
Unreachable statements

JLS §14.20: Conservative flow analysis at compile-time.

Static predicates:

reachable(α)⇐⇒ the phrase at position α is reachable
normal(α) ⇐⇒ the phrase at position α can complete normally

Fact: normal(α) implies reachable(α).

Conditional compilation:
while (false) αstm =⇒ reachable(α) = False

if (false) αstm =⇒ reachable(α) = True

Constraints for method bodies:
reachable(firstPos) = True

normal(firstPos) = False

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 1

Reachability constraints

α; normal(α)⇔ reachable(α)
α(βexp;) normal(α)⇔ reachable(α)
α{β1stm1 . . .

βnstmn} reachable(β1)⇔ reachable(α),
reachable(βi+1)⇔ normal(βi),
normal(α)⇔ normal(βn)

αif (βexp) γstm1

else δstm2

reachable(γ)⇔ reachable(α),
reachable(δ)⇔ reachable(α),
normal(α)⇔ normal(γ) ∨ normal(δ)

αwhile (βexp) γstm reachable(γ) ⇔ reachable(α) and βexp is
not a constant expression with value False,
normal(α)⇔ reachable(α) and βexp is not
a constant expression with value True

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 2

Reachability constraints (continued)

αlab: βstm reachable(β)⇔ reachable(α),
normal(α)⇔ normal(β) or there exists a reachable
statement break lab inside βstm that can exit βstm

αbreak lab; ¬ normal(α)
αcontinue lab; ¬ normal(α)
αreturn; ¬ normal(α)
αreturn βexp; ¬ normal(α)
αthrow βexp; ¬ normal(α)

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 3

Reachability constraints (continued)

αtry βblockt
catch (E1 x1) γ1block1

...
catch (En xn) γnblockn

reachable(β)⇔ reachable(α),
reachable(γi)⇔ reachable(α) and
Ei 6�h Ej for 1 ≤ j < i and blockt can
throw an exception F with F �h Ei or
Ei �h F ,
normal(α)⇔ normal(β) ∨∨
1≤i≤n

normal(γi)

α(βstm finally γblock) reachable(β)⇔ reachable(α),
reachable(γ)⇔ reachable(α),
normal(α)⇔ normal(β) ∧ normal(γ)

αsynchronized (βexp)
γstm

reachable(γ)⇔ reachable(α),
normal(α)⇔ normal(γ)

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 4

“can exit” and “can throw”

Definition. An abruption at position α can exit stm, if for every
substatement β(γs finally δb) of stm such that α is in s the
predicate normal(δ) is true.

Definition. A statement stm can throw an exception E , if one of the
following conditions is true:

E = RuntimeException or E = Error

stm contains a reachable statement αthrow βexp such that
T (β) = E , the exception E is not caught in stm and an abruption at
position α can exit stm

stm contains a reachable method invocation αc/m(exps) such that
E occurs in the throws clause of m in c, the exception E is not
caught in stm and an abruption at position α can exit stm.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 5

The rules of definite assignment (JLS §16)

x ∈ before(α)
The variable x is definitely assigned before the evaluation of the
statement or expression at position α.

x ∈ after (α)
The variable x is definitely assigned after the statement or expression
at position α when this statement or expression completes normally.

x ∈ true(α)
The variable x is definitely assigned after the evaluation of the
expression at position α when this expression evaluates to true.

x ∈ false(α)
The variable x is definitely assigned after the evaluation of the
expression at position α when this expression evaluates to false.

x ∈ vars(α)
The position α is in the scope of the local variable, formal parameter
or catch parameter x .

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 6

Definite assignment for boolean expressions

αtrue true(α) = before(α), false(α) = vars(α)
αfalse true(α) = vars(α), false(α) = before(α)
α(! βe) before(β) = before(α),

true(α) = false(β), false(α) = true(β)
α(βe0 ? γe1 : δe2) before(β) = before(α),

before(γ) = true(β), before(δ) = false(β),
true(α) = true(γ) ∩ true(δ),
false(α) = false(γ) ∩ false(δ)

Constraint: T (α) = boolean

Constraint: after (α) = true(α) ∩ false(α)

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 7

Definite assignment for boolean expressions (continued)

α(βe1 &&
γe2) before(β) = before(α), before(γ) = true(β),

true(α) = true(γ), false(α) = false(β) ∩ false(γ)
α(βe1 ||

γe2) before(β) = before(α), before(γ) = false(β),
true(α) = true(β) ∩ true(γ), false(α) = false(γ)

Constraint: If T (α) = boolean and αexp is of a different kind, then
true(α) = after (α) and false(α) = after (α).

