
1

The Bakery Algorithm: Yet Another
Speci�cation and Veri�cation

Egon B�orger
�

Yuri Gurevich
y

Dean Rosenzweig
z

Abstract

In a meeting at Schloss Dagstuhl in June 1993, Uri Abraham
and Menachem Magidor have challenged the thesis that an evolving
algebra can be tailored to any algorithm at its own abstraction level.
As example they gave an instructive proof which uses lower and
higher views to show correctness of Lamport's bakery algorithm.
We construct two evolving algebras capturing lower and higher view
respectively, enabling a simple and concise proof of correctness for
the bakery algorithm.x

Introduction

Uri Abraham [Abraham93] has devised an instructive correctness proof for

various variants of Lamport's bakery algorithm relying on a distinction

between a lower view and a higher view of the algorithms. Actions at the

higher level represents complex lower level computations. He formulates

abstract conditions on higher level actions which are then shown to su�ce

for correctness and fairness (in form of a `�rst-come-�rst-served' property

and deadlock{freedom) and to be satis�ed by the corresponding lower level

computations.

At a seminar in Schloss Dagstuhl in June 1993 Uri Abraham and Men-

achem Magidor have expressed doubts that such a proof could be naturally

carried out in the evolving algebra framework of [Gurevich91], since the

latter uses a notion of atomic instantaneous action.

We construct, in Section 1, two evolving algebras, re
ecting the lower

and higher views of Lamport's improved version of the bakery algorithm

(see [Lamport79]).

�Dipartimento di Informatica, Universita di Pisa, Corso Italia 40, I{56100 Pisa,
boerger@di.unipi.it. Partially supported by MURST 91.

yEECS, University of Michigan, Ann Arbor MI 48109{2122, gurevich@umich.edu.
Partially supported by NSF Grant CCR 92-04742 and ONR grant N00014-91-J-11861.

zFSB, University of Zagreb, Salajeva 5, HR{41000 Zagreb, dean@math.hr. Partially
supported by CNR/Gnasaga grant 2.94.

zTo appear in: E. B�orger (Ed.), Speci�cation and Validation Methods, Oxford Uni-
versity Press, 1995.



2

In Section 2 we display abstract conditions on higher level actions, in

terms of atomic{action semantics, enabling a simple and concise proof of

the �rst{come{�rst{served property (FCFS) and deadlock{freedom. The

conditions are easily seen to be satis�ed by corresponding lower level com-

putations. Since actions of an evolving algebra are assumed there to be

atomic, that proof treats the case of atomic reads and writes to shared

registers.

In Section 3 we explain the semantics of evolving algebras assuming

durative actions, actions taking time, and allowing overlapping of reads

and writes to shared registers. Re�ning the abstract conditions for the

case of regular reads (see [Lamport86]), we show that the proof of the

previous section goes through with only slight modi�cations. For the more

general case of safe registers correctness of the algorithm from [Lamport74]

is then easily proved by a slight adaptation of the present argument|the

improved algorithm from [Lamport79] is not correct for safe registers, as

shown by a simple counterexample.

Thus the two interpretations of evolving algebra dynamics re
ect two

disciplines for accessing shared registers|by atomic and non{overlapping

reads and writes, or by durative and possibly overlapping ones. What

really changes is the notion of state: for atomic actions we have global

states, whereas for durative actions we have instead local states of agents

(see the concept of external and internal locations in section 3.1). The

correctness proof however remains essentially the same.

In order to make the paper technically self contained, except for basic

notions about evolving algebras of [Gurevich91], we start Section 1 with a

review of Lamport's 1979 algorithm and give full details of proofs also in

those places where we borrow from [Abraham93].

1 The algorithms

This section presents Lamport's algorithm (taken in a formwhich is adapted

from [Abraham93]), the corresponding `lower level' evolving algebra, and

the more abstract evolving algebra re
ecting the `higher level view'.

1.1 Lamport's algorithm

For arbitrary but �xed N let P1; : : : ; PN be processes that may want from

time to time to access a `critical section' CS of code. Any mutual exclusion

protocol|which each Pi is supposed to execute in order to enter the critical

section|has to prevent two processes from being in the critical section

simultaneously. The Bakery Algorithm provides each Pi with a (shared)

register Ri and a (private) array n[1]; : : : ; n[N ] holding natural numbers.

Only Pi is allowed to write to Ri but every process can read the register.

