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1 Introduction

In this paper we give an answer to the often asked question what charac-
terizes the Abstract State Machines (ASM) method among the practical and
scientifically well-founded systems engineering methods. The question is jus-
tified since the ASM method, which has been developed during the 1990’ies
(see [23] for a historical account), is a latecomer among other well-known
rigorous system design and analysis methods, including what misleadingly is
called “formal” methods. For answering the question, we assume the reader to
have some basic knowledge of what formal methods are and what they intend
to achieve, but we sketch the major ingredients of the ASM method.1

We do not speak about special-purpose techniques, like static analysis,
model checking etc., which draw their success from being tailored to particu-
lar types of problems. The discussion is focussed on wide-spectrum methods,
which assist system engineers in every aspect of an effectively controllable
construction of reliable computer-based systems. In particular such methods
have to bridge the gap between the two ends of system development:

the human understanding and formulation of real-world problems,
the deployment of their algorithmic solutions by code-executing machines
on changing platforms.

The activities these development disciplines have to support cover the wide
range from requirements capture and analysis to writing executable code,
including verification, validation (testing), documentation and maintenance
(change management). As a consequence a scientifically rigorous approach,
which enhances best engineering practice by adding mathematical rigour to
it, calls for a smooth integration, into traditional hw/sw-system engineering

1 However, this paper is neither an introduction to the ASM method nor a survey
of its achievements. For the former see [28], for the latter [26], or chapters 2 and
9 of the AsmBook [45].
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procedures and notations, of multiple ways to achieve various degrees of cer-
tifiable system trustworthiness and quality assurance.

Among such approaches the ASM method is characterized by providing a
simple practical framework, where in a coherent and uniform way the system
engineer can adopt a divide-and-conquer approach, i.e.

systematically separate multiple concerns, concepts and techniques, which
are inherent in the large variety of system development activities,
freely choose for each task an appropriate combination of concepts and
techniques from the stock of engineering (including formal) methods, at
the given level of abstraction and precision where the task occurs.
As will become clear in the following sections, not a single ingredient of the

ASM method is original. What is unique is the simplicity of the method and
the freedom it offers the practitioner to choose for each problem an appropri-
ate combination of concepts, notations and techniques, which are integrated
by the framework in a coherent way as elements of a uniform mathematical
background. Among the examples we will discuss are the following:

abstract states, which can be richly structured, possibly unbounded or
even infinite, as known from the theory of abstract data types and alge-
braic specifications [85, 78, 61, 9, 10], VDM [66], Z [103], COLD [65],
abstract instructions for changing states (high-level operational definition
of state changes by guarded assingments), as familiar from pseudo-code
notation, Virtual Machines2 and later RAISE [73],
synchronous parallel execution model, including conditional multiple as-
signments as present also in UNITY [86] and COLD [64],
locality principle as known from programming languages,
functional definitions, as in mathematics and functional programming,
declarative (axiomatic) definitions, as known from logic and declarative
programming and specification languages,
refinement concept, generalizing the method which has been introduced
by Wirth [112] and Dijkstra [58] and adapted to numerous formal speci-
fication methods [11, 89, 12, 53], including Z [113, 57] and B [1],
decomposition and hierarchy concepts, as familiar from automata theory
and layered architectures,
function classification into monitored, controlled, shared etc., as known
from programming and Parnas’ SCR method [94, 80],
verification of model properties by proofs at the needed level of precision:
sketched, detailed, machine assisted (interactive or fully automated),
simulation by model execution, e.g. for model checking invariants, run-
time verification of properties, testing of runs (scenarios).
The combined separation and integration capabilities of the ASM frame-

work, which allow the engineer to tailor his methods to the problem under in-
2 For example in Cremers’ and Hibbard’s data spaces [52] the operational transfor-

mations of abstract states are described by means of static functions, which form
what is called there an information structure.
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vestigation, are responsible for the successful applications of the ASM method
in a variety of academic and industrial projects. They range from the design
and analysis (read: verification and validation) of programming languages,
computer architectures, protocols and web services to the design, reengineer-
ing and validation of industrial control systems and the definition of industrial
standards. Some examples are highlighted in Sect. 7.

Among the different development and analysis tasks, which can be coher-
ently linked together in the ASM framework, we discuss the following ones:

Design. The design activities split into three major groups:
– Ground model construction, i.e. definition of a system blueprint that

can be justified to correctly capture the requirements. This is sup-
ported by the ASM ground model technique explained in Sect. 4.

– Model refinement, reflecting one by one the various design decisions,
which lead from the ground model to code. A rigorously controllable
discipline of stepwise adding implementation details is supported by
the ASM refinement method explained in Sect. 5.

– Model change, a combination of the ground model construction and
refinement task, which uses the hierarchy of models constructed dur-
ing the transformation of the ground model into code. When change
requirements occur, this hierarchy is analyzed to determine the level
starting from where new refinements are needed to traceably incor-
porate the requested changes. Changing the models may trigger also
new analysis tasks.

Analysis. The goal of the analysis activities is to provide a documentation
and justification for the steps that lead from the requirements to the
ground model and its implementation. This is needed for two purposes: a)
an evaluation (read: explanation, verification, validation) of each design
decision by repeatable procedures, b) change management and reuse of
models. The analysis activities split into two major groups:

– mathematical verification of system properties, by a variety of rea-
soning techniques, applicable to system models at different levels of
precision and under various assumptions, e.g.
· outline of a proof idea or proof sketch
· mathematical proof in the traditional meaning of the term
· formalized proof within a particular logic calculus
· computer-checked (automated or interactive) proof

– experimental validation of system behaviour through simulation and
testing of rigorous models, at various levels of abstraction, like system
test, module test, unit test, simulation of ground model scenarios, etc.

The core of the ASM method is based upon the following three concepts
we are going to explain in the following sections, starting with an illustration
by three simple examples in Sect. 2.
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Notion of ASM, a mathematically precise substitute for the intuitive no-
tion of high-level algorithmic processes (including what software engineers
call pseudo-code) and for the nowadays omnipresent concept of Virtual
Machines (VMs). Technically ASMs can be defined as a natural generaliza-
tion of Finite State Machines (FSMs) by extending FSM-states to Tarski
structures. Tarski structures, also called first-order or simply mathemat-
ical structures, represent truly abstract data types. Therefore, extending
the special domains of FSM-computations to these structures turns finite
state machines into abstract state machines, which work over possibly
richly structured yet abstract states, as is explained in Sect. 3.
ASM ground models as accurate high-level descriptions of given system re-
quirements. They are expressed at a level of abstraction that is determined
by the application domain and provide a requirements documentation that
is to be used as authoritative reference for an objective evaluation of the
requirements and the following further system development activities. The
ground model must be kept synchronized with those activities, namely:3

– detailed design,
– design evaluation and quality assurance via analysis, including testing

and an inspection and review process, focussed on certifying the con-
sistency, correctness and completeness properties of the system that
are needed to guarantee the desired degree of reliability,4

– system maintenance, including requirements change management.
In Sect. 4 we discuss the ASM ground model method further.
ASM refinements, linking the more and more detailed descriptions at the
successive stages of the system development cycle in an organic and ef-
fectively maintainable chain of rigorous and coherent system models. The
refinement links serve the purpose to guarantee that the system proper-
ties of interest are preserved in going from the ground model via a series
of design decisions to its implementation by the code—and to document
this fact for possible reuse during maintenance and in particular for change
management. We discuss the concept of ASM refinement further in Sect. 5.

The simple mathematical foundation of ASMs as FSMs working over ar-
bitrary data types makes it easy for practitioners to understand and work
with the concept. It also allows one to exploit for the ASM method the uni-
form conceptual and methodological framework of traditional mathematics,

3 The definition of the ground model may change during the design phase, namely if
it is recognized during the implementation process that some important feature is
missing in the ground model or has to be changed there. The process of building a
ground model is iterative; it ends only with the completion of the design and may
be re-opened during maintenance for change management. But at each moment
of the development process, there is one ground model, documenting the current
understanding of the problem the system has to solve.