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 8

Definite assignment for arbitrary expressions

αloc after (α) = before(α), loc ∈ before(α)
αlit after (α) = before(α)
α(loc = βe) before(β) = before(α), loc ∈ vars(α),

after (α) = after (β) ∪ {loc}
α(βe0 ? γe1 : δe2) before(β) = before(α), before(γ) = true(β),

before(δ) = false(β),
after (α) = after (γ) ∩ after (δ)

αc.f after (α) = before(α)

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 9

Definite assignment for arbitrary expressions

Constraints for an expression αexp with direct subexpressions
β1exp1, . . . ,

βnexpn :

before(β1) = before(α),

before(βi+1) = after (βi) for i = 1, . . . , n − 1,

after (α) = after (βn).

The direct subexpressions of an expression

Expression at position α Direct subexpressions of α
α(uop βexp) βexp
α(βexp1 bop γexp2) βexp1, γexp2
α(c.f = βexp) βexp
α(β1exp1, . . . ,

βnexpn) β1exp1, . . . ,
βnexpn

α(c.mβ(exps)) β(exps)

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 10

The direct subexpressions of an expression

Expression at position α Direct subexpressions of α
α(βexp instanceof c) βexp
α((c) βexp) βexp
α(βexp.c/f) βexp
α(βexp1.c/f = γexp2) βexp1, γexp2
α(βexp.c/mγ(exps)) βexp, γ(exps)
αnew c.c/mβ(exps) β(exps)
α(βexp1[γexp2]) βexp1, γexp2
α(βexp1[γexp2] = δexp3) βexp1, γexp2, δexp3
α(newA[β1exp1] . . . [βnexpn][] . . . []) β1exp1, . . . ,

βnexpn

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 11

Definite assignment for statements

α; after (α) = before(α)
α(βexp;) before(β) = before(α), after (α) = after (β)
α{β1stm1 . . .

βnstmn} before(β1) = before(α),
before(βi+1) = after (βi) for i = 1, . . . , n−1,
after (α) = after (βn) ∩ vars(α)

αif (βexp) γstm1

else δstm2

before(β) = before(α),
before(γ) = true(β), before(δ) = false(β),
after (α) = after (γ) ∩ after (δ)

αwhile (βexp) γstm before(β) = before(α), before(γ) = true(β),
after (α) = false(β)

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 12

Definite assignment for statements (continued)

αlab: βstm before(β) = before(α),
after (α) = after (β) ∩ break (β, lab)

αbreak lab; after (α) = vars(α)
αcontinue lab; after (α) = vars(α)
αreturn; after (α) = vars(α)
αreturn βexp; before(β) = before(α), after (α) = vars(α)
αthrow βexp; before(β) = before(α), after (α) = vars(α)

Definition: x ∈ break (α, lab) :⇐⇒

x is in before(β) for each statement βbreak lab inside the statement
at position α that can exit α and

x is in after (β) for each statement β(s finally b) inside α such
that s contains a break lab that can exit α.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 13

Definite assignment for statements (continued)

αtry βblockt
catch (E1 x1) γ1block1

...
catch (En xn) γnblockn

before(β) = before(α),
before(γi) = before(α) ∪ {xi},
after (α) = after (β) ∩

⋂
1≤i≤n after (γi)

α(βstm finally γblock) before(β) = before(α),
before(γ) = before(α),
after (α) = {x ∈ after (β) |
there is no x = exp in γblock}∪ after (γ)

αsynchronized (βexp)
γstm

before(β) = before(α),
before(γ) = after (β),
after (α) = after (γ)

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 14

Run-time compatible

Definition. A v B :⇐⇒ one of the following conditions is true:

A and B are primitive types and A = B

A and B are reference types and A � B

Lemma:

A v A.

If A v B and B v C , then A v C .

If A v B and B v A, then A = B .

A[] v B []⇔ A v B .

