Unreachable statements

JLS §14.20: Conservative flow analysis at compile-time.

Static predicates:

reachable(c) <= the phrase at position « is reachable
normal(c) <= the phrase at position & can complete normally

Fact: normal(«) implies reachable().

Conditional compilation:
while (false)“stm = reachable(c) = False
if (false)“stm = reachable(ar) = True

Constraints for method bodies:
reachable(firstPos) = True

normal(firstPos) = False

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland



“ normal(a) < reachable(a)

Y(Pexp; ) normal(a) < reachable(a)

Bistmy ... Pnstmy}| reachable(51) < reachable(w),
reachable(B;11) < normal(3;),
normal(a) < normal(Bn)

Vit (Fexp) T stmy reachable(y) < reachable(a),

else ?stmo reachable(d) < reachable(a),
normal(a) < normal(y) V normal(6)

“while ("exp)Tstm  reachable(v) < reachable(c) and Pexp is
not a constant expression with value False,
normal(a) < reachable(e) and Pexp is not
a constant expression with value True

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 2



“ab: Y stm reachable() < reachable(a),

normal(a) < normal(3) or there exists a reachable
statement break lab inside ”stm that can exit 7 stm

“break lab; = normal(a)

“continue lab; | — normal(a

“return; = normal

“return’ezp: | = normal

“throwexp: | — normal

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 3



Ytry Yblock reachable() < reachable(a),
catch (Fq 1) "tblock) |reachable(vy;) < reachable(cr) and
: E; Ay Ej for 1 < j <1 and block; can
catch (Fy xp) "mblock, |throw an exception F' with F' <} E; or
Ly =y F,
normal(a) < normal(3) V

\/  normal(vy;)
1<i<n

Y(Pstm finally 7block) reachable(() < reachable(
reachable(y) < 'rea,chable(oz
normal(a) < normal(3) A

)
“synchronized ("exp) | reachable(ry) < reachable(c),
Tstm normal(a) < normal(7)

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 4



“can exit” and “can throw”

Definition. An abruption at position o can exit stm, if for every

substatement ’(7s finally °b) of stm such that o is in s the
predicate normal(0) is true.

Definition. A statement stm can throw an exception £/, if one of the
following conditions is true:

» [/ = RuntimeException or £/ = Error

= st contains a reachable statement “throw 6exp such that
T () = F, the exception F is not caught in stm and an abruption at
position v can exit stm

= stm contains a reachable method invocation “c¢/m(exps) such that
E occurs in the throws clause of m in ¢, the exception Z is not
caught in stm and an abruption at position o can exit stm.

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 5



The rules of definite assignment (JLS §16)

T € before(a)
The variable z is definitely assigned before the evaluation of the
statement or expression at position «.

T € after(q)
The variable z is definitely assigned after the statement or expression
at position & when this statement or expression completes normally.

r € true(o)
The variable z is definitely assigned after the evaluation of the
expression at position &v when this expression evaluates to true.

z € false(a)
The variable z is definitely assigned after the evaluation of the
expression at position v when this expression evaluates to false.

T € vars(a)
The position « is in the scope of the local variable, formal parameter
or catch parameter x.

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland



“true true(a) = before(a), false(a) = vars(a)
“false true(a) = vars(«), false(a) = before(a)
@1 5e) before(B) = before(a),

true(a) = false([3), false(a) = true()
O‘(ﬁeo‘.”el : 562) before(B) = before(a),

before(y) = true([3), before(d) = false(3),
true(a) = true(y) N true(o),

false(a) = false() N false(0)

Constraint: 7 (o) = boolean

Constraint: after(a) = true(a) N false(a)

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 7



(P ey &l ey) | before([) = before(a), before(~) = true(3),
true(a) = true(y), false(a) = false(3) N false(~)

YPep || Vey) | before(3) = before(a), before() = false(3),
true(«) = true(3) N true(vy), false(a) = false(7)

Constraint: If 7 («) = boolean and “exp is of a different kind, then
true(a) = after(a) and false(a) = after(a).