4 Note that the evaluation of the design against the ground model also provides an
objective, rational ground for settling disputes on the code after its completion.
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where one can consistently relate standard notions, techniques and notations
to express any system features or views.5 Having as background for the ASM
method not just one a priori chosen formal language and associated proof cal-
culus, but the full body of usual mathematical notations and techniques “sup-
ports a rigorous integration of common design, analysis and documentation
techniques for model reuse (by instantiating or modifying the abstractions),
validation (by simulation and high-level testing), verification (by human or
machine-supported reasoning), implementation and maintenance (by struc-
tured documentation)”[45, pg.1]. We discuss this in Sect. 6 and illustrate it
there by a characterization of Event-B Machines as a family of specialized
ASMs. In Sect. 7 we point to some application highlights of the ASM method.

2 Illustration by Examples

We illustrate here ASMs by three simple examples for a) the construction
of ASM ground models, which can be shown to capture the requirements
in application problem terms, b) their refinements, which can be proven to
correctly reflect both b1) the implementation details and b2) the changes
in the models when changes in the requirements come along. The examples
are taken from [82], a book which explains very well the various descriptions
one has to make and to fit together into a correctness argument, in order to
show that under certain assumptions on the environment—typically reflecting
the relevant domain knowledge—the behavior of the specification satisfies the
requirements. What we call a ground model is a closed model. It includes
both the specification and the statement of the environmental assumptions
and domain knowledge that are needed in a correctness argument.

2.1 Sluice Gate Control

The following problem description is taken from [82, p.49], the italics are ours.

A small sluice, with a rising and falling gate, is used in a simple
irrigation system. A computer system is needed to control the sluice
gate: the requirement is that the gate should be held in the fully open
position for ten minutes in every three hours and otherwise kept in
the fully closed position.
The gate is opened and closed by rotating vertical screws. The screws
are driven by a small motor, which can be controlled by clockwise,
anticlockwise, on and off pulses.

5 Thus the ASM method satisfies Parnas’ request [93] to base the foundation for
a reliable software engineering discipline on standard mathematics, avoiding the
introduction of any new specification language or new theory of language seman-
tics.
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There are sensors at the top and bottom of the gate travel; at the top
it’s fully open, at the bottom it’s fully shut.
The connection to the computer consists of four pulse lines for motor
control and two status lines for the gate sensors.

Ground Model. To simplify the correctness argument to be provided for
the ground model, we stick to first modeling only the user requirements for
the equipment, abstracting from the details about the screws, the motor,
the sensors and the pulses. This reduces the system to an abstract device
which switches from a fullyClosed phase to a fullyOpen phase whenever the
time closedPeriod has elapsed, and back when openPeriod has elapsed. To
separate the issues related to (an implementation of) the timing model from
the analysis of the user requirements, we use two so-called monitored locations
(read: array or instance variables) Passed(openPeriod), Passed(closedPeriod).
Their truth values are assumed to be controlled correctly by the environ-
ment and to indicate when the intended time periods have passed, here
openPeriod = 10 min for fullyOpen and closedPeriod = 3 hrs − 10 min for
fullyClosed . We interpret the term ‘for ten minutes in every three hours’ as ‘at
the end of the closure period’ and being included in the total period = 3 hrs.
This leads to the model in Fig. 1, which is displayed in the usual FSM-style
graphical notation using circles for phases (also called control states or in-
ternal states), rhombs for test predicates (also called guards) and rectangles
for actions of submachines (for a definition of these control state ASMs see
Sect. 3). Due to the abstraction from the motor and the sensors, the subma-
chines to Open respectively Shut the gate do nothing and are included only
to hold the place for the refinement by motor actions. Assuming appropriate

Fig. 1. SluiceGateGround Model

conditions on initial states, this abstract machine SluiceGateGround can
clearly be justified, in terms of the gate being kept open (read: the device
being in state fullyOpen) for openPeriod and closed (read: the device being
in state fullyClosed) for closedPeriod , to correctly and rigorously reflect the
above stated requirement.
A refinement step. The first refinement step reflects the domain knowledge
about a screws driving motor and the sensors. We know that the motor can be
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set on and off and has two move direction values clockwise (say to raise the
gate) and anticlockwise (say to lower the gate). It is in these terms, namely
of two so-called controlled locations motor, dir which can be updated to any
of their values in {on, off } respectively {clockwise, anticlockwise}, that the
submachines Open and Shut are refined by using three motor action subma-
chines StartToRaise, StartToLower, StopMotor. The control of these
actions uses the environmental gate status information that is obtained from
the two sensors. The indication by the sensors that the gate travel has reached
its top (fully open) respectively bottom (fully closed) position is formalized
by two monitored locations Event(Top) respectively Event(Bottom) taking
boolean values. The time assumed for the execution of the new submachines
is taken into account by refining the definition of closedPeriod and openPeriod .
These two locations are examples of what we call derived locations, since their
value is defined in a fixed manner (here by an equation) in terms of the values
of other locations. This leads to the refinement SluiceGateMotorCtl of
SluiceGateGround as defined in Fig. 2, together with the following defini-
tion of abstract motor actions:6

StartToRaise = dir := clockwise
motor := on

StopMotor = (motor := off )

StartToLower = dir := anticlockwise
motor := on

closedPeriod = period
−(StartToRaiseTime + OpeningTime + StopMotorTime)
−(StartToLowerTime + ClosingTime + StopMotorTime)

Fig. 2. SluiceGateMotorCtl refinements of motor actions

The correctness proof for this refinement uses the following Input Locations
Assumption, which relates what happens at the environmental sensors to the
model events:

When the top respectively bottom of the gate travel is detected by the
corresponding sensor, Event(Top) respectively Event(Bottom) becomes
true in SluiceGateMotorCtl.

6 In general, in an ASM all updates are executed in parallel, though in this example
also a sequential reading will do.
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Another refinement step. Here we introduce the four status lines con-
necting the controller and the physical equipment. The single abstract ma-
chine SluiceGateMotorCtl is replaced by a so-called multi-agent ASM
SluiceGate consisting of two abstract machines, an environmental machine
Pulses describing the equipment actions when pulses appear and a software
machine SluiceGateCtl. In the definition of Pulses we use the notation
upon Event do Action for if Event then Action.

Pulses = upon Event(Clockwise) do dir := clockwise
upon Event(AntiClockwise) do dir := anticlockwise
upon Event(MotorOn) do motor := on
upon Event(MotorOff ) do motor := off

SluiceGateCtl is the same as SluiceGateMotorCtl except for a
refined submachine StartToRaise, which has to Emit(Pulse(Clockwise))
and Emit(Pulse(MotorOn)); similarly for StartToLower,StopMotor.

SluiceGateCtl = SluiceGateMotorCtl where
StartToRaise = Emit(Pulse(Clockwise))

Emit(Pulse(MotorOn))
StartToLower = Emit(Pulse(AntiClockwise))

Emit(Pulse(MotorOn))
StopMotor = Emit(Pulse(MotorOff ))

The correctness proof for this refinement step, which relates runs of the
abstract and the refined machine, relies upon the following assumptions:

Pulse Output Assumption: each Emit(Pulse(p)) yields Event(p) to hap-
pen in the environment.
Input Locations Assumption, reinterpreted to reflect that the information
detected by the sensors arrives at SluiceGateCtl as input Event(Top),
Event(Bottom) via two status lines.

We also use the usual convention that events are consumed when they trigger
a rule to be fired. Note that the refinement type is (1, 2), meaning that every
segment consisting of one step of SluiceGateMotorCtl is refined by a
segment of two corresponding steps of SluiceGate, namely of one step of
the software machine followed by one step of the environment machine.

Admittedly this is an elementary example. The very same technique has
been applied in [40, 88] to successively refine an ASM ground model for a
robot controller to a provably correct C++ control program.

