
Correctness of the compiler

ASM for Java ASM for the JVM

collection of packages π
compiler7−→ cenv class environment

A0 B0
... ...

Am Bσ(m)
... ...

states (Java) states (JVM)

Compiler correctness proof:

Construction of mapping σ:N→ N such that

m ≤ n =⇒ σ(m) ≤ σ(n)

state Am of Java is equivalent to state Bσ(m) of the JVM

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 1

Dynamic states of Java and the JVM

Java JVM
pos pc
restbody opd
locals reg
meth meth
frames stack
classState classState
globals globals
heap heap

switch

Equivalence?

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 2

Equivalence of states

Equivalence of pos and pc:
Associate to each position in method body an interval in code array.

α 7−→ [code(i) | begα ≤ i < endα]

restbodyn/α not evaluated =⇒ pcσ(n) = begα

restbodyn/α evaluated =⇒ pcσ(n) = endα

Equivalence of restbody and opd :
The operand stack of the JVM can be extracted from restbody .

+

↙ ↘
15 *

↙ ↘
2 αx

javaOpd(restbody , α) = [15, 2]

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 3

Equivalence of states (continued)

Equivalence of locals and reg:
Define locals ≈ reg iff for each x ∈ dom(locals):

If size(T (x)) = 1, then jvmVal(locals(x)) = [reg(x)].

If size(T (x)) = 2, then jvmVal(locals(x)) = [reg(x), reg(x + 1)].

Equivalence of frames and stack :
[] ≈ [].

Assume that

1. frames ≈ stack ,

2. locals ≈ reg ,

3. reg contains correct return addresses for pos in restbody ,

4. pc = begpos or pc = endpos depending on restbody/pos . Then

frames · (meth, restbody , pos , locals) ≈ stack · (pc, reg , opd ,meth).

Problem: Correctness of subroutine return addresses.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 4

General case: restbody

c/m(...) {
...

abr finally {
...

Norm finally {
...

Exc(r) finally {
...

pos
...

}

}

}

}

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 5

Theorem: Correctness of the compiler

Theorem. The following invariants are true for α = posn :

(reg) localsn ≈ regσ(n)

(stack) framesn ≈ stackσ(n)

(beg) If restbodyn/α is not evaluated, then

1. pcσ(n) = begα, or begα < endα and code(begα) = Goto(pcσ(n)),

2. opdσ(n) = javaOpd(restbodyn , α).

(exp) If α is an E-position, restbodyn/α = v and v is a value or a finite
sequence of values, then

1. pcσ(n) = endα,

2. opdσ(n) = javaOpd(restbodyn , α) · jvmVal(v).

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 6

Theorem: Correctness of the compiler (continued)

(bool1) If α is a B1(lab)-position and restbodyn/α = True, or
if α is a B0(lab)-position and restbodyn/α = False, then

1. pcσ(n) = lab,

2. opdσ(n) = javaOpd(restbodyn , α).

(bool2) If α is a B1(lab)-position and restbodyn/α = False, or
if α is a B0(lab)-position and restbodyn/α = True, then

1. pcσ(n) = endα,

2. opdσ(n) = javaOpd(restbodyn , α).

(new) If body(methn)/α = new c and restbodyn/α = ref , then

1. pcσ(n) = endα,

2. opdσ(n) = javaOpd(restbodyn , α) · [ref , ref].

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 7

Theorem: Correctness of the compiler (continued)

(stm) If α is an S-position and restbodyn/α = Norm, then

1. pcσ(n) = endα,

2. opdσ(n) = [].

(abr) If restbodyn/α = abr and abr is not an exception, then

1. opdσ(n) = [],

2. pcσ(n) is a continuation for abr at position α wrt. regσ(n).