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 8



“loc after(a) = before(a), loc € before(a)
“lit after(a) = before(a
Yloc = e) before(

) = before()oz), loc € vars(a),

YPey? Ve : Oey)

g
after(a) = after() U {loc}
o

(0) = before(a), before(y) = true((),
before(0) = false([3),
= after(y) N after(o)

Copyright (© 2002 Robert F. Stark, Compu

)
after(a) = before(a)

ter Science Department, ETH Zirich, Switzerland 9



Constraints for an expression
ﬁlewpl, . ﬂ"ewpn:

m before((31) = before(a),
m before((,41) = after(G;) fori=1,...,n —1,
m after(a) = after(Gp).

“exp with direct subexpressions

Expression at position «

Direct subexpressions of «

“(uop " exp)

0%

(7 expy bop T expy)
(c.f ="exp)
(
(c.m

o

Q

ﬁlempl, . ,mexpn)

0%

(exps))

6656}?

5exp1, Texpo

ﬁexp

ﬁlewpl, . ,%expn
7 (eaps)

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland



Expression at position o

Direct subexpressions of «

“(Pexp instanceof c)

“((¢) " eap)
“(Vexp.c/f)
“(Teapy.c/f =7 expo)
“(Vexp.c/m’ (exps))
“new c.c/m"(exps)
(T exp [ expy))
“(Vexpy [V expo) =
Y(new A["Lexpy] . ..

eaps)

Copyright (© 2002 Robert F. Stark, Computer Science

[5”6xpn] ...

/)

Heap

Yeap

Heap

Teapy, 7 exps
Yexp, 7 (exps)
5 caps)

& exp1, | expo

0 ETP3

) ﬁn 6$pn

& expy, | expy,
ﬁlexpl, .

Department, ETH Ziirich, Switzerland 11



.
)

after(a) = before(a)

“(Yexp;)

before(3) = before(a), after(a) = after(3)

“Oigtmy ... Pngtmy,)

before(B1) = before(a),
before(B;41) = after(F;) fori =1,...,n—1,
after(a) = after(Bn) N vars(«)

vif (Yexp) T stmy

else 5stm2

before(3) = before(a),

before(vy) = true([3), before(d) = false([3),
after(a) = after(y) N after(d)

“while ("exp) stm

)
before(3) = before(a), before(y) = true([),
after(a) = false(3)

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland



Definite assignment for statements (continued)

Yab: " stm before(B) = before(a),
after(a) = after(ﬁ) N break ([, lab)

“break lab; after(a) = vars(a

) )
“continue lab;| after(a) = vars(a)
“return: after(a) ars(c)
(3) = efore(oz), after(a) = vars(a)
(B) = before(a), after(a) = vars(«)

“return ﬁexp; before

“throw ezp: before

Definition: = € break(a, lab) <=
=z is in before([3) for each statement Ybreak lab inside the statement

at position «v that can exit o and

=z is in after(3) for each statement “(s finally b) inside v such
that s contains a break [ab that can exit «.

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 13



Ytry Yblock
catch (Fjx) "1block

catch (Fyp xy) "mblocky,

before(B) = before(a),
before(v;) = before(a) U {x;},
after(a) = after(3) N ﬂlgign after(y;)

Y(Pstm finally 7block)

before(3) = before(a),

before(y) = before(a),

after(a) = {z € after(B) |

there is no z = exp in 7block} U after(~)

“synchronized ("ezp)

Tstm

before(B) = before(a),
before(y) = after((),
after(a) = after(y)

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 14



Run-time compatible

Definition. A C B :<= one of the following conditions is true:

= A and B are primitive types and A = B
= A and B are reference types and A < B

Lemma:

slf AC Band BC C, then AC C.
mlf AC Band BC A, then A = B.
IAHEBH@AEB

Definition. f is a frame in state n of thread ¢, iff one of the following
conditions is true:

nf = (methg  restbody,l, pos,., localsf{)

= f is an element of frames,!

