBlock1...
catch (En xn) CatchBlockn

} finally FinallyBlock

36

If a static constructor throws an exception, and no catch clauses exists to catch
it, then this exception is wrapped into a TypeInitializationException by
translating static T() { BlockStatements } into

static T() {
try { BlockStatements }
catch (Exception e) {
throw new TypeInitializationException(T,e);

}
}

The reachability rules and the de�nite assignment constraints for a try-catch
stm � try tryBlock catch (E1 x1) catchBlock1 : : : catch (En xn) catchBlockn
are:

� If reachable(stm), then reachable(tryBlock) and reachable(catchBlocki) for
every i 2 [1 : : n].

� If normal(tryBlock) or normal(catchBlock) for at least one i 2 [1 : : n], then
normal(stm).

� before(tryBlock) = before(stm)
� before(catchBlocki) = before(stm) [fxig for every i 2 [1 : : n]
� after(stm) = after(tryBlock) \ Tni=1 after(catchBlocki)

For a statement stm of the form try tryBlock finally �nallyBlock the rules
and constraints are:

� If reachable(stm), then reachable(tryBlock) and reachable(�nallyBlock).
� If normal(tryBlock) and normal(�nallyBlock), then normal(stm).

� before(tryBlock) = before(stm)
� before(�nallyBlock) = before(stm)
� after(stm) = after(tryBlock) [after(�nallyBlock)

5.2 Dynamic semantics for C]E

The transition rules for ExecCsharpE are de�ned by adding two subma-
chines to ExecCsharpO . The �rst one provides the rules for handling the
exceptions which may occur during the evaluation of expressions, the second
one describes the meaning of the new throw and try-catch-�nally statements.

ExecCsharpE �
ExecCsharpO
ExecCsharpExpE

37

ExecCsharpStmE

Expression evaluation rules. ExecCsharpExpE contains rules for each
of the numerous forms of run-time exceptions de�ned in the subclasses of
System.Exception. We give here seven characteristic examples and group
them for the ease of presentation into parallel submachines by the form of
expression they are related to, namely for arithmetical exceptions and for
those related to cast expressions, reference expressions or array expressions.
The notion of FailUp we use is supposed to execute the code throw new E()
at the parent position, so that we de�ne the macro by invoking an internal
method ThrowE with that e�ect for each of the exception classes E used as
parameter of FailUp.

ExecCsharpExpE �match context(pos)
uop Ival ! if Checked(pos) ^Over
ow(uop; val) then

FailUp(OverflowException)
val1 bop Ival2 ! if DivisionByZero(bop; val2) then

FailUp(DivideByZeroException)
elseif DecimalOver
ow(bop; val1; val2)_
(Checked(pos) ^Over
ow(bop; val1; val2))

then FailUp(OverflowException)
CastExceptions
NullRefExceptions
ArrayExceptions

FailUp(E) � InvokeMethod(ExcSupport ::ThrowE ; [])

CastExceptions �match context(pos)
(t)Ival !
if type(pos) 2 RefType then
if t 2 RefType ^ val 6= Null ^ runTimeType(val) 6� t then
FailUp(InvalidCastException)

if t 2 ValueType then // attempt to unbox
if val = Null then FailUp(NullReferenceException)
elseif t 6= runTimeType(val) then
FailUp(InvalidCastException)

if type(pos) 2 NumericType ^ t 2 NumericType ^ Checked(pos) ^
Over
ow(t ; val)

then FailUp(OverflowException)

The semantics of assignments as de�ned by the ECMA standard and formal-
ized by the rule NullRefExceptions is violated by a compiler optimization
in [7] related to the timing of the Null check for certain expressions, see the

38

analysis in [13].

NullRefExceptions �match context(pos)
Iref .t ::f ! if ref = Null then

FailUp(NullReferenceException)
ref .t ::f = Ival ! if ref = Null then

FailUp(NullReferenceException)
ref .T ::M (Ivals)! if ref = Null then

FailUp(NullReferenceException)
If the address of an array element is passed as a ref or out argument to a
method, then the run-time element type of the array must be equal to the
parameter type that the method expects. If an object is assigned to an array
element, then the type of the object must be a subtype of run-time element
type of the array (array covariance problem). In both cases, if the condition
is not satis�ed, an ArrayTypeMismatchException is thrown.

ArrayExceptions �match context(pos)
new T[l1, : : : ,Iln][R1] � � � [Rk]!
if 9i 2 [1 : : n] (li < 0) then FailUp(OverflowException)

ref [i1, : : : ,Iin]!
if ref = Null then FailUp(NullReferenceException)
elseif 9k 2 [1 : : n] (ik < 0 _ dimLength(ref ; k � 1) � ik) then
FailUp(IndexOutOfRangeException)

elseif RefOrOutArg(up(pos)) ^ type(up(pos)) 2 RefType ^
elementType(runTimeType(ref)) 6= type(up(pos))

then FailUp(ArrayTypeMismatchException)
ref [i1, : : : ,in] = Ival !
if ref = Null then FailUp(NullReferenceException)
elseif 9k 2 [1 : : n] (ik < 0 _ dimLength(ref ; k � 1) � ik) then
FailUp(IndexOutOfRangeException)

elseif type(pos) 2 RefType ^
runTimeType(val) 6� elementType(runTimeType(ref)) then
FailUp(ArrayTypeMismatchException)

