
An Abstract Transaction Operator
Serializing Concurrent Program Executions

Egon Börger1 and Klaus-Dieter Schewe2

1 Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it

2 Software Competence Centre Hagenberg, A-4232 Hagenberg, Austria
klaus-dieter.schewe@scch.at

Abstract. We define an abstract transaction controller and an oper-
ator which when applied to concurrent programs turns their behavior
with respect to some abstract termination criterion into a transactional
behavior. We prove that concurrent runs under the transaction controller
are serialisable. For the sake of generality we specify the transaction con-
troller and the operator in terms of Abstract State Machines.

1 Introduction

Transactions are a common means to control concurrent access to shared loca-
tions and to avoid that values stored at these locations are changed almost ran-
domly. In general, a transaction controller interacts with concurrently running
programs (read: sequential components of an asynchronous system), controls
whether access to a shared location is granted or not, and thus ensures a certain
form of consistency for the shared locations. A commonly accepted criterium
for consistency is that the joint behavior of all transactions with respect to the
shared locations is equivalent to a serial execution of the transactions. Thus,
each transaction can be specified independently from the transaction controller,
as if it had exclusive access to the shared locations.

As location sharing is common in concurrent systems, it would be cumber-
some, if transactional behavior had to be specified each time. It would be de-
sirable, if transactional behavior could be ignored in the specification and a
transaction controller could simply be “plugged in”.

Therefore, the goal of this paper is to define a scheme which allows one to
turn the behavior of any component M of a given asynchronous system M, i.e.
of a set of concurrently working sequential programs M , into a transactional
behavior. This involves the definition of a transaction controller TaCtl and of
an operator TA(M ,TaCtl) which turns the behavior of M into a transactional
behavior under the control of TaCtl. For the sake of generality we define the
operator and the controller in terms of Abstract State Machines (ASMs), which
can be read and undestood as pseudo-code but come with an underlying precise
semantics for which we refer the interested reader to [4].

In this paper we concentrate on transaction controllers that employ lock-
ing strategies such as the common two-phase locking protocol (2PL). That is,

each transaction first has to acquire a (read- or write-) lock for a shared location,
before the access is granted. Locks are released after the transaction has success-
fully committed and no more access to the shared locations is necessary. There
are of course other approaches to transaction handling, see e.g. [5,10,12,13] and
the extensive literature there covering classical transaction control for flat trans-
actions, timestamp-based, optimistic and hybrid transaction control protocols,
as well as non-flat transaction models such as sagas and multi-level transactions.

The transaction controller performs the lock handling, the deadlock detection
and handling, the recovery mechanism (for partial recovery) and the commit of
single machines. Thus we define it as consisting of four component specified in
Sect. 3.

TaCtl =
LockHandler
DeadlockHandler
Recovery
Commit

The operator TA(M ,TaCtl) transforms the components M of a concurrent
system (read: asynchronous ASM) M = (Mi)i∈I into components of a concur-
rent system TA(M,TaCtl) where each TA(Mi ,TaCtl) runs as transaction
under the control of TaCtl:

TA(M,TaCtl) = ((TA(Mi ,TaCtl))i∈I ,TaCtl)

We prove in Sect. 4 that if all monitored or shared locations of any Mi are
output or controlled locations of some other Mj and all output locations of any
Mi are monitored or shared locations of some other Mj (closed system assump-
tion)1, each terminating run of TA(M,TaCtl) is equivalent to a serialization of
the terminating Mi -runs, namely the Mi1 -run followed by the Mi2 -run etc., where
Mij is the j -th machine of M which performs a commit in the TA(M,TaCtl)
run. To simplify the exposition (i.e. the formulation of statement and proof of
the theorem) we only consider machine steps which take place under the trans-
action control, in other words we abstract from any step Mi makes before being
Inserted into or after being Deleted from the set TransAct of machines which
currently run under the control of TaCtl.

2 The Transaction Operator TA(M ,TaCtl)

The transaction controller TaCtl keeps a dynamic set TransAct of those ma-
chines M whose runs it currently has to supervise to perform in a transac-
tional manner until M has Terminated its transactional behavior (so that it can
Commit it).2 To turn the behavior of a machine M into a transactional one, first

1 This assumption means that the environment is assumed to be one of the component
machines.

2 In this paper we deliberately keep the termination criterion abstract so that it can
be refined in different ways for different transaction instances.