(exc) If restbodyn/α = Exc(r) and body(methn)/α 6= static , then

1. switchσ(n) = Throw (r),

2. begα ≤ pcσ(n),

3. pcσ(n) < endα, or α is an E-position and pcσ(n) < endup(α),

4. there is no (f , u, , c) ∈ X (α) such that f ≤ pcσ(n) < u and

classOf (r) �h c.

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 8

Theorem: Correctness of the compiler (continued)

(exc-clinit) If restbodyn/α = Exc(r) and
body(methn)/α = static , then switchσ(n) = ThrowInit(r).

(clinit) Assume that restbodyn/α = static and
c = classNm(methn).
If c 6= Object and not initialized(super (c)), then
switchσ(n) = InitClass(super (c)), otherwise
switchσ(n) = Noswitch.

(fin) regσ(n) contains correct return addresses for α in restbodyn .

If nothing is said about switch, then switchσ(n) = Noswitch.

Proof. By induction on n. 83 cases on 22 pages. 2

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 9

Properties of the exception table X (αstm)

Lemma. The exception table has the following properties:

1. If (f , u, ,) ∈ X (α), then begα ≤ f and u ≤ endα.

2. If β is a position inside αstm and h is a handler which occurs in the
table X (α) before the subtable X (β), then the interval protected
by h is disjoint to the interval {i | begβ ≤ i < endβ}.

3. If β is a direct subposition of αstm and β is not the position of a try
Block, or a try-catch statement, then the intervals of handlers in
X (α) which do not belong to X (β) are disjoint to
{i | begβ ≤ i < endβ}.

1. {i | f ≤ i < u} ⊆ {i | begα ≤ i < endα}
2. X (α) = [. . . ,Exc(f , u, h, t),︸ ︷︷ ︸

X (β)

. . .]

3. X (α) = [. . . ,Exc(f , u, h, t),︸ ︷︷ ︸
X (β)

. . . ,Exc(f , u, h, t), . . .]

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 10

Continuations

Continuations for break. Code index i is a continuation for an
abruption Break (lab) at position α, if
finallyLabsUntil(α, lab) = [fin1, . . . , fink] and

code(i) = Jsr (fin1)
... ...

code(i + k − 1) = Jsr (fink)
code(i + k) = Goto(labb).

Continuations for continue. Code index i is a continuation for an
abruption Continue(lab) at position α, if
finallyLabsUntil(α, lab) = [fin1, . . . , fink] and

code(i) = Jsr (fin1)
... ...

code(i + k − 1) = Jsr (fink)
code(i + k) = Goto(labc).

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 11

Continuations (continued)

Continuations for return void. Code index i is a continuation for an
abruption Return at position α, if finallyLabs(α) = [fin1, . . . , fink] and

code(i) = Jsr (fin1)
... ...

code(i + k − 1) = Jsr (fink)
code(i + k) = Return(void)

Continuations for return value. Code index i is a continuation for a
Return(val) at position α wrt. reg , if finallyLabs(α) = [fin1, . . . , fink]
and

code(i) = Jsr (fin1)
... ...

code(i + k − 1) = Jsr (fink)
code(i + k) = Load(τ , x)
code(i + k + 1) = Return(τ),

if size(τ) = 1, then jvmVal(val) = [reg(x)],
if size(τ) = 2, then jvmVal(val) = [reg(x), reg(x + 1)].

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 12

Correct return addresses

Definition. We say that reg contains correct return addresses for
position α in restbody , if the following conditions are satisfied:

(fin-norm) For each β, if restbody/β = (Norm finally s) and α is
in s , then code(reg(retβ)) = Goto(endβ).

(fin-abr) For each β, if restbody/β = (abr finally s), abr is not an
exception and α is in s , then reg(retβ) is a continuation for abr at
position β with respect to reg .

(fin-exc) For each β, if restbody/β = (Exc(r) finally s) and α is
in s , then reg(retβ) = defaultβ + 2 and reg(excβ) = r .

Copyright c© 2002 Robert F. Stärk, Computer Science Department, ETH Zürich, Switzerland 13