2.2 One-Way Traffic Light Control

This example is about one-way traffic control:

. . .the traffic is controlled by a pair of simple portable traffic light
units. . .one unit at each end of the one-way section. . .connect(ed). . .to
a small computer that controls the sequence of lights.
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Each unit has a Stop light and a Go light.
The computer controls the lights by emitting RPulses and GPulses,
to which the units respond by turning the light on and off.
The regime for the lights repeats a fixed cycle of four phases. First,
for 50 seconds, both units show Stop; then, for 120 seconds, one unit
shows Stop and the other Go; then for 50 seconds both show Stop
again; then for 120 seconds the unit that previously showed Go shows
Stop, and the other shows Go. Then the cycle is repeated.

Ground Model. From the user perspective the problem is about two light
units, each equipped with a StopLight(i) and a GoLight(i) (i = 1, 2) which can
be set on and off . In the ground model we treat the latter as controlled loca-
tions to which a value on or off can be assigned directly, abstracting from the
computer emitting pulses. We also abstract from an explicit time computation
and treat the passing of time by monitored locations Passed(timer(phase)),
where the function timer defines the requested light regime. The monitored
locations are assumed to become true in the model whenever (and only when)
timer(phase) has elapsed in the environment since the current phase was en-
tered.

For definiteness let us assume that the sequence of lights starts with
both StopLight(i) = on and both GoLight(i) = off . Let us call this phase
Stop1Stop2. After timer(Stop1Stop2) has passed, the control executes a sub-
machine SwitchToGo2 and then enters phase Go2Stop1 (say), followed
upon Passed(timer(Go2Stop1)) becoming true by a SwitchToStop2 to en-
ter phase Stop2Stop1, then a SwitchToGo1 to enter phase Go1Stop2 and
finally a SwitchToStop1 to return to phase Stop1Stop2. This behavior of
the equipment is rigorously expressed by the sequence of four phase chang-
ing ‘ASM rules’ in Fig. 3, defined again in FSM-like notation and using the
submachine macros defined below.

The four control states correspond to the required combinations of ‘show-
ing’ Goi and Stopj , reflecting that in the above requirements description the
values of StopLight(i),GoLight(i) appear to be complementary:

Stop i means StopLight(i) = on ∧GoLight(i) = off
Go i means GoLight(i) = on ∧ StopLight(i) = off

The complementarity of StopLight(i),GoLight(i) values implies that switch-
ing them can be done in parallel. Thus the two submachines SwitchToGo,
SwitchToStop are copies of one machine (which only later will be refined
to different instantiations introducing a sequentialization, see below):

SwitchToGoi = SwitchToStopi = Switch(GoLight(i))
Switch(StopLight(i))

where Switch(Light) = (Light := Light ′) (′ for complement)

The light regime (50,120,50,120) associates to each phase its length (in terms
of some time measurement), represented by function values timer(phase). Fol-
lowing the requirements, for this ground model the function is assumed to be



10 The ASM Method

Stop1

Stop2

Stop2

Stop1

Go2

Stop1

Go1

Stop2

Passed 

timer(phase)

Passed

timer(phase)

Passed

timer(phase)

Passed

timer(phase)

Switch

ToGo2

Switch

ToStop2

Switch

ToGo1

Switch

ToStop1

Fig. 3. 1WayTrafLightGround Model

static (set before running the machine). A change request to include the pos-
sibility to configure the time intervals associated to the phases would make it
dynamic and controlled by the configuration machine.

timer(phase) = case phase of Stop1Stop2 : 50sec
Go2Stop1 : 120sec
Stop2Stop1 : 50sec
Go1Stop2 : 120sec

With these definitions and assumptions, 1WayTrafLightGround can
be justified in application domain terms to realize the desired cyclic light
sequence.
A refinement step. We used for the ground model a mixed behavioral and
declarative instead of a purely declarative observational description to easen
the correctness proofs for adding further details, which eventually should
transform the abstract ground model into executable code. In a first re-
finement step we introduce the software interface feature that relates R/G
Pulses of the computer to turning the light units on/off. As in the sluice gate
control example, this refinement step replaces the single abstract machine
1WayTrafLightGround by a multi-agent ASM 1WayTrafLight con-
sisting of an environmental pulse-triggered machine Pulses and a software
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machine 1WayTrafLightCtl, obtained from 1WayTrafLightGround
by refining the submachines SwitchTo...i to emitting pulses:

1WayTrafLightCtl = 1WayTrafLightGround where
forall i ∈ {1, 2} SwitchTo...i = Emit(RPulse(i))

Emit(GPulse(i))

Pulses = forall i ∈ {1, 2}
upon Event(RPulse(i)) do Switch(StopLight(i))
upon Event(GPulse(i)) do Switch(GoLight(i))

The link between 1WayTrafLight and 1WayTrafLightGround is pro-
vided by the following Pulse Output Assumption, which relates the software
actions to what happens in the environment:

Emit(RPulse(i)) yields Event(RPulse(i)) to happen in the environment
Emit(GPulse(i)) yields Event(GPulse(i)) to happen in the envirnoment
Using this assumption, it is easy to prove the refinement to be correct,

observing that each software control step of the refined SwitchTo...i triggers
an environment step of Pulses, which switches the corresponding lights. Thus
one ground model step is correctly refined to two steps in the refined multi-
agent machine ((1, 2)-refinement).
Change requirement. We illustrate here two simple change requests, which
lead to reusing the abstract machines defined above. The first one is:

use simultaneous Stop and Go lights to indicate ‘Stop, but be prepared
to Go’ [82, p.111]

To adapt the models to this request for change, it suffices to give up the view
that the StopLight(i),GoLight(i) values are complementary to each other
and to refine the SwitchToGoi submachines by a sequentialized version.
Everything else is kept unchanged in both the above ground model and its
refinement. With this instantiation of SwitchToGoi , it should be clear how
to show that the new ground model correctly reflects the changed requirements
and how to prove that it is correctly refined by the new refined model.7

SwitchToGoigrd =
GoLight(i) := GoLight(i)′ seq StopLight(i) := StopLight(i)′

SwitchToGoiref =
Emit(GPulse(i)) seq Emit(RPulse(i))

Another typical change request could be to add a simultaneous Stop and
Go lights period (change time) of say 10 seconds. This comes up to refine
SwitchToGoi from an atomic to a durative action, leaving everything else

7 The definition of the seq constructor in the context of the parallel ASM execution
model is defined in [44].
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unchanged. A natural way to do this is to introduce an intermediate con-
trol state WaitToGo between the executions of Switch(GoLight(i)) and
Switch(StopLight(i)), as indicated in Fig. 4. The new function chgTime in-
dicates the length of the WaitToGo phase, in the example 10 seconds.

Fig. 4. Refining SwitchToGo by Change Time

Admittedly, these reuse examples are rather elementary, but the method
is general. The reader who is interested in a more involved example may look
at [37, 68, 70, 69] for a reuse for C# and .NET CLR of the ASM models built
and analyzed in [106] for Java and the JVM.

2.3 Package Router Control

In this example we illustrate the use of a) the synchronous parallelism under-
lying the semantics of ASMs and b) an abstract event handling scheme. The
problem is about the control of a package router to sort packages into bins
according to their destinations and appeared in [81]. The formulation below
is copied from [82, p.147]8.

The packages carry bar-coded labels. They move along a conveyor to
a reading station where their package-ids and destinations are read.
They then slide by gravity down pipes fitted with sensors at top and
bottom. The pipes are connected by two-position switches that the
computer can flip (when no package is present between the incoming
and outgoing pipes). At the leaves of the tree of pipes are destination
bins, corresponding to the bar-coded destinations.
A package cannot overtake another either in a pipe or in a switch. Also,
the pipes are bent near the sensors so that the sensors are guaranteed
to detect each package separately. However, packages slide at unpred-
icatable speeds, and may get too close together to allow a switch to
be set correctly. A misrouted package may be routed to any bin, an
appropriate message being displayed . . .
The problem is to build the controlling computer . . . to route packages
to their destination bins by setting the switches appropriately, and to
report misrouted packages.