2

of all M has to register itself with the controller TaCtl, read: to be inserted into
its set of currently to be handled TransAct ions. To Undo as part of a recovery
some steps M made already during the given transactional run segment of M , a
last-in first-out queue history(M) is needed which keeps track of the states the
transactional run goes through; when M enters the set TransAct the history(M)
has to be initialized (to the empty queue).

The crucial transactional feature is that each non private (i.e. shared or mon-
itored or output) location l a machine M needs to read or write for performing
a step has to be LockedBy(M) for this purpose; M tries to obtain such locks
by calling the LockHandler. In case no newLocks are needed by M in its
currState or the needed newLocks can be Granted by the LockHandler, M
performs its next step; in addition, for a possible future recovery, the machine
has to Record in its history(M) the current values of those locations which are
(possibly over-) written by this M -step together with the obtained newLocks.
Then M continues its transactional behavior until it is Terminated . In case the
needed newLocks are Refused , namely because another machine N in TransAct
for some needed l has W − Locked(l ,N) or (in case M wants a W-(rite)Lock)
has R−Locked(l ,N), M has to Wait for N ; in fact it continues its transactional
behavior by calling again the LockHandler for the needed newLocks—until
these locations l locked by N are unlocked when N ’s transactional behavior is
Commited, whereafter a new request for these locks this time may be Granted
to M .

As a consequence Deadlocks may occur, namely when a cycle occurs in the
transitive closure Wait∗ of the Wait relation, restricted to non Victims. To re-
solve such deadlocks the DeadlockHandler component of TaCtl chooses
some machines as Victims for a recovery.3 After a victimized machine M is
Recovered by the Recovery component of TaCtl, so that M can exit its
waitForRecovery state, it continues its transactional behavior.

This explains the following definition of TA(M ,TaCtl) as a control state
ASM, i.e. an ASM with a top level Finite State Machine control structure. We
formulate it by the flowchart diagram of Fig. 1, which has a precise control
state ASM semantics (see the definition in [4, Ch.2.2.6]). The components for
the recovery feature are highlighted in the flowchart by a colouring that differs
from that of the other components. The macros which appear in Fig. 1 and the
components of TaCtl are defined below.

The predicate NewLocksNeededBy(M) holds if in the current state of M
at least one of two cases happens:4 either M to perform its step in this state
reads some shared or monitored location which is not yet LockedBy(M) or M
writes some shared or output location which is not yet LockedBy(M) for writing.

3 To simplify the serializability proof in Sect.3 and without loss of generality we define
a reaction of machines M to their victimization only when they are in ctl state(M) =
TA-ctl (not in ctl state(M) = waitForLocks). This is to guarantee that no locks are
Granted to a machine as long as it does waitForRecovery .

4 See [4, Ch.2.2.3] for the classification of locations and functions.

3

Fig. 1. TA(M,C)

A location can be LockedBy(M) for reading (R-Locked(l ,M)) or for writing
(W -Locked(l ,M)). Formally:

NewLocksNeededBy(M) =

newLocks(M , currState(M))5 6= (∅, ∅)
newLocks(M , currState(M))6 = (R-Loc,W -Loc)

where

R-Loc = ReadLoc(M , currState(M))∩(SharedLoc(M)∪MonitoredLoc(M))

∩LockedBy(M)7

W -Loc = WriteLoc(M , currState(M))∩ (SharedLoc(M)∪OutputLoc(M))

∩W -LockedBy(M)

LockedBy(M) = {l | R-Locked(l ,M) or W -Locked(l ,M)}
W -LockedBy(M) = {l |W -Locked(l ,M)}

5 For layout reasons we omit in Fig.1 the arguments of the functions newLocks and
overWrittenVal .

6 By the second argument currState(M) of newLocks (and below of overWrittenVal)
we indicate that this function of M is a dynamic function which is evaluated in
each state of M , namely by computing in this state the sets ReadLoc(M) and
WriteLoc(M); see Sect. 4 for the detailed definition.

7 By X we denote the complement of X .

4

The overWrittenValues are the currState(M)-values (retrieved by the eval -
function) of those shared or output locations (f , args) which are written by M in
its currState(M). To Record the set of these values together with the obtained
newLocks means to append the pair of these two sets to the history queue of M
from where upon recovery the values and the locks can be retrieved.

overWrittenVal(M , currState(M)) = {((f , args), val) |
(f , args) ∈WriteLoc(M , currState(M))∩(SharedLoc(M)∪OutputLoc(M))
and val = eval(f (args), currState(M))}

Record(valSet , lockSet ,M) = Append((valSet , lockSet), history(M))

To CallLockHandler for the newLocks requested by M in its currState(M)
means to Insert(M ,newLocks) into the LockHandler’s set of to be handled
LockRequests. Similarly we let CallCommit(M) stand for insertion of M into
a set CommitRequest of the Commit component.

