
Computer architecture recalls

A typical architecture

• One (or several) CPU(s)

• Main memory

• A set of devices (peripherals)

• Interrupts

• Direct memory access

The CPU

• General registers

• State and control registers

– Program Counter (PC o IP)

– Stack Pointer (SP)

– Program Status register (PS)

The program status register

• Condition code

– Keeps the status of the last instruction (divide by
zero, overflow, carry etc.)

• CPU mode

– User mode VS kernel mode

• Interrupt enable bit

Fetch-execution cycle

• If there are pending interrupts and the
interrupts are enabled

– Manages the interrupt

• Else

– Loads the instruction at address PC

– Executes the instruction

– PC=PC+4 (*)

(*) assumes that the instruction occupies 4 bytes

A Model of
a CPU

The Kernel Abstraction

Challenge: Protection

• How do we execute code with restricted
privileges?
– Either because the code is buggy or if it might be

malicious

• Some examples:
– A script running in a web browser

– A program you just downloaded off the Internet

– A program you just wrote that you haven’t tested
yet

Thought Experiment

• Implementing execution with limited
privileges:

– Execute each program instruction in a simulator

– If the instruction is permitted, do the instruction

– Otherwise, stop the process

– Basic model in Javascript, …

• How do we go faster?

– Run the unprivileged code directly on the CPU?

Main Points

• Process concept

– A process is an OS abstraction for executing a
program with limited privileges

• Dual-mode operation: user vs. kernel

– Kernel-mode: execute with complete privileges

– User-mode: execute with fewer privileges

• Safe control transfer

– How do we switch from one mode to the other?

Process Concept

Process Concept

• Process: a sequence of activities activated by a
program, running with limited rights
– Process control block (PCB): the data structure the OS

uses to keep track of a process

– Process Table: contains all PCBs

– Two elements:
• Thread: executes a sequence of instructions within a process

– Potentially many threads per process (for now 1:1)

– Thread aka lightweight process

• Address space: set of rights of a process
– Memory that the process can access

– Other permissions the process has (e.g., which procedure calls it
can make, what files it can access)

Program and Process

• Program: static sequence of instructions

• Process:
– a sequence of activities (described by a program)

– executed on a set of CPUs with limited rights

• Several processes can be activated on the same
program
– The processes execute the same code

– Each process executes the program on different data
and/or in different times

Process Control Block

It is a data structure:

• Process name

– Can be the index of the PCB in the process table

• Pointers to process threads

• Assigned memory

• Other resources

– Files, devices, etc…

Hardware Support:
Dual-Mode Operation

• Kernel mode
– Execution with the full privileges of the hardware

– Read/write to any memory, access any I/O device,
read/write any disk sector, send/read any packet

• User mode
– Limited privileges

– Only those granted by the operating system kernel

• On the x86, mode stored in EFLAGS register
– In general in the Program Status Register

A CPU with
Dual-Mode
Operation

Hardware Support:
Dual-Mode Operation

• Privileged instructions
– Available to kernel

– Not available to user code

• Limits on memory accesses
– To prevent user code from overwriting the kernel

• Timer
– To regain control from a user program in a loop

• Safe way to switch from user mode to kernel
mode, and vice versa

Privileged instructions

• Examples?

• What should happen if a user program
attempts to execute a privileged instruction?

Memory Protection

Towards Virtual Addresses

• Problems with base and bounds?

Virtual Addresses

• Translation done in hardware, using a table

• Table set up by operating system kernel

Virtual Address Layout
• Plus shared code segments, dynamically linked

libraries, memory mapped files, …

Example: Corrected
(What Does this Do?)

int staticVar = 0; // a static variable
main() {

int localVar = 0; // a procedure local variable

staticVar += 1; localVar += 1;

sleep(10); // sleep causes the program to wait for x seconds
printf ("static address: %x, value: %d\n", &staticVar, staticVar);
printf ("procedure local address: %x, value: %d\n", &localVar, localVar);

}

Produces:
static address: 5328, value: 1
procedure local address: ffffffe2, value: 1

Hardware Timer

• Hardware device that periodically interrupts
the processor

– Returns control to the kernel timer interrupt
handler

– Interrupt frequency set by the kernel

• Not by user code!

– Interrupts can be temporarily deferred

• Not by user code!

• Crucial for implementing mutual exclusion

Question

• Suppose we had a perfect object-oriented
language and compiler, so that only an
object’s methods could access the internal
data inside an object. If the operating system
only ran programs written in that language,
would it still need hardware memory address
protection?

Mode Switch

• From user-mode to kernel
– Interrupts

• Triggered by timer and I/O devices

– Exceptions
• Triggered by unexpected program behavior

• Or malicious behavior!

– System calls (aka protected procedure call)
• Request by program for kernel to do some operation on

its behalf

• Only limited # of very carefully coded entry points

Mode Switch

• From kernel-mode to user-mode

– Return from interrupt, exception, system call

• Resume suspended execution

– New process/new thread start

• Jump to first instruction in program/thread

– Process/thread context switch

• Resume some other process

– User-level upcall

• Asynchronous notification to user program

How do we take interrupts safely?