8 For reasons of space we leave out the operator commands to stop or start the
conveyor. Adding them would involve adding an operator machine.
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From the layout illustration in Fig. 5 one can recognize the elements of
the problem signature: a static tree structure whose nodes are decorated with
elements from various sets, namely PkgLabel , Pipe, Switch, Bin. Each of these

Fig. 5. Package Router Layout

domains is equipped with various functions. Assuming a unique association of
bar-coded labels to packages, the reader decodes elements l ∈ PkgLabel and
stores the obtained information into locations pkgId(l), dest(l). To separate
the decoding program from the control program, we consider these locations
as static for the ground model.

Each p ∈ Pipe comes with locations inSensor(p) outSensor(p) to signal
package passing events. Elements sw ∈ Switch come with a controlled location
pos(sw) indicating the current value of the switch position, right or left . To
be able to correctly set pos(sw) at runtime to reach a given bin b, a static
function dir with values dir(sw , b) ∈ {left , right ,none} is needed indicating
whether there is a path from sw to b and in the positive case where to direct
sw for taking this path.

Bin comes with a static function associating to every d ∈ Destination the
corresponding bin(d) where packages for that destination are requested to be
routed. It is needed to define the derived predicate MisroutedPkgInBin, which
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is defined to be true for a pair (l , b) if and only if the package identified by
pkgId(l) arrived in bin b, but bin(dest(l)) 6= b.

The static tree structure is defined by the root reader and successor loca-
tions that satisfy the following conditions:

succ(reader) ∈ Pipe
forall p ∈ Pipe succ(p) ∈ Switch ∪ Bin
forall sw ∈ Switch succ(left , sw), succ(right , sw) ∈ Pipe

Using these locations we can define the following derived successor location
for switches, which indicates its current, dynamically computed successor:

succ(sw) = succ(pos(sw), sw)

The information on no overtaking of packages can be formalized as first-in
first-out behavior of packages, using three types of queues:

queue(reader) of labels of packages whose label has been read, but which
did not yet enter the top pipe succ(reader)
queue(pipe) of labels of packages that entered the pipe at inSensor(pipe)
but did not yet exit it at outSensor(pipe)
queue(switch) of labels of packages that

– entered into switch at its entry point outSensor(pipe), where pipe is
the predecessor of switch

– did not yet exit at its end point inSensor(succ(switch))9

We define the control program ground model as a parallel composition of
five submachines, each concerned with transfering a package (label) from one
queue to the next one. The synchronous parallelism allows us to separate the
routing functionality from the decision about the concrete scheduling mecha-
nism needed for an implementation.

PackageRouter = IntoReader
FromReader2Pipe
FromPipe2Switch
FromSwitch2Pipe
FromPipe2Bin

Each of these submachines is triggered by an event, namely a package arriv-
ing at a sensor. It is represented by a predicate of the corresponding sensor
location. For a succinct notation we adopt the convention that events are
consumed by firing a rule guarded by this event, which saves us to repeat in
each rule body the update through which the event predicate is reset to false.
There are three types of events:

9 This is well-defined since by assumption, switch can be flipped only when there is
no package in it, i.e. succ(switch) and thereby the exit point of switch can change
only when queue(switch) is empty.
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Event(ArrPkgLab(l)) becomes true when the reader has decoded the bar-
code of a package into its associated label l ,
for any sensor , EventOn(sensor) becomes true when the leading edge of
a package arrives at sensor ,
for any sensor , EventOff (sensor) becomes true when the trailing edge of
a package leaves the sensor behind.

The machine IntoReader simply enqueues a newly arrived package label.

IntoReader =
if Event(ArrPkgLab(l)) then Enqueue(l , queue(reader))

Labels of packages arriving in a pipe, from the reader or from a switch, simply
advance from the reader or switch queue to the queue of the pipe:

FromReader2Pipe =
if EventOn(inSensor(succ(reader))) then AdvanceFrom(reader)

FromSwitch2Pipe
forall sw ∈ Switch if EventOn(inSensor(succ(sw))) then

AdvanceFrom(sw)
where

AdvanceFrom(a) = Dequeue(queue(a))
Enqueue(fstout(queue(a)), queue(succ(a)))

When advancing labels of packages that leave a pipe to enter a switch, one
also has to determine the correct position of that switch for that package to be
routed correctly (if still possible). The correctness of the positioning subma-
chine comes from the definition of the static function dir and the assumption
in the requirements that a switch can be flipped only when no package is
present between its incoming and outgoing pipes.

FromPipe2Switch = forall p ∈ Pipe
if succ(p) ∈ Switch and EventOff (outSensor(p)) then

AdvanceFrom(p)
Position(succ(p), fstout(queue(p)))

where Position(sw , e) =
if Empty(queue(sw)) and dir(sw , bin(dest(e))) 6= none
then pos(sw) := dir(sw , bin(dest(e)))

Upon moving a package from a pipe into a bin, a submachine checks
whether this package has been misrouted.

FromPipe2Bin = forall p ∈ Pipe
if succ(p) ∈ Bin and EventOff (outSensor(p)) then

MoveToBin(p)
ReportMisrouting(fstout(queue(p)), succ(p))

where
MoveToBin(p) = Dequeue(queue(p))

Insert(fstout(queue(p)), succ(p))
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ReportMisrouting(l , b) =
if bin(dest(l)) 6= b then Display(pkgId(l), b)

The reader will have noticed that we left various submachines and auxiliary
functions unspecified, for example for queue operations or insertion of ele-
ments into bins, which we consider as generally understood or not critical for
the investigated problem. The ASM method allows the specifier to build mod-
els with holes, that is to leave parts of the specification either as completely
abstract or as accompanied by informal explanations. For proving proper-
ties of such models, appropriate assumptions have to be made for these not
furthermore specified parts and have to be proved once the holes are filled
by definitions. This pragmatic separation of definition and proof concerns is
an efficient technique to piecemeal solve complex problems, which is deeply
rooted in the tradition of mathematics.
Refining Position. Assume that the control program cannot access the
location pos(sw) directly, but only send a pulse to switch pos(sw). As in
the preceding examples this can be reflected by letting the switching be
done by an abstract machine Pulses triggered by a pulse, which is emit-
ted by a refined ASM Positionref . But one has to pay attention: the update
pos(sw) := dir(sw , bin(dest(e))) is executed also if its current value is already
dir(sw , bin(dest(e))), though by the semantics of ASMs this update will leave
pos(sw) unchanged. But switching changes the value anyway, so that for a
correct refinement it must be restricted to the case that the direction needed
for the newly arrived package is different from the one needed by the preceed-
ing package. One can include this additional guard condition either in the
abstract machine, so that the refinement becomes a pure data refinement, or
in its refined version.

Positionref (sw , e) =
if Empty(queue(sw)) and dir(sw , bin(dest(e))) 6= none

and pos(sw) = dir(sw , bin(dest(e)))′ then Emit(Pulse(sw))

Verification. The requirement for the control program, namely “to route
packages to their destination bins by setting the switches appropriately, and
to report misrouted packages”, does not state anything about the relation be-
tween correct routing and misrouting and when misrouting is to be expected.
Given that

reader and sensors are guaranteed to detect packages separately
packages cannot overtake in neither conveyor nor pipes nor switches

the following can be proved for PackageRouter:

Lemma 1. Every package from the conveyor belt eventually arrives at some
bin b (if PackageRouter is not stopped before). If the package never meets
another package in a switch, then b is its associated destination bin. It the
package is misrouted, Display(pkgId(l), b) will be activated, where l is the
label associated to the package and sent by the reader to PackageRouter.
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This can be proved by an induction on the level(sw) of the switches the
package goes through in the router tree. For the induction step a stronger
hypothesis is needed for packages that never meet another package in a switch,
so that for the proof the correctness statement has to be strengthens as follows:

For every package that never meets another package in a switch and for
every switch sw , the guard of Position(sw , l) is true when the package
enters sw and pos(sw) is correctly set to dir(sw , bin(dest(l))).