CallLockHandler(M ,L) = Insert((M ,L),LockRequest)
CallCommit(M) = Insert(M ,CommitRequest)

3 The Transaction Controller Components

A CallCommit(M) by machine M enables the Commit component. Using the
choose operator we leave the order in which the CommitRequests are handled
refinable by different instantiations of TaCtl.

Commiting M means to Unlock all locations l that are LockedBy(M). Note
that each lock obtained by M remains with M until the end of M ’s transac-
tional behavior. Since M performs a CallCommit(M) when it has Terminated
its transactional computation, nothing more has to be done to Commit M
besides deleting M from the sets of CommitRequests and still to be handled
TransAct ions.8

Note that the locations R-Locked(l ,M) and W -Locked(l ,M) are shared by
the Commit, LockHandler and Recovery components, but these compo-
nents never have the same M simultaneously in their request resp. Victim set
since when machine M has performed a CallCommit(M), it has Terminated
its transactional computation and does not participate any more in any (M ,L) ∈
LockRequest or Victimization.

Commit =
if CommitRequest 6= ∅ then

choose M ∈ CommitRequest Commit(M)
where
Commit(M) =

forall l ∈ LockedBy(M) Unlock(l ,M)

8 We omit clearing the history(M) queue since it is initialized when M is inserted into
TransAct(TaCtl).

5

Delete(M ,CommitRequest)

Delete(M ,TransAct)

Unlock(l ,M) =

if R-Locked(l ,M) then R-Locked(l ,M) := false

if W -Locked(l ,M) then W -Locked(l ,M) := false

As for Commit also for the LockHandler we use the choose operator
to leave the order in which the LockRequests are handled refinable by different
instantiations of TaCtl.

The strategy we adopt for lock handling is to refuse all locks for locations
requested by M if at least one of the following two cases happens:

some of the requested locations is W -Locked by another transactional ma-
chine N ∈ TransAct ,
some of the requested locations is a WriteLocation that is R-Locked by an-
other transactional machine N ∈ TransAct .

This definition, which is specified below by the predicate CannotBeGranted ,
implies that multiple transactions may simultaneoulsy have a R-Lock on some
location. To RefuseRequestedLocks it suffices to set the communication in-
terface Refused of TA(M ,TaCtl); this makes M Wait for each location l that
is W -Locked(l ,N) and for each WriteLocation that is R-Locked(l ,N) by some
other transactional component machine N ∈ TransAct .

LockHandler =

if LockRequest 6= ∅ then

choose (M ,L) ∈ LockRequest

HandleLockRequest(M ,L)

where

HandleLockRequest(M ,L) =

if CannotBeGranted(M ,L)

then RefuseRequestedLocks(M ,L)

else GrantRequestedLocks(M ,L)

Delete((M ,L),LockRequest)

CannotBeGranted(M ,L) =

let L = (R-Loc,W -Loc),Loc = R-Loc ∪W -Loc

forsome l ∈ Loc forsome N ∈ TransAct \ {M }
W -Locked(l ,N) or

(l ∈W -Loc and R-Locked(l ,N))

RefuseRequestedLocks(M ,L) = (Refused(M ,L) := true)

GrantRequestedLocks(M ,L) =

let L = (R-Loc,W -Loc)

forall l ∈ R-Loc (R-Locked(l ,M) := true)

forall l ∈W -Loc (W -Locked(l ,M) := true)

Granted(M ,L) := true

6

A Deadlock originates if two machines are in a Wait cycle, otherwise stated
if for some machine M the pair (M ,M) is in the transitive (not reflexive) closure
Wait∗ of Wait (restricted to non Victims). In this case the DeadlockHandler
selects for recovery a (typically minimal) subset vict of WaitingTransAct ions—
they are Victimized to waitForRecovery , in which mode (control state) they are
backtracked until they become Recovered—such that the set WaitingTransAct \
vict of remaining transactions is deadlock free. The selection criteria are in-
trinsically specific for particular transaction controllers, driving a usually rather
complex selection algorithm in terms of number of conflict partners, priorities,
waiting time, etc. In this paper we leave their specification for TaCtl abstract
(read: refinable in different directions) by assuming a highly complex selection
function deadlockResolution to perform the deadlock resolution among the non-
victims in one step.