Statement execution rules. The statement execution submachine splits
naturally into submachines for throw, try-catch, try-�nally statements and a
rule for the propagation of an exception (from the root position of a method
body) to the method caller. To support a correct understanding of the ex-
ception messages that are printed to the console we include into the rule for
throw statements the initialization of stack traces. The initialization of stack
traces in Java and C] is di�erent. In Java, the stack trace is initialized with the
complete trace up to the main function once and for all when the exception
object is created. In C] the stack trace is initialized with the empty trace each
time when the exception object is thrown with throw and then augmented
whenever the exception is propagated to a parent frame. The semantics of

39

the parameterless throw; instruction is explained in terms of the exception
Stack excStack . When an exception is caught, it is pushed on top of the excep-
tion stack (which as explained above is needed to record exceptions which are
to be re-thrown). Whenever a catch block terminates (normally or abruptly)
the topmost element of the exception stack is deleted. No special rules are
needed for general catch clauses `catch block ' in try-catch statements, due
to their compile-time transformation mentioned above. The completeness of
the try-�nally rules is due to the constraints listed above, which restrict the
possibilities for exiting a �nally block to normal completion or triggering an
exception.

ExecCsharpStmE �match context(pos)
throw exp; ! pos := exp
throw Iref ;! if ref = Null then FailUp(NullReferenceException)

else InitStackTrace(ref ;meth)
YieldUp(Exc(ref))

throw;! Yield(Exc(top(excStack)))
try block catch (E x) stm : : : ! pos := block
try INorm catch (E x) stm : : :! YieldUp(Norm)
try IExc(ref) catch(E1 x1) stm1 : : : catch(En xn) stmn !
if 9i 2 [1 : : n] runTimeType(ref) � Ei then
let j = minfi 2 [1 : : n] j runTimeType(ref) � Eig in
pos := stmj
excStack := push(ref ; excStack)
WriteMem(locals(xj); object; ref)

else YieldUp(Exc(ref))
try Iabr catch(E1 x1) stm1 : : : catch(En xn) stmn ! YieldUp(abr)
try Exc(ref) : : : catch(: : :) Ires : : :!
fexcStack := pop(excStack); YieldUp(res)g

try tryBlock finally �nallyBlock ! pos := tryBlock
try Ires finally �nallyBlock ! pos := �nallyBlock
try res finally INorm ! YieldUp(res)
try res finally IExc(ref) ! YieldUp(Exc(ref))
Exc(ref)! if pos = body(meth) ^ :Empty(frames) then
if StaticCtor(meth) then typeState(type(meth)) := Exc(ref)
else AppendStackTrace(ref ;meth(top(frames)))
ExitMethod(Exc(ref))

In case an exception happened in the static constructor of a type, its type state
is set to that exception to prevent its re-initialization and instead to re-throw
the old exception object. The re�nement of the macro Initialize de�ned in
C]C re-throws the exception object of a type which had an exception in the

40

static constructor, thus preventing its re-initialization. 20

Initialize(c) �
: : :
if typeState(c) = Exc(ref) then Yield(Exc(ref))

6 Re�nement C]D of C]E by delegates

In this section we extend C]E by features which distinguish C] from other
languages, e.g. Java. We start with delegates and then add further constructs
whose semantics can be de�ned mainly by reducing them via syntactical trans-
lations to the language model developed so far: properties, indexers, overloaded
operators, enumerators with the foreach statement, the using statement,
events and attributes. We use the model developed so far as ground model
(in the sense of [12]) for C], thus providing a basis to justify the correctness
(with respect to the ECMA standard [2]) of the \semantics of syntactic sugar"
introduced in this section to de�ne the semantics for delegates, properties, etc.

6.1 Delegates

Delegate types in C] are reference types that encapsulate a static or instance
method with a speci�c signature, with the intention of having delegates play-
ing the role of type-safe function pointers. A delegate type D is declared as
follows:

delegate T D(S1 x1, : : : ,Sn xn);

It represents the type of methods that take n arguments of type S1; : : : ; Sn and
have return type T . Delegate types appear as subtypes of System.Delegate
and provide in particular the callback functionality and asynchronous event
handling. More precisely, the characteristic ability of delegates is to call a
list of multiple methods sequentially. This feature is realized by means of an
invocationList :Ref ! Delegate�[fUndef g with which each delegate instance
is equipped upon its creation. Each such list is a per instance immutable, non-
empty, ordered list of static methods or pairs of target objects and instance
methods. Upon invocation of a delegate instance with arguments args , the
20 For modeling the implementation
ag before�eldinit mentioned above this im-
plies, as observed in [13], to re�ne also the predicate TriggerInit , used for in-
voking static or instance methods, namely to guarantee for a class in exception
state its initialization even if the class is marked before�eldinit : TriggerInit(c) =
(:Initialized(c) ^ :before�eldinit(c)) _ typeState(c) = Exc(ref).

41

methods of its invocation list are called one after the other with these argu-
ments args , returning to the caller of the delegate either the return value of
the last list element or the �rst exception a list element has thrown during its
execution, preventing the remaining list elements from being invoked.

Therefore we introduce a new universe Delegate = Meth [(Ref �Meth). To
express the creation and use of new delegate expressions the sets Exp; Sexp
are extended by additional grammar rules as follows, using a new set Dexp of
delegate expressions:

Sexp ::= : : : j Exp ([Args])
Exp ::= : : : j `new' DelegateType `(' Dexp `)'
Dexp ::= Meth j Type `.' Meth j Exp `.' Meth j Exp

A method T ::M is called compatible with the delegate type D i� T ::M and D
have the same return type and the same number of parameters with the same
parameter types (including ref, out, params modi�ers). The type constraints
on the new expressions are spelt out in [19].