We assume each register to be initialized with value 0.



3

The Bakery Algorithm is divided into six consecutive phases: start ,

doorway , ticket assignment, wait section, critical section and �nale. A

process Pi starts by declaring its interest in accessing the critical section

through writing 1 into its register recording the value written also in its

corresponding array variable. In the doorway section, Pi copies all the

other registers into its array. It then writes a ticket , greater than each

number in its array, into its register and into n[i]. During the subsequent

wait section, process Pi keeps reading, into its array, the registers of each

other process Pj, until the resulting array value n[j] = 0 or n[j] > n[i] or

n[j] = n[i] ^ j > i. Then Pi enters the critical section. Upon leaving CS,

as �nale, Pi sets its register to 0.

Start

n[i] := 1

write(Ri,n[i])

Doorway

for all j 6=i, read(Rj,n[j])

Ticket

n[i] := 1 +maxjn[j]

write(Ri,n[i])

Wait

for all j 6=i, repeat

read(Rj,n[j]) until

n[j]=0 or n[j]>n[i] or (n[j]=n[i] and j>i)

Critical Section

Finale

Ri := 0

Note that by ordering pairs of positive integers lexicographically:

(i; j) < (k; l) ! [i < k or (i = k and j < l)]

one can write the until condition as follows: n[j]=0 or (n[j],j)>(n[i],i). The

condition assures that, in case two processes get the same `ticket', the one

with smaller identi�er gets the priority.

Note also that the for-all commands in the doorway and the wait sec-

tion may be executed in many ways, in various sequences, all at once,

concurrently etc.

1.2 The lower level algebra B1

As the basis for the subsequent analysis and `higher level' abstraction, we

reformulate here the above Bakery Algorithm as an evolving algebra B1. It



4

contains, for each process, a customer{agent . The customers execute the

module with rules Start, Ticket, Entry, Exit, Finale|corresponding to the

homonymous Bakery Algorithm phases. In order to preserve the freedom of

choosing an ordering of reads, inDoorway andWait, B1 contains also reader{

agents r(X;Y ), where X;Y are customers. Each reader{agent r(X;Y )

reads, during the doorway and the wait section of X, the register R(Y )

of process Y into X's array component A(X;Y ), doing the work of the

Doorway and Wait phases. The module of a reader agent has two rules,

Read and Check.

Each customer X can execute the rules Start, Ticket, Entry, Exit, Finale

only sequentially, in that order; this is assured by the function mode which

for each X assumes cyclically the values satis�ed, doorway, wait, CS, done,

satis�ed. The mode function also assures that Ticket and Entry can be exe-

cuted by X only after all readers have executed their Read and Check rules

respectively. Thus the following rules faithfully represent the correspond-

ing phases of the Bakery Algorithm (given that initially all registers R(X)

have value 0 and all customers are satis�ed).

Customer X

Start

if mode(X)=satisfied then

A(X,X) := 1, R(X) := 1, mode(X) := doorway

Ticket

if mode(X)=doorway and (8Y 6= X) mode(r(X,Y))=wait then

A(X,X) := 1 +maxY A(X,Y), R(X) := 1 +maxY A(X,Y)

mode(X) := wait

Entry

if mode(X) = wait and (8Y 6= X) mode(r(X,Y)) = doorway then

mode(X) := CS

Exit

if mode(X) = CS then

mode(X) := done

Finale

if mode(X) = done then

R(X) := 0, mode(X) := satisfied



5

Reader r(X;Y )

Read

if mode(r(X,Y))) = mode(X) then

A(X,Y) := R(Y)

if mode(r(X,Y))=doorway then mode(r(X,Y)) := wait

if mode(r(X,Y))=wait then mode(r(X,Y)) := check

Check

if mode(r(X,Y)) = check then

if A(X,Y)=0 or (A(X,Y),id(Y)) > (A(X,X),id(X)) then

mode(r(X,Y)) := doorway

else mode(r(X,Y)) := wait

The modules of rules are written as templates, i.e. there is a module

for each customer X and a module for each reader r(X;Y ).

1.3 The higher level algebra B2

In this subsection we de�ne an evolving algebra expressing a `higher level'

view of the Bakery Algorithm. The relevant datum to be described ab-

stractly is the ticket assigned to a customer X (and written into its register

R(X)) when X leaves the doorway and enters the wait section. We intro-

duce for this purpose an external function T whose values are determined

dynamically by the outside world, cf. [Gurevich91].