DeadlockHandler =
if Deadlock then

let vict = deadlockResolution(WaitingTransAct ∩Victim)
forall M ∈ vict (Victim(M) := true)

where
Deadlock = forsome M ∈WaitingTransAct

Wait∗(M ,M) and not Victim(M)
WaitingTransAct =
{M ∈ TransAct |forsome N ∈ TransAct Wait(M ,N)}

Wait∗ =
{(M ,M) |forsome M1, . . . ,Mn ∈ TransAct ∩Victim Wait(M ,M1)

and forall 1 ≤ i < n Wait(Mi ,Mi+1) and Wait(Mn ,M)}
Wait(M ,N) = forsome l Wait(M , l ,N)
Wait(M , l ,N) =
l ∈ newLocks(M , currState(M)) and N ∈ TransAct \ {M } and
W -Locked(l ,N) or (l ∈W -Loc and R-Locked(l ,N))

where newLocks(M , currState(M)) = (R-Loc,W -Loc)

As for Commit and LockHandler also for the Recovery component we
use the choose operator to leave the order in which the Victims are chosen
for recovery refinable by different instantiations of TaCtl. To be Recovered a
machine M is backtracked by Undo(M) steps until there is no DeadlockWith(M)
any more, in which case it is deleted from the set of Victims, so that be definition
it is Recovered . This happens at the latest when history(M) has become empty.

Recovery =
if Victim 6= ∅ then

choose M ∈ Victim TryToRecover(M)
where
TryToRecover(M) =

if NoDeadlockWith(M) then Victim(M) := false

7

else Undo(M)
Recovered =
{M | ctl -state(M) = waitForRecovery and M 6∈ Victim}

NoDeadlockWith(M) = (M ,M) 6∈Wait∗

Undo(M) =
let (ValSet ,LockSet) = youngest(history(M))

Restore(ValSet)
Release(LockSet)
Delete((ValSet ,LockSet), history(M))

where
Restore(V) =

forall ((f , args), v) ∈ V f (args) := v
Release(L) =

let L = (R-Loc,W -Loc)
forall l ∈ Loc = R-Loc ∪W -Loc Unlock(l ,M)

Note that in our description of the DeadlockHandler and the (partial)
Recovery we deliberately left the strategy for victim seclection and Undo
abstract leaving fairness considerations to be discussed elsewhere. It is clear
that if always the same victim is selected for partial recovery, the same deadlocks
may be created again and again. However, it is well known that fairness can be
achieved by choosing an appropriate victim selection strategy.

4 Correctness Theorem

In this section we state and prove that TA(M,TaCtl) satisfies the desired
transactional behavior property, namely that each run of TA(M,TaCtl) is
equivalent to a serial run. Before doing this we have to make precise what a
serial multi-agent ASM run is and what equivalence of TA(M,TaCtl) runs
means in the general multi-agent ASM framework.

Definition of run equivalence Let S0,S1,S2, . . . be a (finite or infinite) run
of TA(M,TaCtl). In general we may assume that TaCtl runs forever, whereas
each machine M ∈M running as transaction will be terminated at some time –
at least after commit M will only change values of non-shared and non-output
locations9. For i = 0, 1, 2, . . . let ∆i denote the unique, consistent update set
defining the transition from Si to Si+1 [11, p.89]. By definition of TA(M,TaCtl)
the update set is the union of the update sets of the agents executing M ∈ M
resp. TaCtl:

∆i =
⋃

M∈M
∆i(M) ∪∆i(TaCtl).

9 It is possible that one ASM M enters several times as a transaction controlled by
TaCtl. However, in this case each of these registrations will be counted as a separate
transaction, i.e. as different ASMs in M.

8

∆i(M) contains the updates defined by the ASM TA(M ,TaCtl) in state Si
10

and ∆i(TaCtl) contains the updates by the transaction controller in this state.
The sequence of update sets ∆0(M), ∆1(M), ∆2(M), . . . will be called the sched-
ule of M (for the given transactional run).