• Interrupt vector
– Limited number of entry points into kernel

• Kernel interrupt stack
– Handler works regardless of state of user code

• Interrupt masking
– Handler is non-blocking

• Atomic transfer of control
– Single instruction to change:

• Program counter
• Stack pointer
• Memory protection
• Kernel/user mode

• Transparent restartable execution
– User program does not know interrupt occurred

Interrupt Vector

• Table set up by OS kernel; pointers to code to
run on different events

Interrupt Stack

• Per-processor, located in kernel (not user)
memory

– Usually a thread has both: kernel and user stack

• Why can’t interrupt handler run on the stack
of the interrupted user process?

Interrupt Stack

Interrupt Masking

• Interrupt handler runs with interrupts off
– Re-enabled when interrupt completes

• OS kernel can also turn interrupts off
– Eg., when determining the next process/thread to run

– If defer interrupts too long, can drop I/O events

– On x86
• CLI: disable interrupts

• STI: enable interrupts

• Only applies to the current CPU

• Cf. implementing synchronization, chapter 5

Interrupt Handlers

• Non-blocking, run to completion

– Minimum necessary to allow device to take next
interrupt

– Any waiting must be of limited duration

– Wake up other threads to do any real work

• Rest of device driver runs as a kernel thread

– Queues work for interrupt handler

– (Sometimes) wait for interrupt to occur

Atomic Mode Transfer

• On interrupt (x86)
– Save current stack pointer

– Save current program counter

– Save current processor status word (condition
codes)

– Switch to kernel mode

– Switch to handler PC & kernel PSW

– Vector through interrupt table

– Interrupt handler saves registers it might clobber

in
 h

ar
d

w
ar

e

Before

User-level
process

Code:

Foo() {
while(…) {

x=x+1;
y=y-2;

}
}

Stack:

Exception
Stack:

SP
PC

General
registers

Registers:

PSW

Kernel

Code:

handler() {
push A
…

}

During

User-level
process

Code:

Foo() {
while(…) {

x=x+1;
y=y-2;

}
}

Stack:

SP
PC

General
registers

Registers:

PSW

Kernel

Code:

handler() {
push A
…

}

SP
PC

Exception
Stack:

PSW
error

After

User-level
process

Code:

Foo() {
while(…) {

x=x+1;
y=y-2;

}
}

Stack:

SP
PC

General
registers

Registers:

PSW

Kernel

Code:

handler() {
push A
…

}

SP
PC

General
registers

Exception
Stack:

PSW
error

At end of handler

• Handler restores saved registers

• Atomically return to interrupted process/
thread (IRET instruction)

– Restore program counter

– Restore program stack

– Restore processor status word/condition codes

– Switch to user mode

– Enable interrupts

Interrupt management
a simple example

Registri nella CPU Memoria
programma P Interrupt Handler

PC A000 …. … 100 Store
PS PSW P A000 istr. 1 104 General
SP FFFF A004 istr. 2 108 Registers

R1 AAAA A008 istr. 3 …
R2 BBBB A016 istr. 4 200 Restores
… A020 istr. 5 204 Registers

… … 208 IRET
Stack di P stack nel nucleo

… … … … Interrupt Vector
FFF0 2996 …
FFF3 2997 500 100
FFF7 2998 504 PSW INT
FFFB 2999 …

FFFF … 3000

Initial state: interrupt ‘500’ occurs when executing instruction A000

Registri nella CPU Memoria

programma P Interrupt Handler

PC A000 …. … 100 Store

PS PWS P A000 istr. 1 104 General

SP FFFF A004 istr. 2 108 Registers

R1 AAAA A008 istr. 3 …

R2 BBBB A016 istr. 4 200 Restores

… A020 istr. 5 204 Registers

… … 208 IRET

Stack di P stack nel nucleo

… … … … Interrupt Vector

FFF0 2996 …

FFF3 2997 500 100

FFF7 2998 504 PSW INT

FFFB 2999 …

FFFF … 3000

1) Initial state

Registri nella CPU Memoria

programma P Interrupt Handler

PC 100 …. … 100 Store

PS PSW INT A000 istr. 1 104 General

SP 2992 A004 istr. 2 108 Registers

R1 AAAA A008 istr. 3 …

R2 BBBB A016 istr. 4 200 Restores

… A020 istr. 5 204 Registers

… … 208 IRET

Stack di P stack nel nucleo

… … … … Interrupt Vector

FFF0 2984 …

FFF3 2988 500 100

FFF7 2992 FFFF 504 PSW INT

FFFB 2996 A004 …

FFFF … 3000 PSW P

2) Interrupt recognized after instruction A000 (PC incremented to A004)