The relevant moment to be analyzed is the moment at which a process

which has received a ticket is allowed to enter the critical section. This

`permission to go' will also be represented by an external function, Go.

In subsequent sections we will impose conditions upon T and Go which

will be shown to guarantee the correctness of the higher level Bakery Al-

gebra.

The higher level algebra has only one module, parametric in a customer

X, which has �ve rules. Again, we assume that initially all registers have

value 0 and all customers are satis�ed.

Start

if mode(X) = satisfied then

R(X) := 1, mode(X) := doorway

Ticket

if mode(X) = doorway then

R(X) := T(X), mode(X) := wait

Entry

if mode(X) = wait and Go(X) then

mode(X) := CS



6

Exit

if mode(X) = CS then

mode(X) := done

Finale

if mode(X) = done then

mode(X) := satisfied, R(X) := 0

2 Atomic actions interpretation

2.1 Semantics of B1

We rely on the notion of run of [Gurevich94], specialized to real time.

This means that we shall speak of a move (rule execution) taking place

at moment a. Since we consider atomic actions here, we assume moves

to take zero time. Each move is performed by an agent (a customer or

a reader) and, since agents are sequential, two moves by the same agent

cannot take place at the same moment. For any moment a the set of

all moves taking place not later than a is �nite (let us call this property

`co�niteness'). The state (static algebra) Sb at time b is the one resulting

from all moves taking place before b. We shall denote the value a term t

takes (in the state) at time b by tb.

If a move is executed at time b, Sb is the state in which the move is

executed; for some su�ciently small �, Sb+� is the state resulting from the

move. We do not allow (in this section) to read from and write to the

same location at the same time. We assume that no module stalls forever;

eventually it makes a move (provided a move is enabled all the time). There

is one exception: customers are allowed to remain in mode satis�ed forever.

We now de�ne intervals of (real) time characterized by the moments

of successive executions, by a process X, of its rules Start, Ticket, Entry,

Exit.

De�nition 2.1. Suppose X executes Start and Ticket rules at moments a

and b and does not execute anything in between. Then the open interval

x = (a; b) is a doorway of X. If b is the last execution of X then the wait

interval W (x) = (b;1) and the CS interval CS(x) is unde�ned. Suppose

that the execution of Ticket rule at b is followed by executions of Entry rule

at c and Exit rule at d. Then W (x) = (b; c) and CS(x) = (c; d)).

By the assumption that no module stalls forever, every doorway is �nite.

This is in accordance with the fact that in the low{level Bakery Algebra,

T (x) is always de�ned when interpreted as 1 + maxY A(X;Y ).

2.2 Semantics of B2

The semantics of B2 is similar to that of B1. There are no readers around.

The de�nition of doorways and related periods applies also to B2.



7

Contrary to B1, B2 has external functions, namely T and Go. We are

going to impose some constraints on them. To avoid repetitive case distinc-

tions for processes which (being satis�ed) have register 0, and of processes

which happen to receive the same ticket, we introduce the following nota-

tion. If f is a function >from the original processes to natural numbers,

let

f 0(X) =

�
N � f(X) + id(X); if f(X) > 0;

1; otherwise.

We assume that the identi�ers of the N processes are natural numbers

< N .

For real intervals I; J we de�ne I < J to mean that a < b for all

a 2 I; b 2 J . This ordering will help us to formalize the idea that tickets

increase together with doorways (see C1 below). This should also apply in

a way to overlapping doorways; these are ordered by the following relation

�, borrowed from [Abraham93].

Let X 6= Y , x ranges over doorways of X, y ranges over doorways of Y .

De�nition 2.2. x < y if x \ y 6= ; and T 0(x) < T 0(y). Further, x � y if

x < y or x < y.

Lemma 2.3. x � y or y � x.

Proof Note that T 0(y) 6= T 0(x) for X 6= Y .

Constraints on T and Go

C0 T (x) is a positive integer > 1.

C1 If y < x then either CS(y) < sup(x) or T 0(y) < T 0(x).

C2 If Go(X) holds at moment t > sup(x) then, for every Y 6= X, there

exists a moment b 2W (x) such that T 0(x) < R0

b(Y ).

C3 If W (y) is �nite for all y � x, then W (x) is �nite.