We use the model ExecCsharpStmI , which includes a description of the
for statement of C]I , to express the sequentiality of the execution of dele-
gate invocation list elements. In fact the above delegate declaration can be
translated for T 6= void in the following class:

sealed class D : System.Delegate {
public T Invoke(S1 x1, : : : ,Sn xn) {
T result;
for (int i = 0; i < this: length() ; i++)
result = this. invoke(i,x1, : : : ,xn);

return result;
}
private extern int length();
private extern T invoke(int i,S1 x1, : : : ,Sn xn);

}

A delegate invocation expression exp(args) can be syntactically translated
into a normal method call exp.D ::Invoke(args) where D is the type of exp. 21
It then su�ces to re�ne the ASM rule InvokeExtern de�ned in the model
ExecCsharpExpC to describe the meaning of the method D :: invoke, which
is to invoke the ith element of the invocation list on the given arguments, and

21 In [2, x10.4.7] the members of a delegate are de�ned to be the members inherited
from the class System.Delegate. However neither .NET nor Rotor nor Mono do
respect this stipulation since they add further methods to those inherited. One such
example is the method invoke we use here.

42

analogously of length.

InvokeExtern(T ::M ; vals) �
if T 2 DelegateType then
if name(M) = length then
DelegateLength(vals(0))

if name(M) = invoke then
InvokeDelegate(vals(0); vals(1); drop(vals ; 2))

DelegateLength(ref) �
YieldUp(length(invocationList(ref)))

InvokeDelegate(ref ; i ; vals) �
match invocationList(ref)(i)
T ::M ! InvokeStatic(T ::M ; vals)
(target ;T ::M)! InvokeInstance(T ::M ; target ; vals)

Since there are no new statements appearing in C]D, the addition of the
rule ExecCsharpD to ExecCsharpE consists in the following ASM subrule
ExecCsharpExpD , which de�nes the meaning of delegate instance creation.
For a detailed analysis of the discrepancy we exhibit here between the ECMA
standard and the .NET implementation see [13].

ExecCsharpExpD �match context(pos)
new D(T ::M)!
let d = new(Ref ;D) in
runTimeType(d) := D
invocationList(d) := [T ::M]
Yield(d)

new D(exp.T ::M) ! pos := exp
new D(Iref .T ::M)!
if ref = Null then FailUp(NullReferenceException)
else let d = new(Ref ;D) in
runTimeType(d) := D
invocationList(d) := [(ref ;T ::M)]
YieldUp(d)

new D(exp) ! pos := exp
new D(Iref)!
if ref = Null then FailUp(NullReferenceException)
else let d = new(Ref ;D) in
runTimeType(d) := D
invocationList(d) := invocationList(ref) // ECMA x14.5.10.3
// Microsoft .NET Framework:
// invocationList(d) := [(ref ;D ::Invoke)]
YieldUp(d)

43

To be complete, one should add some rules which re
ect the special character
of delegate invocation lists. As usual for lists, two invocation lists are equal (==)
i� they have the same length and the elements of the lists are pairwise equal;
they can be combined (concatenated with `+') and sublists determined by a
particular pre�x and su�x condition can be removed from them (with `-').
To describe this specialization of list operations in our model it su�ces to
re�ne the macro InvokeExtern by new rules for these operators operator+,
operator-, operator==.

InvokeExtern(T ::M ; vals) �
: : :
if T 2 DelegateType then
if name(M) = operator+ then
DelegateCombine(T ; vals(0); vals(1))

if name(M) = operator- then
DelegateRemove(T ; vals(0); vals(1))

if name(M) = operator== then
DelegateEqual(vals(0); vals(1))

Since invocation lists are considered to be immutable, combination and re-
moval return new delegate instances unless one of the arguments is null. The
null reference represents a delegate instance with an empty invocation list.

DelegateCombine(D ; r1; r2) �
if r1 = Null then YieldUp(r2)
elseif r2 = Null then YieldUp(r1)
else let d = new(Ref ;D) in
runTimeType(d) := D
invocationList(d) := invocationList(r1) � invocationList(r2)
YieldUp(d)

DelegateRemove(D ; r1; r2) �
if r1 = Null then YieldUp(Null)
elseif r2 = Null then YieldUp(r1)
else let l1 = invocationList(r1) and l2 = invocationList(r2) in
if l1 = l2 then YieldUp(Null)
elseif Subword(l2; l1) then let d = new(Ref ;D) in
runTimeType(d) := D
invocationList(d) := pre�x (l2; l1) � su�x (l2; l1)
YieldUp(d)

else YieldUp(r1)

The notions of pre�x and su�x are de�ned here in terms of the last occurrence
of a subword: pre�x (u; v) is the part of v before the last occurrence of u in v

44

and su�x (u; v) the part of v after the last occurrence of u in v .

DelegateEqual(r1; r2) �
if r1 = Null _ r2 = Null then YieldUp(r1 = r2)
else let l1 = invocationList(r1) and l2 = invocationList(r2) in
YieldUp(length(l1) = length(l2) ^ 8i < length(l1) (l1(i) = l2(i)))

6.2 Properties, events and further features in C]D

In this section we add further language features of C] whose semantics can
be easily de�ned in terms of the model developed so far, essentially by simple
syntactical reductions which one can easily justify to formalize correctly the
explanations in [2].