To generalise for transactional ASM runs the equivalence of transaction
schedules known from database systems [5, p.621ff.] we now define two cleansing
operations for ASM schedules. By the first one (i) we eliminate all (in particular
unsuccessful-lock-request) computation segments which are without proper M -
updates; by the second one (ii) we eliminate all M -steps which are related to a
later Undo(M) step by the Recovery component:

(i) Delete from the schedule of M each ∆i(M) where one of the following two
properties holds:

∆i(M) = ∅ (M contributes no update to Si),
∆i(M) belongs to a step of an M -computation segment where M in
its ctl state(M) =TA-ctl does CallLockHandler(M ,newLocks) and
in its next step moves from waitForLocks back to control state TA−ctl
because the LockHandler Refused(M ,newLocks).11

In such computation steps M makes no proper update.
(ii) Repeate choosing from the schedule of M a pair ∆j (M) with later ∆j ′(M)

(j < j ′) which belong to the first resp. second of two consecutive M -Recovery
steps defined as follows:

a (say M -RecoveryEntry) step whereby M in state Sj moves from TA-ctl
to waitForRecovery because it became a Victim,
the next M -step (say M -RecoveryExit) whereby M in state Sj ′ moves
back to control state TA-ctl because it has been Recovered .

In these two M -Recovery steps M makes no proper update. Delete:

(a) ∆j (M) and ∆j ′(M),
(b) the ((Victim,M), true) update from the corresponding ∆t(TaCtl) (t <

j) which in state Sj triggered the M -RecoveryEntry,
(c) TryToRecover(M)-updates in any ∆i+k (TaCtl) between the consid-

ered M -RecoveryEntry and M -RecoveryExit step (i < j < i + k < j ′),
(d) each ∆i′(M) belonging to the M -computation segment from TA-ctl back

to TA-ctl which contains the proper M -step in Si that is UNDOne
in Si+k by the considered TryToRecover(M) step; besides control
state and Record updates these ∆i′(M) contain updates (`, v) with

10 We use the shorthand notation ∆i(M) to denote ∆i(TA(M ,TaCtl)); in other
words we speak about steps and updates of M also when they really are done
by TA(M ,TaCtl). Mainly this is about transitions between the control states,
namely TA-ctl , waitForLocks, waitForRecovery (see Fig.1), which are performed dur-
ing the run of M under the control of the transaction controller TaCtl. When we
want to name an original update of M (not one of the updates of ctl state(M) or of
the Record component) we call it a proper M -update.

11 Note that by eliminating this CallLockHandler(M ,L) step also the corresponding
LockHandler step HandleLockRequest(M ,L) disappears in the run.

9

` = (f , (valSi
(t1), . . . , valSi

(tn))) where the corresponding Undo updates
are (`, valSi

(f (t1, . . . , tn))) ∈ ∆i+k (TaCtl),
(e) the HandleLockRequest(M ,newLocks)-updates in ∆l′(TaCtl) cor-

responding to M ’s CallLockHandler step (if any: in case newLocks
are needed for the proper M -step in Si) in state Sl (l < l ′ < i).

The sequence ∆i1(M), ∆i2(M), . . . with i1 < i2 < . . . resulting from the
application of the two cleansing operations as long as possible – note that con-
fluence is obvious, so the sequence is uniquely defined – will be called the cleansed
schedule of M (for the given run).

Before defining the equivalence of transactional ASM runs let us remark that
TA(M,TaCtl) has indeed several runs, even for the same initial state S0. This
is due to the fact that a lot of non-determinism is involved in the definition of
this ASM. First, the submachines of TaCtl are non-deterministic:

In case several machines M ,M ′ ∈ M request conflicting locks at the same
time, the LockHandler can only grant the requested locks for one of these
machines.
Commit requests are executed in random order by the Commit submachine.
The submachine DeadlockHandler chooses a set of victims, and this
selection has been deliberately left abstract.
The Recovery submachine chooses in each step a victim M , for which the
last step will be undone by restoring previous values at updated locations
and releasing corresponding locks.

Second, the specification of TA(M,TaCtl) leaves deliberately open, when
a machine M ∈M will be started, i.e., register as a transaction in TransAct to
be controlled by TaCtl. This is in line with the common view that transactions
M ∈ M can register at any time to the transaction controller TaCtl and will
remain under its control until they commit.

Definition 1. Two runs S0,S1,S2, . . . and S ′0,S
′
1,S
′
2, . . . of TA(M,TaCtl) are

equivalent iff for each M ∈ M the cleansed schedules ∆i1(M), ∆i2(M), . . . and
∆′j1(M), ∆′j2(M), . . . for the two runs are the same and the read locations and
the values read by M in Sik and S ′jk are the same.

That is, we consider runs to be equivalent, if all transactions M ∈ M read
the same locations and see there the same values and perform the same updates
in the same order disregarding waiting times and updates that are undone.