Intuitively, C1 says that tickets respect the temporal precedence of door-

ways with overlapping wait periods, C3 is an induction principle, and C2

expresses that permission to go is obtained by checking the ticket against

competitors' registers.

2.3 B1 implements B2 correctly

We check that the constraints are satis�ed in the �rst algebra, where

T (X) = 1 + maxY A(X;Y ), and Got(X) means that the condition of the

rule Entry is satis�ed at moment t.

C0 is satis�ed since the maximum in the rule Ticket is taken over each

Y , including X which at that moment has register value R(X) = 1.

C1. Let t be the time of the Read move by r(X;Y ) during x. If there

exists a Finale move by Y during (sup(y); t), then CS(y) < sup(x). Oth-



8

erwise Rt(Y ) = T (y) and therefore T (x) � 1 + Rt(Y ) > T (y) > 0. Hence

T 0(x) > T 0(y).

C2. Go(X) becomes true in B1 when all readers r(X;Y ) �nish their

wait-section readings. Fix a Y 6= X and consider the last Read move by

r(X;Y ) during W (x). In view of the corresponding Check move, the time

of that Read move is the desired b.

C3. By contradiction, suppose that the premise is satis�ed but the

conclusion is false, i.e. W (x) is in�nite.

Claim: There is a moment b 2 W (x) so late that the following two

properties hold for each y:

(i) if y � x then b > sup(CS(y)), (ii) if x � y then b > sup(y).

Given the claim, it su�ces to prove that any r(X;Y ) �nishes its reading

during W (x) (in contradiction to the assumption that W (x) is in�nite). If

r(X;Y ) �nishes its reading before b, we are done since b 2 W (x). Other-

wise, by de�nition of b, no Y 6= X can be in mode doorway at or after b.

Thus, at or after b, r(X;Y ) can read either 0 or T (y) for some y � x. In

the �rst case the next Check of r(X;Y ) will succeed; in the second case it

will also succeed, since T 0(y) > T 0(x) (by C1 if x < y, and by de�nition

of < if x < y). Thus, the very �rst reading at or after b will be the last

reading of r(X;Y ).

To prove the claim, note that, by the co�niteness condition of runs,

there are only �nitely many doorways y coming earlier than or overlapping

with x. Note that, for y � x, sup(CS(y)) < 1 by the assumption that

W (y) is �nite and that no module stalls forever. It su�ces to prove that,

for each Y , there is at most one y > x. Suppose x < y. Then, by C1,

T 0(x) < T 0(y) (since W (x) is in�nite), and Y remains waiting forever, i.e.

r(Y;X) keeps forever executing waiting section Reads.

2.4 Correctness and fairness of B2

Lemma 2.4. (FCFS) If y � x and W (x) is �nite, then W (y) is �nite

and CS(y) < CS(x).

Proof Assume the premise is satis�ed and the conclusion is false. Take b

as given by C2.

Claim 1 : T 0(y) < T 0(x).

Claim 2 : sup(y) < b.

Given the claims, we have T 0(y) < T 0(x) < R0

b(Y ) and thus Y must be

writing to R(Y ) sometime in (sup(y); b). But the �rst such write after

sup(y) must be a Finale move, which contradicts the assumption that the

conclusion of the lemma is false.

Claim 1 follows immediately from de�nition of � in case of overlap, and

from C1 otherwise.



9

To prove Claim 2, we �rst note that b > inf(y), in view of y � x. It is

impossible that inf(y) < b � sup(y), since then Rb(Y ) = 1.

Lemma 2.5. � is transitive.

Proof by contradiction. Suppose x � y � z � x. Count the number

n of <'s in the above sequence of � signs. In case n = 0 the statement

follows >from the fact that the order of integers (tickets) is transitive, and

in cases n = 2; 3 the statement follows from the fact that the order < of

real intervals is transitive. In case n = 1, without loss of generality, we have

x < y < z < x and therefore T 0(x) < T 0(y) < T 0(z). By Lemma 2.4, the

assumption x � y � z � x implies that W (x);W (y);W (z) are all in�nite.

Thus we can apply C1 to obtain also T 0(z) < T 0(x), which is impossible.

Lemma 2.6. (Deadlock freedom) Every W (x) is �nite.

Proof By co�niteness condition on runs, � is well-founded. Then C3 is

precisely the induction principle required to establish the claim.