Properties. Collections of a read and/or a write method for attributes of a
class or struct are called properties in C] and declared in the following form
(we skip the modi�ers):

Type Identi�er `{' [`get' Block] [`set' Block] `}'

By de�nition a read-write property has a get and a set accessor, a read-only
property has only a get accessor, a write-only property has only a set accessor.
The identi�er of a property P of type T can be used like a �eld identi�er, 22
except that it cannot be passed as ref or out argument. Furthermore it is
required that the body of a get accessor is the body of a method with return
type T , that a set accessor has a value parameter named value of type T and
that its body is the body of a void method. Using the signatures T get P();
and void set P(T value);, which are reserved for get and set accessors, the
intended semantics of properties is reduced to the semantics of methods, using
the following syntactical reductions:

T P {
get { getAccessor }
set { setAccessor }

}
=)

T get P() { getAccessor }
void set P(T value) {
setAccessor

}
exp.P =) exp.get P() exp1.P = exp2; =) exp1.set P(exp2);

The above translation comprises also expressions of the form exp1.P op= exp2,
because we can assume that these compound assignments are compiled to
22Without knowing whether it is accessed directly or whether an accessor method
is being called.

45

hx = exp1; y = x.get P() op exp2; x.set P(y); yi with fresh local vari-
ables x ; y , using as auxiliary operator the comma operator familiar from
C/C++. This necessitates auxiliary rules for going through sequences of ex-
pressions of the following form:
hexp, : : :i ! pos := exp
hval1, : : : ,Ivalni ! YieldUp(valn)
h: : : Ival,exp : : :i ! pos := exp
Indexers. Indexers can be used like array elements except that they cannot
contain ref or out parameters and their elements cannot be passed as ref or
out arguments. They are declared in a class or struct type as follows (we skip
the modi�ers):

Type `this' `[' [Params] `]' `{' [`get' Block] [`set' Block] `}'

Analogously to the constraints for properties, for an indexer of type T with
parameters p, the body of a get accessor is the body of a method with pa-
rameters p and return type T , the body of a set accessor is the body of
a void method with parameters p and an implicit value parameter named
value of type T . A base class indexer can be accessed by base[exps]. Using
the signatures T get Item(params) and void set Item(params,T value),
which are are reserved for get and set accessors, the intended semantics of
indexers is reduced to the semantics of arrays and methods via the following
compile-time translation (and corresponding operator expression translation
as explained for properties):

T this[params] {
get { getAccessor }
set { setAccessor }

}
=)

T get Item(params) { getAccessor }
void set Item(params,T value) {
setAccessor

}

Events. Events can be declared in C] like �elds as follows: in the form
`event' DelegateType Identi�er `;' (we omit the modi�ers), or like proper-
ties, in the form

`event' DelegateType Identi�er `{' `add' Block `remove' Block `}':

Outside the type that contains the declaration, an event X can only be used
as the left-hand operand of += and -= in expressions X += exp and X -= exp
of type void; within the type that contains the declaration, �eld-like events
can be used like �elds of delegate types. The accessors of property-like events
have to be bodies of void methods with an implicit parameter value of Del-
egateType.

46

The semantics of events in C] follows the Publish/Subscribe pattern. A class
publishes an event it can raise, so that any number of classes can subscribe
to that event. When the event is actually raised, each subscriber is noti�ed
that the event has occurred, namely by calling a delegate whose invocation
list is executed with the sender object and the event data as its arguments.
This idea is realized as follows. The event sender class that raises an event
named X has the member event X EventHandler X ; where the delegate
type X EventHandler for the event is declared as follows (with two arguments,
the �rst one for the publisher and the second one for the event information
object, which must be derived from the class EventArgs):

delegate void X EventHandler(object sender, X EventArgs e);

To consume the event, the event receiver declares an event-handling method
Receive X with the same signature as the event delegate:

void Receive X (object sender, X EventArgs e) { : : : }

To register the event handler, the event receiver has to add the Receive X
method to the event X of the event sender object:

X += new X EventHandler(this.Receive X);

The event sender raises the event by invoking the invocation list of X with
the sender object and the event data, e.g.

void On X (X EventArgs e) { if (X != null) X (this,e); }

It su�ces to assign a meaning to the signatures void add X (D value) and
void remove X (D value), which are reserved for every event X of delegate
type D . This is done by the following translation of �eld-like events, antici-
pating the lock statement of C]T which is explained in [17]. 23

class C {
private D X ;
void add X (D value) {
lock (this) { X = X + value; }

}
void remove X (D value) {

23 If one prefers to be independent of the thread model C]T , one can con-
sider lock statements lock (exp) stm translated for single-thread execution by
{ Object o = exp; stm } (with a fresh variable o), which is then re�ned in C]T for
the multiple thread execution model.

47

lock (this) { X = X - value; }
}

}

Further constructs. Similar syntactical reductions to those given above
can be used to de�ne the semantics of overloaded standard mathematical
operators and user-de�ned conversions, of enumeration related statements
`foreach (T x in exp) stm', of using statements `using (resource) stm', of
parameter arrays and of attributes.

7 Re�nement C]U by pointers in unsafe code

In this section we add the features C] o�ers for using pointers (coming with
address-of and dereferencing operators `&', `*', `->' together with pointer arith-
metic) to directly work on memory addresses, bypassing the type checking by
the compiler { hence the name `unsafe' code blocks. Java has no such unsafe
extension. The extension includes a mechanism called pinning of objects to
prevent the runtime during the execution of a `fixed' statement to manage via
the garbage collector memory one wants to address directly. Code for which
(de-) allocation is not controlled by the runtime is called unmanaged. As an
alternative to pinning, data of unmanaged type can also be `stackalloc'ated,
instead of using the heap.

The re�nement consists, besides some new rules, mainly in a de�nition of the
memory function in terms of byte sequences. This is a typical data re�ne-
ment, using an encoding of simple types and a corresponding re�nement of
the function structField .