3 Enriching FSMs to ASMs

Following [22, 30] we start by analyzing Finite State Machines, recognizing
them as the archetype of Abstract State Machines10. In fact, from the practi-
tioner’s point of view it seems obvious that to accurately characterize Virtual
Machines, it suffices to extend FSM instructions from symbol-reading/writing
to reading and updating of arbitrarily structured abstract data. This idea di-
rectly leads to the simple concept of ASMs.

3.1 Generalizing FSM States

The well known interpretation of FSM instructions

in state i reading input a, go to state δ(i , a) and print output λ(i , a)

of Mealy automata (similarly for Moore automata) can be formalized as fol-
lows by simultaneous updates of a control state location (read: a variable)
ctl state and an output location out when an input event is present (read:
when the input location in is defined).11

MealyFsm(in, out , δ, λ) = if Defined(in) then
ctl state := δ(ctl state, in)
out := λ(ctl state, in)

Two restrictions one sees here are characteristic for the FSM computation
model, besides the strict separation of input and output:

only three locations are read resp. updated (per step): in, ctl state, out ,
only three special data types are used: finite sets of a) symbols representing
input/output (letters of an alphabet) and of b) abstract control states
representing a bounded memory (typically written as labels or integers).

10 The original definition of ASMs in [77] was motivated by a different goal: an
epistemological desire to generalize Turing’s thesis.

11 We consider here deterministic FSMs, since non-deterministic FSMs can be mod-
eled using the ASM choose construct described below. For the sake of simplicity
of exposition we suppose each input to be consumed by executing a transition,
technically speaking in to be a monitored function as explained below.
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ASMs result from withdrawing these restrictions and permitting a machine
in each step to read and update arbitrarily many, possibly parameterized,
locations whose values can be of arbitrary type. Consequently as rule guard an
arbitrary condition may be used, formulated in terms of the machine signature
and not restricted to the input-definedness predicate.

Stated differently, the notion of state is generalized from the three FSM-
locations holding FSM-specific values to an arbitrary set of updatable loca-
tions where values of whatever type reside, whether atomic or structured: ob-
jects, sets, functions, trees, etc. This flat view of state (read: abstract machine
memory) lends itself to standard methods for grouping of data into a modular
memory structure. A common method is to group subsets of data into tables,
via an association of a value to each table entry (l , (a1, . . . , an)), also called
location (think of it as an array variable). Here l plays the role of the name of
the table, the sequence (a1, . . . , an) the role of an entry, l(a1, . . . , an) denotes
the value currently contained in the table entry (l , (a1, . . . , an)). In logic such
a table is called the interpretation of a function or a predicate. The common
mathematical notion of structure, as explicitly defined by Tarski [108] and
since then in the center of the model theory branch of mathematical logic,
is defined as a set of tables. It represents the most general notion of struc-
ture which has come up in occidental science and thus is what we need for a
sufficiently general notion of Virtual Machine or ASM state.12 Via the view
of a Tarski structure as given by domains of objects coming with predicates
(attributes) and functions defined on them, there is also a close relation to
the object-oriented understanding of classes and their instances.

In accordance with the generalization of FSM states, consisting of three
locations, to an ASM state consisting of an arbitrary set of parameterized
locations, in one step an ASM can update simultaneously the value not only
of two or three, but of arbitrarily many locations. This generalizes the above
FSM-transition rules to guarded update rules (called ASM rules) of the fol-
lowing form:

if Condition then Updates

where Updates is a finite set of assignments of the form f (t1, . . . , tn) := t .
Such a view is also taken in [3, pg.52] “to completely separate, during

the design, . . . individual assignments from their scheduling”. Sets of guarded
update rules as above in fact constitute a normal form for a class of ASMs
which suffice to define every event-B model (see the event-B-model normal
form ASMs defined in Sect. 6.1) and to compute every synchronous UML
activity diagram [32].

A basic ASM is therefore defined by a finite set of ASM rules, which play
the role the instructions play for an FSM. They constitute a mathematical

12 This view of Tarski structures supports a generalization of Parnas’ table tech-
nique [94, 93] as a convenient notation for ASMs, as detailed in [21, 22].
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substitute for the intuitive concept of UML activity diagram transitions upon
Event do Action, defining actions as value changes of some locations.

The concept of computation (run) of an ASM is the same as for FSMs,
except that the possibility of having multiple locations updated in one step is
further enhanced by the following stipulation: an ASM, instead of executing
per step one rule as do FSMs, fires in each step all its rules whose guard
is true in the given state.13 This synchronous parallelism in an ASM step
helps the designer to make the independence of multiple actions explicit and
to avoid introducing irrelevant sequentializations of orthogonal features. For
asynchronous multi-agent ASMs it suffices to generalize the notion of run
from sequences of moves (execution of rules) of just one basic ASM to partial
orders of moves of multiple agents, each executing a basic ASM, subject to a
natural coherence condition, see [45, Def.6.1.1].

The general form of ASM rules no longer shows the particular struc-
ture determined by the control states i , j , . . . of an FSM, which however
is particularly useful for modeling control systems, protocols, business pro-
cesses and the like.14 We therefore proposed in [22] the name control state
ASMs for ASMs which keep at their top level the characteristic FSM control
states, as a means to model some overall status or mode guiding the exe-
cution of guarded synchronous parallel updates of the underlying rich state.
Formally, control state ASMs are ASMs where all the rules have the form
Fsm(i , if cond then rule, j ), standing for the following ASM rule (where rule
is supposed to also be an ASM rule):

if ctl state = i and cond then
rule
ctl state := j

To display such rules often the standard graphical notation for FSMs is used,
where circles represent the control states, rhombs the guard cond ition and
rectangles the rule body. See Fig. 1–Fig. 4.

For pragmatic reasons—ease of modeling real-life VMs—we are going to
indicate in the next subsection two further constructs to form basic ASM rules,
one which makes it possible to explicitly name forms of non-determinism and
one which enhances the parallelism of finitely many simultaneous updates.
Similarly we freely use other standard notations, where a rigorous definition
of their meaning can be given.

13 More precisely: to execute one step of an ASM in a given state S determine all
the fireable rules in S (s.t. Condition is true in S), compute all expressions ti , t
in S occuring in the updates f (t1, . . . , tn) := t of those rules and then perform
simultaneously all these location updates. This yields the successor state S ′ of S .

14 See the use of modes in [93] as a means to structure the set of states.
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3.2 Classification of Locations, Non-Determinism, Parallelism

An analysis of the different roles played by the locations and functions appear-
ing in an FSM yields what is known as the ASM classification of locations and
functions. Some locations or functions are static, meaning that their values do
not depend on the (dynamics of) states, e.g. the two FSM-functions δ, λ that
are defined by the FSM program. Static ASM locations can be given purely
functional or axiomatic definitions, as done for the locations timer(phase) in
Sect. 2.2. Thus ASMs provide a framework for a theoretically well-founded, co-
herent and uniform practical combination of abstract operational descriptions
with functional and axiomatic definitions.15

Locations whose values may depend not only on the values of their pa-
rameters, but also on the states where they are evaluated, are called dynamic.
Examples are the FSM-locations in, ctl state, out . These locations can have
four different roles:16

in is only read by the FSM and updated only by the environment. Such lo-
cations of an ASM M , that are only readable by the machine and writable
only by other machines or the environment, are termed monitored for M .
It is often convenient to describe their meaning for M axiomatically, by a
list of assumptions, thus relegating the proof for these assumptions to the
model of the other machine(s) where the computation of the monitored
locations takes place (divide-and-conquer technique).
out is only written by the FSM and read only by the environment. Such
locations of an ASM M , that are only writable by M and readable only
by other machines or the environment, are termed output locations of M .
ctl state is read and updated by an FSM. ASM locations that are readable
and writable only by M are called controlled locations of M .
ASM locations that are readable and writable by M and some other ma-
chine or the environment are called shared. Typically protocols are used
to guarantee the consistency of updates of such locations.
This classification distinguishes between the roles different machines (e.g.

the system and its environment) play in using dynamic locations for provid-
ing or updating their values. Monitored and shared locations represent two
general mechanisms to specify communication types between different ASMs.
For modularization purposes we also distinguish between basic and derived
ASM locations. Derived locations are those whose definition in terms of basic
locations is fixed and may be given separately, e.g. in some other part (“mod-
ule” or “class”) of the machine or by axioms, equations, etc. For an example
see the function succ(sw) in Sect. 2.3

15 This avoids the alleged, though unjustified and in fact destructive, dichotomy be-
tween declarative and operational design elements, which unfortunately has been
strongly advocated in the literature over the last thirty years. See the discussion
at the end of Sect. 6.2.