This section is summarized in the following

Theorem 2.7. Doorways are linearly ordered by �. All waiting sections

are �nite, and x � y implies CS(x) < CS(y).

3 Durative actions interpretation

3.1 Semantics of B1

Let S be an initial state where all customers are in mode satis�ed , all

readers are in mode doorway , and all registers R(X) have value 0|the

values of A don't matter. We consider runs from S.

A run of B1 consists of the following:

� A collection M of elements, called moves.

� A function A from M to the set of agents. A(�) is the agent that

makes the move �.

� A function P that associates a nonempty �nite open time interval

with each move. P (�) is the execution period of �. No move can last

forever.

However, not every triple (M;A; P ) is a run. The following conditions

1{6 should be satis�ed. The �rst condition re
ects the fact that our agents

are sequential:

1 For each agent X, fP (�) : A(�) = Xg is linearly ordered by <. More-

over, this ordered set is isomorphic to an initial segment of positive

integers, and if it is in�nite then sup� P (�) =1.

We say that an agent Z is passive at moment t (resp. in interval I) if

t does not belong to (resp. I does not intersect) the period P (�) of any

move of Z. We would like to insure that X has a well de�ned state St(X)

at every passive moment t of X.



10

2 If [a; b] is a passive interval of an agent X then Sb(X) = Sa(X).

To insure that condition 2 is satis�ed, we stipulate the following.

A customerX. Locations of dynamic functions internal toX: mode(X),

A(X;X) and R(X). Locations of dynamic functions external to X:

mode(r(X;Y )) and A(X;Y ) where Y 6= X.

A reader r(X;Y ). Internal locations: mode(r(X;Y )) and A(X;Y ).

External locations: mode(X), A(X;X) and R(Y ).

States of an agent re
ect only the values of internal locations. Notice

that every location of any function is internal to some agent.

Call a move � of an agentX atomic with respect to an external location

` if ` is not updated during P (�). A move � is atomic if it is atomic with

respect to all its external locations. An agent is atomic if all its moves are

so.

3 If an agent X makes an atomic move � and P (�) = (a; b) then Sb(X)

is the result of executing one step of X at Sa(X). (See [Gurevich94]

for the de�nition of the result of a one-step execution of a sequential

evolving algebra at a given state.)

4 All customers are atomic. All Check moves of readers are atomic. All

Read moves of any r(X;Y ) are atomic with respect to mode(X).

Read moves of a reader R(X;Y ) may be non atomic with respect to

R(Y ). We adopt Lamport's notion of regular reads (with a di�erent but

equivalent de�nition):

5 Suppose that (a; b) is the period of a Read move � by a reader Q =

r(X;Y ). The value of A(X;Y ) in state Sb(Q), at passive moment

b of Q, is nondeterministically chosen among the values of R(Y ) at

moments t satisfying at least one of the following conditions:

� t is Y 's last passive moment � a,

� t is one of Y 's passive moments in (a; b),

� t is Y 's �rst passive moment � b.

Let �(�) be the chosen moment t.

6 If an agent Z has an in�nite passive interval during which it is enabled

in its �nal state then Z is an original agent and its mode is satis�ed.

In other words, we assume again that no agent stalls forever except if

it is an original agent in mode satis�ed. We will use the following re�ned

de�nition of doorway, wait and CS sections.

De�nition 3.1. � Suppose X executes Start during (a1; a2) and then

executes Ticket during (b1; b2), so that the interval [a2; b1] is passive

for X. Then x = (a2; b2) is a doorway of X.



11

� Suppose that X executes Ticket during (b1; b2). If the execution of

Ticket is not followed by an execution of Entry then the wait period

W (x) is (b2;1). Suppose that the execution of Ticket is followed by

an execution of Entry during some period (c1; c2), so that the interval

[b2; c1] is passive for X. Then W (x) = (b2; c1).

� Suppose that X executes Entry during (c1; c2) and then executes Exit

during (d1; d2), so that the interval [c2; d1] is passive for X. Then the

critical section period CS(x) is (c1; d2).

Start
-�

a1 a2

-�

Ticket

b1 b2

-�

x

-�

Entry

c1 c2

-�

W (x)

-�

Exit

d1 d2

-�

CS(x)

: : :

3.2 Semantics of B2

The semantics of B2 is similar to that of B1. The constraints C0, C1 and

C3 of the previous section remain the same, while C2 is re�ned for regular

registers as follows.