7.1 Signature re�nement for C]U

We re�ne Type by adding pointer types to value and reference types.
Type ::= ValueType j RefType j PointerType
PointerType ::= UnmanagedType `*' j `void' `*'

where unmanaged types are types which are not managed and managed types
are recursively de�ned as a) reference types or b) struct types that contain
a �eld of a managed type or a pointer to a managed type. The subtype re-
lation is extended to pointer types such that � � T* � void*. Exp and
Vexp are extended by address-of and dereferencing expressions and expres-
sions to denote the values of a new function indicating the `sizeof' unmanaged
types. Stm is extended to re
ect `unsafe' code blocks, `fixed' statements and

48

Table 6
Type constraints for unsafe expressions.
Expression Constraints Expression type
sizeof(t) t unmanaged type int
e type(e) = T, T 6= void T
&v v a �xed variable T*, where T = type(v)
e -> m type(e) = T*, T 6= void type(T ::m)
e[i] type(e) = T*, T 6= void,

type(i) integral
T

`stackalloc'ation of arrays. `unsafe' can also appear as modi�er for classes,
structs, interfaces, delegates as well as for �elds, methods, properties, indexers,
operators, events, constructors, destructors.
Exp ::= : : : j `&' Vexp j Exp `->' Meth ([Args]) j Exp `->' Field

j `sizeof' `(' UnmanagedType `)'
Vexp ::= : : : j `*' Exp
Stm ::= : : : j `unsafe' Block j `fixed' `(' PointerType Loc = Exp `)' Stm
Bstm ::= : : : j PointerType Loc `='

`stackalloc' UnmanagedType `[' Exp `]' `;'
In the following expressions, the basic arithmetical operators are used for
pointer increment and decrement, pointer addition and subtraction, pointer
comparison, and pointer conversion (where p and q are of a pointer type, i is
of integer type):

� ++p, --p, p++, p--, p + i , i + p, p - i , p - q , p == q , p != q , p < q , p <= q ,
p > q , p >= q

� (T*)i , (T*)p, (int)p, (uint)p, (long)p, (ulong)p

On the types of the new expressions the constraints in Table 6 are imposed. We
assume the dereferencing and member access operator e-> m to be translated
to (*e).m, similarly e[i] to *(e + i).

For statements the following type constraints in Table 7 are assumed. A vari-
able is called moveable (by the garbage collector) i� it is not a �xed variable.
Fixed variables are (by recursive de�nition): local variables, value parameters,
*exp for exp of pointer type, and instance �eld expressions v.f if v is a �xed
variable of struct type T and f is an instance �eld of T .

The local variable p in the �xed statement is called a pinned local variable. A
pinned local variable is a read-only variable. It is not allowed to assign a new
value to it in the body of the �xed statement.

49

Table 7
Type constraints for unsafe statements.
Statement Constraints
T* p = stackalloc T[exp]; type(exp) = int, T unmanaged
fixed (char* p = exp) stm type(exp) = string, p read-only in stm
fixed (T* p = exp) stm type(exp) = T[R], T unmanaged,

p read-only in stm
fixed (T* p = &vexp) stm type(vexp) = T , T unmanaged,

vexp a moveable variable,
p read-only in stm

The principal re�nement in the ASM extension ExecCsharpU for C]U is that
of the memory together with its operators, where the set of SimpleValues
is replaced by Bytes (8-bit strings), using non-negative integers as memory
addresses (Adr = N):

mem:Adr ! Byte [Ref [fUndef g

The partial functions to encode (resp. decode) values of a given simple type T
by byte sequences, of a length (number of bytes) depending on sizeOf (T),
satisfy for values val the equations

decode(T ; encode(val)) = val and length(encode(val)) = sizeOf (T):

For every pointer type T* holds sizeOf (T*) = sizeOf (void*).

A function �eldO�set :UnmanagedStructType �Field ! N is used to describe
the layout of unmanaged structs. It has to satisfy the following constraint for
every unmanaged struct type T and instance �eld f of T (overlapping �elds
are allowed in C]U):

�eldO�set(T ; f) + sizeOf (type(f)) � sizeOf (T)

We assume that if adr is an address allocated using new(Adr ;T) for struct
type T , then for every instance �eld f of T the equation �eldAdr(adr ; f) =
adr + �eldO�set(T ; f) holds.

To determine the layout of arrays with unmanaged element type we stipulate
the following re�nement of the function elemAdr which re
ects that array
elements are stored such that the indices of the right most dimension are in-
creased �rst, then the next left dimension, and so on. For runTimeType(ref) =
T[dim(n)], where T is an unmanaged type and li = dimLength(ref ; i � 1)

50

for i 2 [1 : : n], we assume the following:

elemAdr(ref ; [i1; i2; : : : ; in]) =
elemAdr(ref ; [0; : : : ; 0]) + (: : : (i1 � l2 + i2) � l3 + : : :+ in) � sizeOf (T)

7.2 Transition rule re�nement for unsafe code

Besides the rules below which de�ne the semantics of the new expressions and
statements, to be added to ExecCsharpD , we have to data re�ne the notions
of reading from and writing to memory for values of unmanaged type.

memValue(adr ; t) =
if t 2 RefType then mem(adr)
elseif t 2 UnmanagedType then
[mem(adr + i) j i 2 [0 : : sizeOf (t)� 1]]

elseif t 2 StructType then
ff 7! getField(adr ; f) j f 2 instanceFields(t)g

getField(adr ; t ::f) = memValue(�eldAdr(adr ; t ::f); type(t ::f))

WriteMem(adr ; t ; val) �
if t 2 RefType then mem(adr) := val
elseif t 2 UnmanagedType then
forall i 2 [0 : : sizeOf (t)� 1] do mem(adr + i) := val(i)

elseif t 2 StructType then
forall f 2 instanceFields(t) do SetField(adr ; f ; val(f))

SetField(adr ; t ::f ; val) �WriteMem(�eldAdr(adr ; t ::f); type(t ::f); val)

Values of unmanaged struct types are directly represented as sequences of
bytes. Hence, the function structField has to be re�ned to extract a subse-
quence in case of unmanaged struct types:

structField(val ;T ; f) =
if T 2 ManagedType then val(f)
else let n = �eldO�set(T ; f) in [val(i) j n � i < n + sizeOf (type(f))]

In the rules for ExecCsharpExpU we have & 2 as additional address po-
sition. We follow the implementation in Rotor and .NET in formulating the
Null check to prevent writing to null addresses; the ECMA standard describes
this check as optional.