16 The naming is influenced by its pendant in Parnas’ Four-Variable-Model [93].
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Functions or predicates are called of a type if all their locations are of that
type. Selection functions constitute a particularly important class of moni-
tored functions, for which also the following special notation is provided to
make the inherent non-determinism explicit.

choose x with φ in rule

standing for the rule to execute rule for one element x , which is arbitrarily
chosen among those satisfying the selection criterion φ. Similarly, also the
synchronous parallelism which is already present in the execution of ASM
rules is extended by the following standard notation:

forall x with φ do rule

standing for the simultaneous execution of rule for every element x satisfying
the property φ.

4 ASM Ground Model Technique

The concept of ASM ground model goes back to [15, 16, 18, 19, 17, 20], where
it has been used to produce a faithful ASM model for the at the time to-be-
defined ISO standard of Prolog [35, 42]. We describe here the foundational and
technical characteristics of ASM ground models and refer for a more detailed
dicussion of the concept to [24, 29].

The goal of building a ground model is to turn given informal require-
ments into a clear, unambiguous, accurate, complete and authoritative refer-
ence document for their intended content. This document is to be used for
the evaluation, the implementation and possible changes of the requirements.
Ground models have to be formulated and analyzed at the level of abstraction
of the given application domain, prior to coding in any programming language.
In other words ground models are specifications that precisely and authorita-
tively define, in rigorous application domain terms and at the level of detailing
that is determined by the application, what the to-be-constructed software-
controlled system is supposed to do. Ground models constitute a “blueprint”
of the to be implemented piece of “real world”. In the semiconductor industry
they are named “golden models” [102, pg.26]. They represent what Brooks [48]
calls “the conceptual construct” or the “essence” of a software system, whose
definition precedes the development of its machine-managed representation
by code. It must be possible to justify such a definition as

consistent internally,
correct and complete with respect to the intuitions underlying the informal
requirements.
These three properties characterize specifications we call ground models.

To establish these properties, every available scientific or engineering tech-
nique must be usable. This includes inspection and review of the ground
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models to get the correctness and completenss properties checked by appli-
cation domain experts (or potential users) and system designers. They must
be enabled to use a combination of tool-supported simulation techniques—for
systematic experiments (model checking and testing) with the models—and
of mathematical verification techniques—to show the model to possess the
properties of interest, e.g. as part of a certification procedure.

In [29] we explain the meaning of these three basic properties in more
detail and show that to establish them needs a ground model language that
satisfies the following two properties.

The language is understood by all the parties involved. It mediates be-
tween the application world, where user and domain experts live, and
the world of mathematical models and software-intensive systems, where
software architects, programmers, testers, reviewers, maintenance persons
live.
The language provides means for a combined use of both model validation
by simulation (testing or model checking) and property verification by
mathematical proof.
The language of ASMs satisfies these conditions, clearly separating models

and their properties. It also permits to construct ground models with the
following three constituent attributes:

precision to satisfy the required accuracy exactly,
minimality, abstracting from details that belong only to the further design
and not to the application problem,17

simplicity to be understandable, rigorously analyzable and acceptable as
contract by domain experts, system architects, reviewers and testers.18

Thus ground models share all the properties Parnas advocates convincingly
for the software documentation provided by a good engineering discipline [93].
Obviously most of these properties—precision, accuracy, consistency, correct-
ness, completeness, authoritative character—must be preserved for the further
documentation produced on the way from ground models to code. This doc-
umentation of the detailed design process is provided by the ASM refinement
method we are going to shortly characterize in the next section.

One final word on the often heard claim that such a ground model con-
struction and analysis effort are an add-on one better avoids in an efficient
sofware engineering process. This claim reflects only the fact that numerous
current system development approaches consider the code as the true def-
inition of the system, excluding any other authoritative description of the

17 The minimality avoids to define ground models that restrict the problem solution
unnecessarily. It thus helps to leave the design space open as much as possible.

18 Experience in the following domains has confirmed that the ASM language is
understandable for domain experts without computer science education: rail-
way, control and telephony systems [31, 41, 49], business and aviation security
processes [34, 7, 13, 75, 76], linguistics [83, 90, 91, 54], biology [87], social sci-
ences [47, 46].
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system-to-be-built before it has been encoded. Among the typical, rather ex-
pensive effects of this view one finds the following: a) the final system may
not really do what it was required by the customer to do, b) the final sys-
tem is not well-understood (first of all not by the application domain experts
who have to work with it, but often also not by the software specialists who
face serious difficulties in analyzing, understanding and repairing unexpected
system breakdowns), c) the testing effort becomes overwhelming (without
the possibility of guaranteeing a certifiable standard of reliability), d) system
changes can become rather difficult to program and hard to control (e.g. with
respect to their compatibility with some previously guaranteed behavior), e)
maintenance becomes a nightmare once the persons who have led the devel-
opment are not available any more, etc. Careful construction and analysis of
ground models, combined with their stepwise detailing (refinement) to code, is
a means to prevent such undesired effects of missing conceptual application-
centric control over the system. Thus the effort spent on ground models is
highly compensated by what is saved in later development stages like testing,
inspection and maintenance. See also the remark at the end of Sect. 5 and [29]
for further discussion.

5 ASM Refinement Concept for Detailed Design

Parnas [93] explains why good software documentation must record the key
design decisions in a transparent and easily accessible way. Typically one has
to take numerous and often orthogonal design decisions when implementing a
ground model by code. Refined models document those design decisions that
do not belong to the application problem and therefore by the minimality
property do not appear in the ground model, but pertain to the implementa-
tion of the algorithmic problem solution.19 In fact some authors distinguish
between requirements specifications, documented by ground models, and de-
sign (also called technical) specifications with the frequent “explosion of ‘de-
rived requirements’ (the requirements for a particular design solution), caused
by the complexity of the solution process” [95, Fact 26].

We have generalized the classical refinement method [112, 58] to the math-
ematically precise notion of structure-transforming pseudo-code defined by

19 As already observed in Sect. 1 for ground models, this distinction does not per-
tain to the process of model building. The classification of what belongs to the
“essence” of the system and what only to its implementation may change during
the design process, typically when “implementation decisions are made before
specification is complete and the decisions can have a major effect on the further
specification of the system” [107, p.440]. The final definition, yielding a document
with the hierarchy of stepwise refined models, can be given only at the end of the
design process. This document too is typically re-opened during maintenance for
change management, where it has to be synchronized with the decisions taken for
the system change.
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ASMs (see [25] for a recent survey with further details). It allows the designer
to fine-tune any given abstract construct, which can be viewed as “the already-
fixed portion of a multi-step system development”, to the new details needed
to realize a design decision by an implementation, “the yet-to-be-done portion
of a multi-step system development” [107, p.438]. In this way the ASM refine-
ment method directly supports the practitioner’s view of an implementation
as “a multi-step process. Each stage of this process is a specification for what
follows” [107, p.440]. For this reason and differently from other refinement
notions in the literature, an ASM refinement step can simultaneously involve
both the signature (the data structure) and the control structure (the flow
of step-by-step operations). In fact, in choosing how to refine an ASM M to
an ASM M ∗, one has the freedom to define the following five concepts (see
Fig. 6):

a notion (signature and intended meaning) of refined state,
a notion of states of interest and of correspondence between M -states
S and M ∗-states S∗ of interest. Since certain intermediate M -states or
M ∗-states may be irrelevant (not of interest) for the refinement relation,
they are hidden by defining what are the corresponding states of interest,
namely those pairs of states in the runs one wants to relate through the
refinement. Usually initial states in M and M ∗ correspond to each other,
similarly for pairs of final states (if there are any),
a notion of abstract computation segments τ1, . . . , τm , where each τi rep-
resents a single M -step, and of corresponding refined computation seg-
ments σ1, . . . , σn , of single M ∗-steps σj , which in given runs lead from
corresponding states of interest to (usually the next) corresponding states
of interest (the resulting diagrams are called (m,n)-diagrams and the re-
finements (m,n)-refinements),
a notion of locations of interest and of corresponding locations, i.e. pairs
of (possibly sets of) locations one wants to relate in corresponding states,
a notion of equivalence ≡ of the data in the locations of interest; these
local data equivalences usually accumulate to a notion of equivalence of
corresponding states of interest.