C2 If Go(X) holds at moment t > sup(x) then, for every Y 6= X, there

exists a passive moments b for Y such that T 0(x) < R0

b(Y ) and one

of the following holds:

either b 2W (x);

or b is the last passive moment of Y which is � inf(W (x));

or b is the �rst passive moment of Y which is � sup(W (x)).

3.3 B1 implements B2 correctly

The proofs that C0 and C3 hold of B1 remain the same; the proofs for C1

and C2 are modi�ed as follows.

C1. Let � be the Read move by r(X;Y ) during x and t = �(�). If

there exists a Finale move � by Y such that P (�) intersects P (�), then

CS(y) < sup(x). Otherwise Rt(Y ) = T (y) and therefore T (x) � 1 +

Rt(Y ) > T (y) > 0. Hence T 0(x) > T 0(y).

C2. Go(X) becomes true in B1 when all readers r(X;Y ) �nish their

wait-section readings. Fix a Y 6= X and consider the last Read move � by

r(X;Y ) during W (x). The desired b is �(�).

3.4 Correctness and fairness of B2

All proofs of the previous section remain, except for the proof of Lemma

2.4, which is modi�ed as follows.

Proof Assume premise is satis�ed and conclusion is false. Take b as given

by C2.



12

Claim 1 : T 0(y) < T 0(x).

Claim 2 : sup(y) < b.

Given the claims, we have R0

sup(y)(Y ) = T 0(y) < T 0(x) < R0

b(Y ) and

thus Y must be writing to R(Y ) somewhere in (sup(y); b) so that this write

starts before sup(W (x)). But the �rst such write after sup(y) must be a

Finale move, which contradicts the assumption that the conclusion of the

lemma is false.

Claim 1 follows immediately from de�nition of � in case of overlap, and

from C1 otherwise.

To prove Claim 2, we �rst establish that b � inf(y). Since inf(y) is a

passive moment of Y such that inf(y) < sup(x) = inf(W (x)) (in view of

y � x), so b < inf(y) could not be the last passive moment of Y which

is � inf(W (x)). Neither can we have inf(y) � b < sup(y), since then

Rb(Y ) = 1. Finally b 6= sup(y), since otherwise we would have Rb(Y ) =

T (y), contradicting Claim 1.

3.5 Counterexample for safe registers

The following example shows that the algorithm of [Lamport79] is not

correct for the more general case of safe registers (see [Lamport86])|where

a read overlapping with a write may get any admissible value whatsoever.

There are two customers X and Y which act at the indicated times as

follows:

12.00{12.05: X and Y both write 1 into their registers and the array

12.05{12.10: Y reads 1 from R[X]

12.10{12.40: Y writes ticket 2 into R[Y ] and the array

12.15{12.20: X reads from R[Y ] getting (by overlap) 17

12.25{12.30: X writes ticket 18 to R[X] and the array

12.30{12.35: X reads R[Y ] getting 117 (by overlap)

12.45{12.50: Y reads 18 from R[X]

13.00: X and Y both go to CS

It is however easy to adapt the present proof to show correctness of the

algorithm of [Lamport74] for safe registers, rephrased as an appropriate

evolving algebra, using the same abstract conditions C0{C3.

Acknowledgement. We thank Uri Abraham for useful discussions.



13

Bibliography

[Abraham93] Abraham, U. Bakery Algorithms. Manuscript. 1993, pp.35

[Gurevich91] Evolving Algebras. A Tutorial Introduction, EATCS Bulletin

43, February 1991, pp. 264{284. A slightly revised version

appeared in \Current Trends in Theoretical Computer Sci-

ence", Eds. G. Rozenberg and A. Salomaa,World Scienti�c,

1993, 266{292.

[Gurevich94] Gurevich, Y., Evolving Algebra 1993: Lipari Guide, this vol-

ume

[Lamport74] L.Lamport, A new solution of Dijkstra concurrent program-

ming problem. In: Comm. ACM, vol.17,8, 453-455.

[Lamport79] L.Lamport, A New Approach to Proving the Correctness of

Multiprocess Programs. In: ACM Transaction on Program-

ming Languages and Systems, vol.1.1, July 1979, 84-97.

[Lamport86] L.Lamport, On Interprocess Communication. In: Distributed

Computing, vol.1, 77-101.


