ASM for Java ASM for the JVM
collection of packages = COMGT cenv class environment
Lo By
Q[m %O'(m)
states (Java) states (JVM)

Compiler correctness proof:

Construction of mapping 0: N — N such that
sm < n = o(m)<ag(n)
= state 2, of Java is equivalent to state %U(m) of the JVM

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 1

Java JVM
POS pC
restbody | opd
locals req
meth meth
frames stack

classState | classState
globals globals
heap heap
switch

Equivalence?

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 2

Equivalence of pos and pc:
Associate to each position in method body an interval in code array.

a — |code(i) | beg, < i < end]
= restbodyy /o not evaluated — PCq(n) = begq
= restbodyp /o evaluated = pc, () = endq

Equivalence of restbody and opd:
The operand stack of the JVM can be extracted from restbody.

+

SN
15 *

YRR
2 Yx

javaOpd(restbody, o) = [15, 2]

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 3

Equivalence of states (continued)

Equivalence of [ocals and reg:
Define locals =~ req iff for each = € dom(locals):

mlf size(7 (x)) = 1, then jumVal(locals(x)) = [reg(T)].

mlf size(7 (x)) = 2, then jumVal(locals(z)) = |reg(T), reg(T + 1)].
Equivalence of frames and stack:

=1l

Assume that

1. frames =~ stack,

2. locals =~ reg,

3. reg contains correct return addresses for pos in restbody,

4. pc = beg,s or pc = endygs depending on restbody / pos. Then

frames - (meth, restbody, pos, locals) = stack - (pc, reg, opd, meth).
Problem: Correctness of subroutine return addresses.

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

c/m(C...) {
;br finally {
]EVOfrm finally {
;?xc(r) finally {

POS

}

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 5

Theorem: Correctness of the compiler

Theorem. The following invariants are true for o = posy:
(reg) localsp =~ regy(y)

(stack) frames, ~ stack,)

(beg) If restbodyy /v is not evaluated, then

L. pcy(p) = beg,, or beg, < endy and code(beg,,) = Goto(pe,(y,)),
2. 0pdys () = javaOpd(restbodyy, o).

(exp) If « is an E-position, restbodyy, /o = v and v is a value or a finite
sequence of values, then

1. PCo(n) = end,,
2. 0pdy; () = javaOpd(restbodyn, o) - jumVal(v).

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

Theorem: Correctness of the compiler (continued)

(booll) If o is a By(lab)-position and restbody, /o = True, or
if v is a By(lab)-position and restbody, /o = False, then

1. pca(n) — lab,
2. 0pdy; () = javaOpd(restbodyy,).
(bool2) If o is a By(lab)-position and restbody, /o = Fulse, or
if o is a By(lab)-position and restbody, /o = True, then
1. PCo(n) = end,,
2. 0pdy; () = javaOpd(restbodyp,).
(new) If body(methy)/a = new ¢ and restbody, /. = ref, then
1. PCo(n) = end,,
2. 0pdys () = javaOpd(restbodyy, o) - |ref , ref].

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

Theorem: Correctness of the compiler (continued)

(stm) If « is an S-position and restbodyy, /cc = Norm, then
1. PCo(n) = end,,
2. Opdg(n) — H
(abr) If restbody, /a = abr and abr is not an exception, then
1. O]DdJ(n) — H,
2. PCo(n) Is a continuation for abr at position o wrt. T€J (1)
(exc) If restbody,, /o = Fxc(r) and body(methy)/o # static , then
L. switch, () = Throw(r),
2. beg@ < pCU<n>,
3. PCy(n) < end,,, or « is an £-position and PCo(n) < endup(&),
4.there is no (f, u,, ¢) € X() such that f < pc,(,,) < u and
classOf (r) =y, c.

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

Theorem: Correctness of the compiler (continued)

(exc-clinit) If restbody, /o = Fxc(r) and
body(methn)/a = static ., then switchy(,) = Throwlnit(r).

(clinit) Assume that restbody, /o = static and
¢ = classNm(methy,).
If ¢ # Object and not initialized(super(c)), then
switch,(,y = InitClass(super(c)), otherwise

swz’tcha(n) = Noswitch.

(fin) reg,(,,) contains correct return addresses for a in restbodyy.

If nothing is said about switch, then 3wz’tch0<n> = Noswitch.

Proof. By induction on n. 83 cases on 22 pages. O

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

Properties of the exception table \'(“stm)

Lemma. The exception table has the following properties:

LIf(f,u, ,)€ X(«), then beg, < f and u < end,,.

2.1f 7 is a position inside “stm and h is a handler which occurs in the
table X'(«v) before the subtable X'(/3), then the interval protected
by £ is disjoint to the interval {7 | begy < i < endg}.

3.If 3 is a direct subposition of “stm and (3 is not the position of a try
Block, or a try-catch statement, then the intervals of handlers in
X (c) which do not belong to X'([3) are disjoint to
{7 | begg < i <endp}.

1. {i|f<i<u} C{i]|beg, <i<endy,}
2. X(a)=1[.., Ezc(f,u,h,t), o es- -]
A(5)
3. X(«)=1|..., Ezc(f,u,h, t),...w...,Exc(f,u,h, t), ...

X(5)

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 10

Continuations

Continuations for break. Code index 7 is a continuation for an

abruption Break(lab) at position «, if
finallyLabsUntil(c, lab) = |finy, ..., fing] and

code(1) Jsr(fing)

code(i + k —1) = Jsr(fing,)
code(i + k) = Goto(laby).

Continuations for continue. Code index 7 is a continuation for an

abruption Continue(lab) at position «, if
finallyLabsUntil(c, lab) = |fing, ..., fing] and

code (1) = Jsr(fing)

code(i + k —1) = Jsr(fing,)
code(i + k) Goto(lab,).

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland

11

Continuations (continued)

Continuations for return void. Code index 7 is a continuation for an
abruption Return at position «, if finallyLabs(c) = [finy, ..., finz] and

code(1) = Jsr(finy)

code(1 + k — 1) = Jsr(fing,)
code(i + k) = Return(void)
Continuations for return value. Code index 7 is a continuation for a

Return(val) at position v wrt. reg, if finallyLabs(«) = [fing, ..., fing]
and

code (1) = Jsr(fing)

code(i +k — 1) = Jsr(fing,)
code(i + k) = Load(T, 1)
code(i + k 4+ 1) = Return(r),

if size(7) =1, then jumVal(val) = |reg(z)],

if size(7) = 2, then jumVal(val) = [reg(x), reg(x + 1)].

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 12

Correct return addresses

Definition. We say that reg contains correct return addresses for
position « in restbody, if the following conditions are satisfied:

(fin-norm) For each j3, if restbody /3 = (Norm finally s) and « is
in s, then code(reg(ret)) = Goto(endg).

(fin-abr) For each 3, if restbody /3 = (abr finally s), abr is not an
exception and « is in s, then reg(ret3) is a continuation for abr at
position /7 with respect to reg.

(fin-exc) For each 3, if restbody /3 = (Ezc(r) finally s) and « is
in s, then reg(ret3) = default 3 4 2 and reg(excy) = .

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 13