Definition. f is a frame in state n of thread q , iff one of the following
conditions is true:

f = (meth
q
n , restbody

q
n , pos

q
n , locals

q
n)

f is an element of frames
q
n

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 15

Reference is used in a state

Definition. A reference ref is used in state n, iff one of the following
conditions is true:

there exists a field c/f such that globalsn(c/f) = ref

there exists an r and a field c/f such that getFieldn(r , c/f) = ref

there exists an r and an i ∈ N such that getElementn(r , i) = ref

there exists a frame (, restbody∗, , locals∗) in state n of a thread q
and one of the following conditions is true:

– there exists a variable loc such that locals∗(loc) = ref
– there exists a position α such that restbody∗/α = ref
– there exists a position α such that restbody∗/α = Return(ref)
– there exists a position α such that restbody∗/α = Exc(ref)

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 16

Theorem: Java is type safe

Theorem. Assume that (meth∗, restbody∗, pos∗, locals∗) is a frame in
state n of thread q . Then the following invariants are satisfied:

(def1) before(pos∗) ⊆ dom(locals∗).

(def2) If restbody∗/pos∗ is normal, then after (pos∗) ⊆ dom(locals∗).

(def3) If restbody∗/pos∗ = True, then true(pos∗) ⊆ dom(locals∗).

(def4) If restbody∗/pos∗ = False, then false(pos∗) ⊆ dom(locals∗).

(def5) If restbody∗/pos∗ = Break (l), then
break (pos∗, l) ⊆ dom(locals∗).

(def6) If the frame is not the current frame of q and body(meth∗)/pos∗
is a method invocation then after (pos∗) ⊆ dom(locals∗).

(reach) reachable(pos∗).

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 17

Theorem: Java is type safe (continued)

(norm) If restbody∗/α = Norm, then normal(α).

(val) If restbody∗/α is a value of type B , then B v T (α), where T (α)
is the compile-time type of position α in body(meth∗).

(undef) The constant undef does not occur in restbody∗.
(loc1) If x ∈ dom(locals∗), then locals∗(x) ∈ Val.

(loc2) If pos∗ is in the scope of a local variable declaration of a
variable x of type A and x ∈ dom(locals∗), then locals∗(x) is a
value of type B v A.

(loc3) If pos∗ is in the scope of a formal parameter x of type A, then
locals∗(x) is a value of type B v A.

(loc4) If pos∗ is in the scope of a catch parameter x of type E , then
locals∗(x) is a value of type F �h E .

(loc5) If pos∗ is in class A and pos∗ is in the body of an instance
method or in the body of a constructor, then locals∗(this) is a value
of type B �h A.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 18

Theorem: Java is type safe (continued)

(abr1) If restbody∗/α = Break (l), then α is in a statement with label l
and body(meth∗)/α contains a reachable break lab which can exit
body(meth∗)/α.

(abr2) If restbody∗/α = Continue(l), then α is in a while statement
with label l .

(abr3) If restbody∗/α = Return, then α is in the body of a method
with return type void.

(abr4) If restbody∗/α = Return(v), then α is in the body of a method
with return type A and v is a value of type B v A.

(abr5) If restbody∗/α = Exc(ref), then classOf (ref) = E ,
E �h Throwable, E is allowed at position α and body(meth∗)/α
can throw an exception F such that E �h F .

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 19

Theorem: Java is type safe (continued)

Assume that (, restbody∗, β,) is the parent frame of
(c/m, , , locals∗) in state n of thread q . Then the dynamic method
invocation chain has the following properties:

(chain1) If the return type of c/m is A and A 6= void, then
T (β) = A.

(chain2) If E occurs in the throws clause of c/m, then E is allowed
at position β.

(chain3) If c/m is a constructor and restbody∗/β = ref .c/m(), then
locals∗(this) = ref .

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 20

Theorem: Java is type safe (continued)

The following global invariants are true in state n:

(global) If c/f is a static field of declared type A, then
globalsn(c/f) is a value of type B v A.

(ref) If a reference ref is used in state n, then ref ∈ dom(heapn).

(object1) If heapn(ref) = Object(c, fields), then c is a non abstract
class and dom(fields) = instanceFields(c).

(object2) If heapn(ref) = Object(, fields), fields(f) = v and f is of
declared type A, then v is a value of type B v A.

(array) If heapn(ref) = Array(A, elems) and elems(i) = v , then v is
a value of type B v A.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 21