Definition of serializability Next we have to clarify our generalised notion of
a serial run, for which we concentrate on committed transactions – transactions
that have not yet committed can still undo their updates, so they must be left
out of consideration12. We need a definition of the read- and write-locations of

12 Alternatively, we could concentrate on complete, infinite runs, in which only com-
mitted transactions occur, as eventually every transaction will commit – provided
that fairness can be achieved.

10

M in a state S , i.e. ReadLoc(M ,S) and WriteLoc(M ,S) as used in the definition
of newLocks(M ,S).

We define ReadLoc(M ,S) = ReadLoc(r ,S) and analogously WriteLoc(M ,S)
= WriteLoc(r ,S), where r is the defining rule of the ASM M . Then we use
structural induction according to the definition of ASM rules in [4, Table 2.2].
As an auxiliary concept we need to define inductively the read and write locations
of terms and formulae. The definitions use an interpretation I of free variables
which we suppress notationally (unless otherwise stated) and assume to be given
with (as environment of) the state S . This allows us to write ReadLoc(M ,S),
WriteLoc(M ,S) instead of ReadLoc(M ,S , I), ReadLoc(M ,S , I) respectively.

Read/Write Locations of Terms and Formulae. For state S let I be the
given interpretation of the variables which may occur freely (in given terms or
formulae). We write valS (construct) for the evaluation of construct (a term or a
formula) in state S (under the given interpretation I of free variables).

ReadLoc(x ,S) = WriteLoc(x ,S) = ∅ for variables x
ReadLoc(f (t1, . . . , tn),S) =
{(f , (valS (t1), . . . , valS (tn)))} ∪

⋃
1≤i≤n ReadLoc(ti ,S)

WriteLoc(f (t1, . . . , tn),S) = {(f , (valS (t1), . . . , valS (tn)))}

Note that logical variables are not locations: they cannot be written and their
values are not stored in a location but in the given interpretation I from where
they can be retrieved.

We define WriteLoc(α,S) = ∅ for every formula α because formulae are not
locations one could write into. ReadLoc(α,S) for atomic formulae P(t1, . . . , tn)
has to be defined as for terms with P playing the same role as a function sym-
bol f . For propositional formulae one reads the locations of their subformulae. In
the inductive step for quantified formulae domain(S) denotes the superuniverse
of S minus the Reserve set [4, Ch.2.4.4] and I dx the extension (or modification)
of I where x is interpreted by a domain element d .

ReadLoc(P(t1, . . . , tn),S) =
{(P , (valS (t1), . . . , valS (tn)))} ∪

⋃
1≤i≤n ReadLoc(ti ,S)

ReadLoc(¬α) = ReadLoc(α)
ReadLoc(α1 ∧ α2) = ReadLoc(α1) ∪ ReadLoc(α2)
ReadLoc(∀xα,S , I) =

⋃
d∈domain(S) ReadLoc(α,S , I dx)

Note that the values of the logical variables are not read from a location but
from the modified state environment function I dx .

Read/Write Locations of ASM Rules.

ReadLoc(skip,S) = WriteLoc(skip,S) = ∅
ReadLoc(t1 := t2,S) = ReadLoc(t1,S) ∪ ReadLoc(t2,S)
WriteLoc(t1 := t2,S) = WriteLoc(t1,S)

11

ReadLoc(if α then r1 else r2,S) =

ReadLoc(α,S) ∪
{
ReadLoc(r1,S) if valS (α) = true
ReadLoc(r2,S) else

WriteLoc(if α then r1 else r2,S) =

{
WriteLoc(r1,S) if valS (α) = true
WriteLoc(r2,S) else

ReadLoc(let x = t in r ,S , I) = ReadLoc(t ,S , I) ∪ ReadLoc(r ,S , I
valS (t)
x)

WriteLoc(let x = t in r ,S , I) = WriteLoc(r ,S , I
valS (t)
x) // call by value

ReadLoc(forall x with α do r ,S , I) =
ReadLoc(∀xα,S , I) ∪

⋃
a∈range(x ,α,S ,I) ReadLoc(r ,S , I ax)

where range(x , α,S , I) = {d ∈ domain(S) | valS ,I d
x

(α) = true}
WriteLoc(forall x with α do r ,S , I) =

⋃
a∈range(x ,α,S ,I) WriteLoc(r ,S , I ax)

In the following cases the same scheme applies to read and write locations:13

Read [Write]Loc(r1 par r2,S) =
Read [Write]Loc(r1,S) ∪ Read [Write]Loc(r2,S)