Once the notions of corresponding states and of their equivalence have been
determined, one can define that M ∗ is a correct refinement of M if and only if
every (infinite) refined run simulates an (infinite) abstract run with equivalent
corresponding states. This ASM refinement concept generalizes other more
restricted refinement notions in the literature, as analysed in [96, 97], and
scales to the controlled and well documented stepwise development of large
systems.

In particular the ASM refinement method supports modular system de-
scriptions, including the modularization of ASM refinement correctness proofs
aimed at mechanizable proof support, for examples see [96, 106, 36, 43].

If the authoritative character of both ground and intermediate models is
taken seriously, then refined models support change management, namely by
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σ1 · · · σn︸ ︷︷ ︸
n steps of M ∗

-State S∗ S∗′

6

?

≡
6

?

≡

-State S S ′

m steps of M︷ ︸︸ ︷
τ1 · · · τm

With an equivalence notion ≡ between data in
locations of interest in corresponding states.

Fig. 6. The ASM refinement scheme

documenting natural points for possible design changes, e.g. to cover new
cases or to optimize a solution. Obviously this implies that to maintain the
series of models as documentation of a changed system, the models affected
by the change have to be updated and to be kept synchronized with the
ground model or other intermediate models, as already pointed out in the
preceeding footnote. If this implies additional modeling work, it saves work for
the coding during maintenance steps. The report [41] on the successful use of
the ASM method for an industrial reengineering project shows that in certain
situations, using a compiler from the underlying class of ASMs to executable
code can even make re-coding completely superfluous and keep maintenance
at the application-centric modeling level, where the changed requirements
are formulated. More generally the report illustrates that using the ASM
method produces no useless overhead: it typically shifts the most error-prone
part of the development effort from the late coding and testing phases to
the early modeling phase. This phase is dictated by high-level architectural
concerns, major design decisions, the need to achieve a correct overall system
understanding by experts and to lay the ground for a certification of the
required trustworthiness. But the amount of the overall system development
effort is essentially kept unchanged. See also the remark at the end of section 4.

Good intermediate models, refining an otherwise unaltered model to cap-
ture a to-be-realized design feature, provide descriptions which are easier to
understand than the code. This is helpful in particular when the maintenance
team has to take its information on the system behavior from the documen-
tation, after the development team has left. The examples in the literature



26 The ASM Method

(e.g. [43, 36, 41, 106]) and my own industrial experience show that, contrary
to Parnas’ claim [93] on the classical refinement method, good ASM refine-
ments do not lead to long or repetitive programs, but allow the designer to
succinctly document design decisions in a focussed and piecemeal manner, one
by one, avoiding any irrelevant detail or repetition.

6 Integration of Multiple Design and Analysis Methods

Due to the mathematical character and the simplicity of the conceptual frame-
work of the ASM method, the method can be combined in a semantically
coherent and natural way with any other accurate (scientifically well-defined)
design and analysis technique. We illustrate this in Sect. 6.1 by a characteriza-
tion of event-B models as a particular class of ASMs, coming with a specialized
refinement definition. In Sect. 6.2 we highlight the embedding of further (in-
cluding so-called semi-formal) approaches to system design and analysis into
the ASM method.

6.1 ASM-Characterization of Event-B Machines

Event-B models are presented in [2, 3, 6] as an extension of B-machines [1],
which have been used with success for the development of reliable industrial
control software in a variety of safety-relevant large-scale industrial applica-
tions [5]. A discussion of the foundational relations between B-machines and
ASMs can be found in [22, Sect.3.2]. We limit ourselves here to characterize
event-B models as a class of ASMs, following [30, Sect.4]. The three basic
constituents to analyze are the notions of state, event and refinement.
States of event-B models can be viewed as Tarski structures with a static
and a dynamic part. The static part, called context, consists of three items:

sets s which represent the universes of discourse (domains),
constants c which are supposed to have a fixed interpretation,
properties (c, s) used as axioms characterizing the intended model class.

The dynamic state part consists of variables v and an environment, which is
viewed as another event-B model. Inputting is captured by non-determinacy.
The states are supposed to be initialized, technically via a special event with
true guard.
Events come in the form

if guard then action

where the guard is a closed first-order set theory formula with equality and
action has one of the following three forms (we use the ASM notation which
is slightly different from Abrial’s notation):

Updates. The syntactical event-B-model reading of Updates is that of a
simultaneous substitution v1, . . . , vn := e1, . . . , en(v) of vi by ei , whereas
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its equivalent semantical ASM reading is that of a finite set of simultaneous
updates vi := ei of the values of variables (parameter-free locations) by
expression values,
skip,
choose x with P(x , v) in Updates where Updates is a simultaneous sub-
stitution v1, . . . , vn := e1, . . . , en(x , v)

Abrial views the operational interpretation of events, for example as defined
above by the semantics of ASM rules, only as an informal intuitive account,
whereas the official semantical definition comes in the form of logical descrip-
tions using pre/post conditions and invariants. For the present comparison
with ASMs it suffices to consider invariants as descriptions of properties the
designer wants and claims to hold in every state that is reachable from an
initial state. Obviously eventually such invariants will have to be justified, by
whatever available means.

The preceding definition of events represents an event-B normal form for
ASM rules. The outstanding characteristic feature, namely the underlying in-
terleaving semantics (“at each moment only one event can occur”), is reflected
by a top-level choice among the finitely many events which may be applicable.
For this non-deterministic choice among ASM rules R(i) we use the following
notation:

R(0) or . . . or R(n − 1) = choose i with i < n in R(i)

There is a technical consequence of this interleaving interpretation the de-
signer should be aware of. The form in which simultaneous updates are col-
lected under a guard into one event has an impact on the semantics of the
model, differently from the basic parallelism of ASMs where in each state every
applicable rule (read: event) is applied. The splitting of updates into different
events implies some non-deterministic scheduling of events with overlapping
guards. This is reflected by the following event-B normal form (the part in
brackets [ ] is optional):

Rule1 or . . . or Rulen where forall 1 ≤ i ≤ n
Rulei = if condi then [choose x with Pi(x ) in] Updatesi

In this normal form the limit cases are that condi is always true (uncondi-
tional updates) or that the set Updatesi is empty (skip). We have disregarded
the constraint imposed in [4] that in an event-B model, no parallel update is
allowed for the same variable. This constraint is only of technical nature and
prevents the case with inconsistent update sets to happen, whereas the se-
mantics of ASMs prescribes in this case only that the computation is aborted.

In comparison to the general form of ASM rules there are no rules of the
form forall x with P(x ) do Rule and the only external choose (i.e. one that
is not applied directly to a set of updates) which is permitted is the top-level
one on rules defining the interleaving model so that there is no further nesting
of choices. This prevents the designer from using complex quantifier-change
structures in his models, so that they have to be circumscribed by different
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means in case they are part of a ‘natural’ description of intended system
behavior.