ExecCsharpExpU �match context(pos)
sizeof(T)! Yield(sizeOf (T))

51

&exp ! pos := exp
&Iadr ! YieldUp(adr)
*exp ! pos := exp
*Iadr ! if adr = Null then // null pointer check optional

FailUp(NullReferenceException)
else YieldUpIndirect(adr)

*exp1 = exp2 ! pos := exp1
*Iadr = exp2 ! pos := exp2
*adr = Ival ! if adr = Null then // null pointer check optional

FailUp(NullReferenceException)
else
WriteMem(adr ; type(pos); val)
YieldUp(val)

The rules for pointer arithmetic can be summarized as follows:

Apply(+(T*; int); adr ; i) = adr + i � sizeOf (T)
Apply(+(int;T*); i ; adr) = adr + i � sizeOf (T)
Apply(-(T*;T*); adr1; adr2) = (adr1 � adr2)=sizeOf (T)
Convert(T*; adr) = adr = Convert(S ; adr)
for S 2 fint; uint; long; ulongg

Convert(T*; i) = i

In the execution of the stackalloc statement we assume that new(adr ;T ; i)
allocates i consecutive chunks of addresses of size sizeOf (T) which are later
de-allocated on method exit in FreeLocals.

ExecCsharpStmU �match context(pos)
unsafe block ! pos := block
unsafe INorm ! YieldUp(Norm)
T* loc = stackalloc T[exp];! pos := exp
T* loc = stackalloc T[Ii]; ! let adr = new(Adr ;T ; i) in

WriteMem(locals(loc);T*; adr)
YieldUp(Norm)

The run-time execution of �xed statements can be explained by syntactical
transformations.

Statement Run-time execution
fixed (char* p = exp) stm { char* p; p = Cstring(exp); stm }
fixed (T* p = exp) stm { T* p; p = &exp[0]; stm }
fixed (T* p = &vexp) stm { T* p; p = &vexp; stm }

52

In the �rst case, it is assumed that Cstring(s) is an internal function that
returns the address of the �rst element of a C-style null-terminated character
array representation of the string s . How it is related to the original represen-
tation of the string is not speci�ed in [2].

8 Related Work and Conclusion

One of our referees would like to see a critical assessment of the ASM method
we used for this work and a comparison to alternative approaches. Some justi-
�cation of the kind from the perspective of semantic methods for programming
languages has been given in [26, Sect.4], containing concrete illustrations of
and references to the numerous and earlier competing proposals. This was at
a time when ASMs were applied for the �rst time to (successfully) specify an
industrial language standard, namely the ISO Prolog standard [27]. A decade
later, a broader comparison of the then well-developed ASM method with
respect to other system design and analysis frameworks has been provided
in [28,29]. However, a systematic, comprehensive and authoritative evalua-
tion of the multitude of system design and analysis proposals in the literature
remains a highly desirable and challenging task to be accomplished, even if
limited to the use of the major so-called formal methods for the develop-
ment and investigation of programming languages and their implementations.
From the perspective of practical system design and analysis some compara-
tive studies of this kind have been published, see e.g. [30{32] (the interested
reader may also consult the corresponding ASM-based work in [33{35]). For
work centered around Java and the JVM the reader �nds in [36] a collec-
tion of formal-method-approaches to language speci�cation and analysis; [37]
contains an excellent, detailed and at the time complete review of the huge lit-
erature on the subject (including an evaluation of the ASM-based Java/JVM
investigations), with a focus on safety issues and their impact on smart cards.
We cannot perform here a similar analysis for work on C] or other major
programming languages. This explains why the references in this paper stick
to C] documentation from ECMA and Microsoft and to some ASM work we
have built upon directly.

For the work presented in this paper we set ourselves a more modest though
not completely trivial major goal, namely to test whether the method devel-
oped in [1] for the de�nition and a proven to be correct implementation of
a real-life programming language like Java scales naturally to the somewhat
richer and more complex C]. It is up to the reader to judge whether this ASM
reuse case study for a real-life complex model succeeded. For the formalization
of other programming languages something can also be learnt directly from the
formalization of the semantics of C] worked out here. For example, how to \di-
vide and conquer" the static and the dynamic semantics of a language, how to

53

separate the description of conceptually independent programming constructs
by dividing them into sublanguages, how to unify and streamline the formal-
ization of similar constructs by appropriate parameterizations (which means
abstractions), how to model and evaluate variations of speci�c features (e.g.
expression evaluation, parameter passing mechanism, class initialization, etc.)
by varying macros, rules and/or domains together with their operations, how
to extend within a single framework the model for a language core by a form
of bootstrapping (including in particular syntactical translations) to a model
for the entire language, etc.