Read [Write]Loc(r(t1, . . . , tn),S) = Read [Write]Loc(P(x1/t1, . . . , xn/tn),S)
where r(x1, . . . , xn) = P // call by reference

Read [Write]Loc(r1 seq r2,S , I) = Read [Write]Loc(r1,S , I) ∪{
Read [Write]Loc(r2,S + U , I) if yields(r1,S , I ,U) and Consistent(U)
∅ else

For choose rules we have to define the read and write locations simultaneously
to guarantee that the same instance satisfying the selection condition is chosen
for defining the read and write locations of the rule body r :

if range(x , α,S , I) = ∅ then
ReadLoc(choose x with α do r ,S , I) = ReadLoc(∃xα,S , I)
WriteLoc(choose x with α do r ,S , I) = ∅ // empty action

else choose a ∈ range(x , α,S , I)
ReadLoc(choose x with α do r ,S , I) =
ReadLoc(∃xα,S , I) ∪ ReadLoc(r ,S , I ax)

WriteLoc(choose x with α do r ,S , I) = WriteLoc(r ,S , I ax)

We say that M has or is committed (in state Si , denoted Committed(M ,Si))
if step Commit(M) has been performed (in state Si).

Definition 2. A run of TA(M,TaCtl) is serial iff there is a total order < on
M such that the following two conditions are satisfied:

(i) If in a state M has committed, but M ′ has not, then M < M ′ holds.
(ii) If M has committed in state Si and M < M ′ holds, then the cleansed

schedule ∆j1(M ′), ∆j2(M ′), . . . of M ′ satisfies i < j1.

That is, in a serial run all committed transactions are executed in a total
order and are followed by the updates of transactions that did not yet commit.

13 In yields(r1,S , I ,U) U denotes the update set produced by rule r1 in state S under I .

12

Definition 3. A run of TA(M,TaCtl) is serialisable iff it is equivalent to a
serial run of TA(M,TaCtl).

Theorem 1. Each run of TA(M,TaCtl) is serialisable.

Proof. Let S0,S1,S2, . . . be a run of TA(M,TaCtl). To construct an equiv-
alent serial run let M1 ∈ M be a machine that commits first in this run, i.e.
Committed(M ,Si) holds for some i and whenever Committed(M ,Sj) holds for
some M ∈M, then i ≤ j holds. If there is more than one machine M1 with this
property, we randomly choose one of them.

Take the run of TA({M1},TaCtl) starting in state S0, say S0,S
′
1,S
′
2, . . . ,S

′
n .

As M1 commits, this run is finite. M1 has been Deleted from TransAct and
none of the TaCtl components is triggered any more: neither Commit nor
LockHandler because CommitRequest resp. LockRequest remain empty; not
DeadlockHandler because Deadlock remains false since M1 never Waits for
any machine; not Recovery becauseVictim remains empty. Note that in this
run the schedule for M1 is already cleansed.

We now define a run S ′′0 ,S
′′
1 ,S

′′
2 , . . . (of TA(M−{M1},TaCtl), as has to be

shown) which starts in the final state S ′n = S ′′0 of the TA({M1},TaCtl) run and
where we remove from the run defined by the cleansed schedules ∆i(M) for the
originally given run all updates made by steps of M1 and all updates in TaCtl
steps which concern M1. Let

∆′′i =
⋃

M∈M−{M1}

∆i(M) ∪ {(`, v) ∈ ∆i(TaCtl) | (`, v) does not concern M1}.

That is, in ∆′′i all updates are removed from the original run which are
done by M1—their effect is reflected already in the initial run segment from S0
to S ′n—or are LockHandler updates involving a LockRequest(M1,L) or are
Victim(M1) := true updates of the DeadlockHandler or are updates involv-
ing a TryToRecover(M1) step or are done by a step involving a Commit(M1).

Lemma 1. S ′′0 ,S
′′
1 ,S

′′
2 , . . . is a run of TA(M−{M1},TaCtl).