Registri nella CPU Memoria

programma P Interrupt Handler

PC 100 …. … 100 Store

PS PSW INT A000 istr. 1 104 General

SP 2992 A004 istr. 2 108 Registers

R1 AAAA A008 istr. 3 …

R2 BBBB A016 istr. 4 200 Restores

… A020 istr. 5 204 Registers

… … 208 IRET

Stack di P stack nel nucleo

… … … … Interrupt Vector

FFF0 2984 …

FFF3 2988 500 100

FFF7 2992 FFFF 504 PSW INT

FFFB 2996 A004 …

FFFF … 3000 PSW P

2) Interrupt recognized after instruction A000

Registri nella CPU Memoria

programma P Interrupt Handler

PC 112 …. … 100 Store

PS PSW INT A000 istr. 1 104 General

SP 2984 A004 istr. 2 108 Registers

R1 AAAA A008 istr. 3 …

R2 BBBB A016 istr. 4 200 Restores

… A020 istr. 5 204 Registers

… … 208 IRET

Stack di P stack nel nucleo

… … … … Interrupt Vector

FFF0 2984 BBBB …

FFF3 2988 AAAA 500 100

FFF7 2992 FFFF 504 PSW INT

FFFB 2996 A004 …

FFFF … 3000 PSW P

3) Stores general registers

Registri nella CPU Memoria

programma P Interrupt Handler

PC 200 …. … 100 Store

PS PSW INT A000 istr. 1 104 General

SP 2984 A004 istr. 2 108 Registers

R1 ?? A008 istr. 3 …

R2 ?? A016 istr. 4 200 Restores

… A020 istr. 5 204 Registers

… … 208 IRET

Stack di P stack nel nucleo

… … … … Interrupt Vector

FFF0 2984 BBBB …

FFF3 2988 AAAA 500 100

FFF7 2992 FFFF 504 PSW INT

FFFB 2996 A004 …

FFFF … 3000 PSW P

4) Executes interrupt handler

Registri nella CPU Memoria

programma P Interrupt Handler

PC 208 …. … 100 Store

PS PSW INT A000 istr. 1 104 General

SP 2992 A004 istr. 2 108 Registers

R1 AAAA A008 istr. 3 …

R2 BBBB A016 istr. 4 200 Restores

… A020 istr. 5 204 Registers

… … 208 IRET

Stack di P stack nel nucleo

… … … … Interrupt Vector

FFF0 2984 …

FFF3 2988 500 100

FFF7 2992 FFFF 504 PSW INT

FFFB 2996 A004 …

FFFF … 3000 PSW P

5) Restores general registers

Registri nella CPU Memoria

programma P Interrupt Handler

PC A004 …. … 100 Store

PS PSW P A000 istr. 1 104 General

SP FFFF A004 istr. 2 108 Registers

R1 AAAA A008 istr. 3 …

R2 BBBB A016 istr. 4 200 Restores

… A020 istr. 5 204 Registers

… … 208 IRET

Stack di P stack nel nucleo

… … … … Interrupt Vector

FFF0 2984 …

FFF3 2988 500 100

FFF7 2992 504 PSW INT

FFFB 2996 …

FFFF … 3000

6) Executes IRET

Registri nella CPU Memoria

programma P Interrupt Handler

PC 208 …. … 100 Store

PS PSW INT A000 istr. 1 104 General

SP 2992 A004 istr. 2 108 Registers

R1 AAAA A008 istr. 3 …

R2 BBBB A016 istr. 4 200 Restores

… A020 istr. 5 204 Registers

… … 208 IRET

Stack di P stack nel nucleo

… … … … Interrupt Vector

FFF0 2984 …

FFF3 2988 500 100

FFF7 2992 FFFF 504 PSW INT

FFFB 2996 A004 …

FFFF … 3000 PSW P

5) Restores general registers

System Calls

This by a single
processo instruction
For example: SVC
(supervisor call)

This by a single
processo instruction
For example: SVC
(supervisor call) This by IRETThis by IRET

Kernel System Call Handler

• Locate arguments
– In registers or on user(!) stack

• Copy arguments
– From user memory into kernel memory

– Protect kernel from malicious code evading checks

• Validate arguments
– Protect kernel from errors in user code

• Copy results back
– into user memory

Web Server Example

Upcall: User-level interrupt

• AKA UNIX signal
– Notify user process of event that needs to be handled

right away
• Time-slice for user-level thread manager

• Interrupt delivery for VM player (see later)

• Direct analogue of kernel interrupts
– Signal handlers – fixed entry points

– Separate signal stack

– Automatic save/restore registers – transparent resume

– Signal masking: signals disabled while in signal handler

Upcall: Before

…
x=x+z;
…

Stack:

Signal
Stack:

SP
PC

Registers:

Signal handler() {
…

}

Upcall: After

Stack:
PC
SP

Signal
Stack:

SP
PC

Registers:

Signal handler() {
…

}

saved
registers

…
x=x+z;
…

Booting

Virtual Machines

User-Level Virtual Machine

• How does VM Player work?
– Runs as a user-level application

– How does it catch privileged instructions, interrupts,
device I/O, …

• Installs kernel driver, transparent to host kernel
– Requires administrator privileges!

– Modifies interrupt table to redirect to kernel VM code

– If interrupt is for VM, upcall

– If interrupt is for another process, reinstalls interrupt
table and resumes kernel