There are several by-products of the work presented here. Through the ASM-
model-oriented analysis of the ECMA standard for C] we found several bugs
and gaps in the formulation of the standard and in its .NET implementation
as well as some incoherences between the two, as documented in detail in [13]
in terms of our ASM model for C]. Another by-product of the high-level mod-
ular interpreter de�ned here is the support it provides to teachers of C], in
particular if they want to shed light on certain subtle language features which
are not clari�ed by the ECMA documents. In the forthcoming paper [38] we
are going to work out a concrete comparison of the two models for C] and for
Java, which will allow us to formulate in a precise technical manner where and
in which respect the two languages di�er among each other and from other
programming languages { methodologically, semantically and pragmatically.
As a speci�c part of this reuse-case-study the second author is investigating
how the main new features of C] 2.0 can be modeled by appropriate exten-
sions of the ASM model developed here for C], in particular generic types
(parametric polymorphism), anonymous methods and iterators. Last but not
least, with our C] model and its extension to threads in [17] we have laid the
ground for a mathematical analysis and possibly mechanical veri�cation of in-
teresting properties of the language and its implementation, like type safety, 24
compiler correctness and completeness, correctness of (a mathematical model
to be developed for) garbage collection, security, etc. For the correctness of
the de�nite assignment analysis performed by a C] compiler, we may refer the
interested reader to [21]. We hope somebody will feel challenged to use our
model for precisely formulating and proving such theorems for C] and to build
a corresponding model for Microsoft's Common Language Runtime together
with a compilation scheme from C] to IL code, applying to our model the pow-
erful ASM re�nement technique [40] along the lines shown in the ASM-based
Java/JVM study in [1].

The questions asked by our referees lead us to mention another practical and

24 For a fragment of Microsoft's Intermediate Language, which is executed by Mi-
crosoft's Common Language Runtime, a type safety proof has been given in [20],
based upon Syme's method [39] for writing functional speci�cations which can be
subject to theorem proving in HOL.

54

industrially viable use that can be made of a modeling and analysis activity
as the one reported in this paper, except if the extreme time pressure usually
imposed on developers to produce executable code from incomplete verbal
speci�cations (mostly formulated in natural language) prevents them from at
least once trying out a more reliable option. Here is a concrete example what
could have been done. On September 27, 2000, the penultimate day of his
sabbatical stay with Microsoft Research in Redmond, in a seminar talk to
representatives of the C] development team, the �rst author suggested to use
the method, at the time formulated and presented in terms of Java/JVM for
publication in what became the Jbook [1], for the following �ve fundamental
activities in relation to the at-the-time ongoing development of what became
known as the C] language with the underlying CLR virtual machine:
� de�ning an ASM model as executable speci�cation of critical language con-
structs or layers (if not of the entire language) and of the mapping to IL
code,

� generating test cases for the implementing code from the ASM model,
� using the ASM model as oracle for test evaluations and for comparing model
test runs with code test runs,

� using the ASM model as internal documentation for future language exten-
sions and for relating other .NET languages to C], in particular those which
are equipped already with an ASM model of their semantics,

� using the ASM model as basis for writing innovative handbooks for users
and for maintenance professionals, where the innovative character derives
from being a) accurate yet simple and easy to understand, b) complete and
detailed yet succinct.

Acknowledgements

We gratefully acknowledge partial support of this work by a Microsoft grant
within the ROTOR project during the year 2002{2003. We thank Bruno
Quarta for attracting us to the C] modeling work, even if post festam, as part
of the ROTOR project. We also thank two anonymous referees for valuable
criticism which helped us improve the exposition.

References

[1] R. F. St�ark, J. Schmid, E. B�orger, Java and the Java Virtual Machine|
De�nition, Veri�cation, Validation, Springer-Verlag, 2001.

[2] C] Language Speci�cation, Standard ECMA{334,
http://www.ecma-international.org (2001).

55

[3] A. Hejlsberg, S. Wiltamuth, P. Golde, C] Language Speci�cation, Addison-
Wesley, 2003.

[4] T. Archer, A. Whitechapel, Inside C], Microsoft Press, 2002.
[5] J. Prosise, Programming Microsoft .NET, Microsoft Press, 2002.
[6] J. Richter, Applied Microsoft .NET Framework Programming, Microsoft Press,

2002.
[7] Visual Studio .NET 2003, http://msdn.microsoft.com/vstudio/.
[8] SSCLI (Rotor) web site, http://www.sscli.net.
[9] Mono compiler for C], http://www.go-mono.com/c-sharp.html.
[10] Common Language Infrastructure, Standard ECMA{335,

http://www.ecma-international.org (2003).
[11] D. Stutz, T. Neward, G. Shilling, Shared Source CLI Essentials, O'Reilly, 2003.
[12] E. B�orger, The ASM ground model method as a foundation of requirements

engineering, in: N. Dershowitz (Ed.), Manna-Symposium, Vol. 2772 of Lecture
Notes in Computer Science, Springer-Verlag, 2003.

[13] N. G. Fruja, Speci�cation and implementation problems for C], in: B. Thalheim,
W. Zimmermann (Eds.), Abstract State Machines 2004, Lecture Notes in
Computer Science, Springer-Verlag, 2004.

[14] Foundations of Software Engineering Group, Microsoft Research, AsmL,
Web pages at http://research.microsoft.com/foundations/AsmL/ (2001).

[15] J. Schmid, Executing ASM speci�cations with AsmGofer,
Web pages at http://www.tydo.de/AsmGofer.

[16] J. Schmid, Re�nement and implementation techniques for Abstract State
Machines, Ph.D. thesis, University of Ulm, Germany (2002).

[17] R. F. St�ark, E. B�orger, An ASM speci�cation of C] threads and the .NET
memory model, in: B. Thalheim, W. Zimmermann (Eds.), Abstract State
Machines 2004, Lecture Notes in Computer Science, Springer-Verlag, 2004.