Refinement of event-B models plays a crucial role for the B-method,
as it does for the ASM method. However, the goal to provide definitions
of event-B models together with mechanically checked (interactive or auto-
mated) proofs of the desired invariants dictates a restriction to certain forms
of the general ASM refinement concept. Using the analysis of the ASM refine-
ment concept in [96, 97] one can say that for event-B model refinements, only
(1,n)-refinements with n > 0 are permitted. No (1, 0)-refinement is allowed,
reflecting the condition that each abstract event must be refined by at least
one refined event, and no (n,m)-refinement with n > 1 is allowed. In addition
event-B model refinements must satisfy the following constraints:

in a (1,n)-refinement F1, . . . ,Fn ,F of E , each Fi is supposed to be a new
event refining skip,
the new events Fi do not diverge,
if the refinement deadlocks, then the abstraction deadlocks.
As to the observables in terms of which event-B refinements are formally

defined, they correspond to what we have called the locations of interest of
an ASM [25]. Formally they can be viewed as projections of state variables.
Technically speaking, in event-B refinements the observables are variables
which are required to satisfy the following conditions:

they are fresh variables with respect to state variables and to invariants,
they are modifiable only by observer events of form a := A(v),
they depend only on state variables v ,
the abstract observables A(v) can be ‘reconstructed’ from the refined ones
by an equation A(v) = L(B(w)) which represents an “invariant gluing the
abstract observables to the refined ones”.

The only pragmatically relevant one of these technical conditions on observ-
ables is the gluing invariant. In ASM refinements any mathematically accurate
scheme to relate refined and abstract observables is allowed, it need not be
describable equationally.

6.2 Integrating Special Purpose Methods

In a similar way to event-B models and to UML activity diagrams and Parnas’
table technique, mentioned in Sect. 3.1, all the major computation and system
design models turned out to be natural instances of specific classes of ASMs
(for details see [22, 27]). This confirmes the unifying-framework character
of the ASM approach to systems engineering. Many specification approaches
are geared for some particular type of application and equipped with specially
tailored definition or proof techniques. Such features can be naturally reflected
by imposing appropriate restrictions on the class of ASMs, the refinement
scheme and the related proof methods.
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For the general, but loose UML-based approach to system engineering,
the ASM method offers a rigorous, semantically well-defined version. The
ASM ground model and refinement concepts replace the loose character of
human-centric UML models and of the links the UML framework offers be-
tween descriptions at different system design levels. Starting from the accurate
ASM-based semantical definition of the various UML diagrams and related
notations (see [32, 33, 50, 51]), this equips UML-based practice with the degree
of mathematical precision that distinguishes a scientifically rooted engineering
discipline worth its name.

Another way to seamlessly include so-called semi-formal design techniques
into an ASM-based development process goes as follows. The less rigorous a
specification is, e.g. when there are reasons to momentarily leave parts of the
specification as only informally explained, the more ‘holes’ the ASM model
shows that one has to fill by providing assumptions on the intended meaning.
These assumptions have to be discharged for the refined models, where the
detailed design introduces the missing elements. Within the framework of
mathematics, much of which is what in computer science is called semi-formal,
this is a legitimate way to proceed. A similar freedom of formality concerns the
notations. As is characteristic for mathematical disciplines, the ASM method
is not bound by the straitjacket of a particular formal language, but allows
one to freely use any standard algorithmic and mathematical notation. The
only condition for adopting any useful description technique, whether textual
or tabular or graphical or whatever, is a mathematically rigorous definition of
its meaning.

The ASM method also incorporates within one common modeling frame-
work two pairs of approaches that in the literature are frequently, but er-
roneously, viewed as antagonistic instead of complementary, namely using
so-called declarative (denotational) versus operational and state-based versus
event-based system descriptions. For the definition of an ASM one can use as
much of declarative or denotational characterizations as desired, using func-
tional definitions or logico-axiomatic descriptions. But this does not exclude
the use of abstract operational descriptions where the latter turn out to be
simpler, more intuitive and easier to refine to code. Declarative definitions are
often used to define the background signature of an ASM (via static, mon-
itored, derived functions, see Sect. 3.2). It is also often used to define what
among the class of all possible runs of an ASM is considered as a legal run,
describing axiomatically a certain number of features one wants to abstract
away at the investigated level of abstraction. Similarly, whatever one wants
to classify as an event can be included into the declaration of the state signa-
ture and be treated correspondingly in rule guards; see for example Event-B,
where events are considered as rule firings, or [14] where process-algebraic
event-based structuring techniques and concurrency patterns are combined
with the state-based abstraction mechanism and synchronous parallelism of
ASMs.
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In a similar way the general mathematical framework of the ASM method
allows one the coherent separation and integration of defining a model and
proving model properties. The ASM method does not force you to simultane-
ously define your models and prove properties for them, still less to do this in
an a priori determined deductive system, but it allows you to add proofs to
your definitions, where appropriate, and to do this in various ways, depending
on what is needed. Obviously a price has to be paid for this generality: if one
wants a machine-assisted mechanical verification of your system, one will have
to formalize it in the language of the theorem prover. In this case it will be
an advantage if one succeeds to define a model right from the beginning as a
set of particular logical or set-theoretical formulae, as is the case for example
in the B method [1]. On the other side, since ASMs are not formulae but rep-
resent executable models, the ASM method allows one to adopt for abstract
models simulation, run-time verification and testing techniques, where proofs
for whatever reason are not viable.

7 ASM Method Applications in a Nutshell

The proposal to use Abstract State Machines a) as a precise mathematical
form of ground models and b) for a generalization of Wirth’s and Dijkstra’s
classical refinement method [112, 58] to a practical systems engineering frame-
work supporting a systematic separation, structuring and documentation of
orthogonal design decisions goes back to [15, 16, 20]. It was used there to
define what became the ISO standard of Prolog [35]. Since then numerous
case studies provided ground models for various industrial standards, e.g. for
the forthcoming standard of BPEL4WS [63], for the ITU-T standard for
SDL-2000 [74], for the de facto standard for Java and the Java Virtual Ma-
chine [106], the ECMA standard for C# and the .NET CLR [37, 104, 70], the
IEEE-VHDL93 standard [38]. The ASM refinement method [25] has been used
in numerous ASM-based design and verification projects surveyed in [23].

The ASM method, due to the mathematical nature of its constituent con-
cepts, could be linked to a multitude of tool-supported analysis methods,
in terms of both experimental validation of models and mathematical veri-
fication of their properties. The validation (testing) of ASM models is sup-
ported by various tools to mechanically execute ASMs, including ASM Work-
bench [55], AsmGofer [99], an Asm2C++ compiler [100], C-based XASM [8],
.NET-executable AsmL engine [67], CoreASM Execution Engine [62]. The
verification of ASM properties has been performed using justification tech-
niques ranging from proof sketches [40] over traditional [36, 39] or formalized
mathematical proofs [105, 92] to tool supported proof checking or interactive
or automatic theorem proving, e.g. by model checkers [111, 56, 72], KIV [98]
or PVS [59, 71]. As needed for a comprehensive development and analysis en-
vironment, various combinations of such verification and validation methods
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have been supported and have been used also for the correctness analysis of
compilers [60, 84] and hardware [110, 109, 101, 79].

For more applications, including industrial system development and re-
engineering case studies that show the method to scale to large systems, see
the website of the ASM Research Center at www.asmcenter.org and the Asm-
Book [45].

8 Concluding Remarks

The ASM method is not a silver bullet, but shares the intrinsic limitations of
every engineering discipline rooted in mathematics. Whereas ASMs are easily
grasped and correctly understood by system engineers and application domain
experts, namely as pseudo-code or FSMs over arbitrary data types, is not an
easy task to teach or to learn a judicious use of the inherent abstraction poten-
tial for constructing appropriate ground models and refinement hierarchies.
There are also pragmatical limitations, which the method shares with other
rigorous practical methods, as for example the B-method [5]. They have to
do with the proposed shift in the current software system development pro-
cess. The proposal is not to start coding right away and not to relegate the
correctness and reliability issues to an ever growing testing phase. Instead it
is suggested to first construct and reason about accurate ground models for
the requirements and exact provably correct interfaces for the various design
decisions, leading to more and more detailed models. From that and only from
that basis should executable code be generated, which then comes with objec-
tively verifiable and validatable correctness properties one can trace through
the refinement hierarchy to their ground model pendant. It is by no means
easy to change an established industrial practice.
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