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 15



Reference is used in a state

Definition. A reference ref is used in state n, iff one of the following
conditions is true:

= there exists a field ¢/f such that globals,(c/f) = ref
= there exists an 7 and a field ¢/f such that getField,(r, c/f) = ref
= there exists an 7 and an ¢ € N such that getElement,(r, i) = ref

= there exists a frame (_, restbody™, , locals™) in state n of a thread ¢
and one of the following conditions is true:
— there exists a variable [oc such that locals*(loc) = ref
— there exists a position « such that restbody™ /o = ref
— there exists a position « such that restbody™ /o = Return(ref)
— there exists a position « such that restbody™ /o = Exc(ref)

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 16




Theorem: Java is type safe

Theorem. Assume that (meth™, restbody™, pos™, locals™) is a frame in
state n of thread ¢. Then the following invariants are satisfied:

(defl) before(pos™) C dom(locals™).
(def2) If restbody™/pos™ is normal, then after(pos™) C dom(locals™).
(def3) If restbody™/pos™ = True, then true(pos™) C dom(locals™).

(defd) If restbody™/pos™ = False, then false(pos™) C dom(locals™).

(defb) If restbody™/pos™ = Break(l), then
break(pos™, 1) C dom(locals™).

(defb) If the frame is not the current frame of ¢ and body(meth™*)/pos*
is a method invocation then after(pos™) C dom(locals™).

(reach) reachable(pos™).

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 17




Theorem: Java is type safe (continued)

(norm) If restbody™ /o = Norm, then normal(c).

(val) If restbody™ /v is a value of type B, then B E 7 («), where 7 ()
is the compile-time type of position « in body(meth™).

(undef) The constant undef does not occur in restbody™.
(locl) If x € dom(locals™), then locals™(z) € Val.

(loc2) If pos™ is in the scope of a local variable declaration of a
variable z of type A and = € dom(locals™), then locals™(x) is a
value of type B C A.

(loc3) If pos™ is in the scope of a formal parameter z of type A, then
locals™(z) is a value of type B C A.

(loc4d) If pos™ is in the scope of a catch parameter z of type F, then
locals™(z) is a value of type I’ <}, F.

(loch) If pos™ is in class A and pos™ is in the body of an instance
method or in the body of a constructor, then locals*(this) is a value
of type B =}, A.

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 18



Theorem: Java is type safe (continued)

(abrl) If restbody™ /o = Break(l), then « is in a statement with label [
and body(meth™)/a contains a reachable break lab which can exit

body(meth™)/ .

(abr2) If restbody™ /oo = Continue(l), then v is in a while statement
with label /.

(abr3) If restbody™ /v = Return, then v is in the body of a method
with return type void.

(abrd) If restbody™ /o = Return(v), then « is in the body of a method
with return type A and v is a value of type 5 C A.

(abrb) If restbody™ /v = Fxc(ref), then classOf (ref) = F,
E =<}, Throwable, £ is allowed at position v and body(meth™)/a
can throw an exception F' such that F =<y, F.

Copyright (©) 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 19



Theorem: Java is type safe (continued)

Assume that (_, restbody™, 3, ) is the parent frame of

(¢/m,_,_, locals™) in state n of thread ¢. Then the dynamic method
invocation chain has the following properties:

(chainl) If the return type of ¢/m is A and A # void, then
T(5) = A

(chain2) If £ occurs in the throws clause of ¢/m, then F is allowed
at position /7.

(chain3) If ¢/m is a constructor and restbody™ /5 = ref.c/m(_), then
locals™(this) = ref.

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 20




Theorem: Java is type safe (continued)

The following global invariants are true in state n:

(global) If ¢c/f is a static field of declared type A, then
globalsy(c/f) is a value of type B C A.

(ref) If a reference ref is used in state n, then ref € dom(heapy,).

(objectl) If heapy,(ref) = Object(c, fields), then ¢ is a non abstract
class and dom(fields) = instanceFields(c).

(object2) If heapy(ref) = Object(_, fields), fields(f) = v and f is of
declared type A, then v is a value of type B C A.

(array) If heapn(ref) = Array(A, elems) and elems(i) = v, then v is
a value of type B C A.

Copyright (© 2002 Robert F. Stark, Computer Science Department, ETH Ziirich, Switzerland 21