[18] E. B�orger, R. F. St�ark, Abstract State Machines. A Method for High-Level
System Design and Analysis, Springer-Verlag, 2003.

[19] E. B�orger, N. G. Fruja, V. Gervasi, R. St�ark, A complete formal de�nition of
the semantics of C], Technical report, In preparation (2004).

[20] A. D. Gordon, D. Syme, Typing a multi-language intermediate code, in:
Proc. 28th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, London, 2001, pp. 248{260.

[21] N. G. Fruja, The correctness of the de�nite assignment analysis in C], Technical
report 435, Computer Science Department, ETH Z�urich (2004).

56

[22] E. B�orger, T. Bolognesi, Remarks on turbo ASMs for computing functional
equations and recursion schemes, in: E. B�orger, A. Gargantini, E. Riccobene
(Eds.), Abstract State Machines 2003 { Advances in Theory and Applications,
Vol. 2589 of Lecture Notes in Computer Science, Springer-Verlag, 2003, pp.
218{228.

[23] W. Zimmermann, A. Dold, A framework for modeling the semantics
of expression evaluation with Abstract State Machines, in: E. B�orger,
A. Gargantini, E. Riccobene (Eds.), Abstract State Machines 2003{Advances
in Theory and Applications, Vol. 2589 of Lecture Notes in Computer Science,
Springer-Verlag, 2003, pp. 391{406.

[24] N. G. Fruja, R. F. St�ark, The hidden computation steps of turbo Abstract State
Machines, in: E. B�orger, A. Gargantini, E. Riccobene (Eds.), Abstract State
Machines 2003 { Advances in Theory and Applications, Vol. 2589 of Lecture
Notes in Computer Science, Springer-Verlag, 2003, pp. 244{262.

[25] E. B�orger, J. Schmid, Composition and submachine concepts for sequential
ASMs, in: P. Clote, H. Schwichtenberg (Eds.), Computer Science Logic
(Proceedings of CSL 2000), Vol. 1862 of Lecture Notes in Computer Science,
Springer-Verlag, 2000, pp. 41{60.

[26] E. B�orger, A logical operational semantics for full Prolog. Part I: Selection core
and control, in: E. B�orger, H. Kleine B�uning, M. M. Richter, W. Sch�onfeld
(Eds.), CSL'89. 3rd Workshop on Computer Science Logic, Vol. 440 of Lecture
Notes in Computer Science, Springer-Verlag, 1990, pp. 36{64.

[27] E. B�orger, K. D�assler, Prolog: DIN papers for discussion, ISO/IEC JTCI SC22
WG17 Prolog Standardization Document 58, National Physical Laboratory,
Middlesex, England (1990).

[28] E. B�orger, High-level system design and analysis using Abstract State Machines,
in: D. Hutter, W. Stephan, P. Traverso, M. Ullmann (Eds.), Current Trends
in Applied Formal Methods (FM-Trends 98), Vol. 1641 of Lecture Notes in
Computer Science, Springer-Verlag, 1999, pp. 1{43.

[29] E. B�orger, Abstract State Machines: A unifying view of models of computation
and of system design frameworks, Annals of Pure and Applied LogicTo appear.

[30] C. Lewerentz, T. Lindner, Formal Development of Reactive Systems. Case
Study \Production Cell", Vol. 891 of Lecture Notes in Computer Science,
Springer-Verlag, 1995.

[31] J.-R. Abrial, E. B�orger, H. Langmaack, The steam boiler case study:
Competition of formal program speci�cation and development methods, in:
J.-R. Abrial, E. B�orger, H. Langmaack (Eds.), Formal Methods for Industrial
Applications. Specifying and Programming the Steam-Boiler Control, Vol. 1165
of Lecture Notes in Computer Science, Springer-Verlag, 1996, pp. 1{12.

[32] M. Broy, S. Merz, K. Spies, Formal Systems Speci�cation { The RPC-Memory
Speci�cation Case Study, Vol. 1169 of Lecture Notes in Computer Science,
Springer-Verlag, 1996.

57

[33] E. B�orger, L. Mearelli, Integrating ASMs into the software development life
cycle, J. Universal Computer Science 3 (5) (1997) 603{665.

[34] C. Beierle, E. B�orger, I. Durdanovi�c, U. Gl�asser, E. Riccobene, Re�ning abstract
machine speci�cations of the steam boiler control to well documented executable
code, in: J.-R. Abrial, E. B�orger, H. Langmaack (Eds.), Formal Methods for
Industrial Applications. Specifying and Programming the Steam-Boiler Control,
no. 1165 in Lecture Notes in Computer Science, Springer-Verlag, 1996, pp. 62{
78.

[35] J. Huggins, Broy-Lamport Speci�cation Problem: A Gurevich Abstract State
Machine Solution, Technical Report CSE-TR-320-96, EECS Dept., University
of Michigan (1996).

[36] J. Alves-Foss, Formal Syntax and Semantics of Java, Vol. 1523 of Lecture Notes
in Computer Science, Springer-Verlag, 1998.

[37] P. Hartel, L. Moreau, Formalizing the safety of Java, the Java Virtual Machine
and Java Card, ACM Computing Surveys 33 (4) (2001) 517{558.

[38] E. B�orger, R. F. St�ark, Exploiting abstraction for speci�cation reuse. The
Java/C] case study, in: M. B. et al. (Ed.), Proc. FMCO'03, Lecture Notes
in Computer Science, Springer-Verlag, 2004.

[39] D. Syme, Declarative theorem proving for operational semantics, Ph.D. thesis,
University of Cambridge (1998).

[40] E. B�orger, The ASM re�nement method, Formal Aspects of Computing 15
(2003) 237{257.

58