Lemma 2. The run S0,S
′
1,S
′
2, . . . ,S

′
n ,S

′′
1 ,S

′′
2 , . . . of TA(M,TaCtl) is equiv-

alent to the original run S0,S1,S2,

By induction hypothesis S ′′0 ,S
′′
1 ,S

′′
2 , . . . is serialisable, so S0,S

′
1,S
′
2, . . . and

thereby also S0,S1,S2, . . . is serialisable with M1 < M for all M ∈M−{M1}.2

Proof.(Lemma 1) We first show that omitting in ∆′′i every update from
∆i(TaCtl) which concerns M1 does not affect updates by TaCtl in S ′′i concern-
ing M 6= M1. In fact starting in the final M1-state S ′′0 , TA(M− {M1},TaCtl)
makes no move with a Victim(M1) := true update and no move of Commit(M1)
or HandleLockRequest(M1,L) or TryToRecover(M1)

It remains to show that every M -step defined by ∆′′i (M) is a possible M -step
in a TA(M−{M1},TaCtl) run starting in S ′′0 . Since the considered M -schedule
∆i(M) is cleansed, we only have to consider any proper update step of M in

13

state S ′′i (together with its preceding lock request step, if any). If in S ′′i M uses
newLocks, in the run by the cleansed schedules for the original run the locks
must have been granted after the first Commit, which is done for M1 before S ′′0 .
Thus these locks are granted also in S ′′i as part of a TA(M− {M1},TaCtl)
run step. If no newLocks are needed, that proper M -step depends only on steps
computed after S ′′0 and thus is part of a TA(M−{M1},TaCtl) run step. 2

Proof.(Lemma 2) The cleansed machine schedules in the two runs, the read
locations and the values read there have to be shown to be the same. First
consider any M 6= M1. Since in the initial segment S0,S

′
1,S
′
2, . . . ,S

′
n no such M

makes any move so that its update sets in this computation segment are empty,
in the cleansed schedule of M for the run S0,S

′
1,S
′
2, . . . ,S

′
n ,S

′′
1 ,S

′′
2 , . . . all these

empty update sets disappear. Thus this cleansed schedule is the same as the
cleansed schedule of M for the run S ′n ,S

′′
1 ,S

′′
2 , . . . and therefore by definition of

∆′′i (M) = ∆i(M) also for the original run S0,S1,S2, . . . with same read locations
and same values read there.

Now consider M1, its schedule ∆0(M1), ∆1(M1), . . . for the run S0,S1,S2, . . .
and the corresponding cleansed schedule ∆i0(M1), ∆i1(M1), ∆i2(M1), We
proceed by induction on the cleansed schedule steps of M1. When M1 makes its
first step using the ∆i0(M1)-updates, this can only be a proper M1-step together
with the corresponding Record updates (or a lock request directly preceding
such a ∆i1(M1)-step) because in the computation with cleansed schedule each
lock request of M1 is granted and M1 is not Victimized. The values M1 reads
or writes in this step (in private or locked locations) have not been affected by
a preceding step of any M 6= M1—otherwise M would have locked before the
non-private locations and keep the locks until it commits (since cleansed sched-
ules are without Undo steps), preventing M1 from getting these locks which
contradicts the fact that M1 is the first machine to commit and thus the first
one to get the locks. Therefore the values M1 reads or writes in the step defined
by ∆i0(M1) (resp. also ∆i1(M1)) coincide with the corresponding location val-
ues in the first (resp. also second) step of M1 following the cleansed schedule to
pass from S0 to S ′1 (case without request of newLocks) resp. from S0 to S ′1 to S ′2
(otherwise). The same argument applies in the inductive step which establishes
the claim. 2

5 Conclusion

In this article we specified a transaction operator that turns the behaviour of
a set of Abstract State Machines into a transactional one under the control of
a transaction controller TaCtl. In this way the locations shared by the ASMs
are accessed in a well-defined matter. For this we proved that all runs of the
combined asynchronous ASM are serialisable.

The relevance of the transaction operator is that it permits to concentrate on
the specification of ASMs and to ignore any problems resulting from the use of
shared locations. That is, specifications can be written in a way that shared lo-
cations are treated as if they were exclusively used by a single ASM. This add-on

14

to ASMs is very valuable for many applications, as shared locations (in particu-
lar, locations in a database) are common, and random access to them is hardly
ever permitted. Though in the article at hand we concentrated on transaction
control based on locking, generalisations to other approaches to serialisability
exploiting time-stamp oriented, optimistic or hybrid protocols are possible – e.g.
see [12] for an ASM-based treatment of multi-level transaction control.

Furthermore, by shifting transaction control into the rigorous framework of
Abstract State Machines we made several extensions to transaction control as
known from the area of databases [5]. In the classical theory schedules are se-
quences containing read- and write-operations of the transactions plus the corre-
sponding read- and write-lock and commit events, i.e., only one such operation
or event is treated at a time. In our case we exploited the inherent parallelism in
ASM runs, so we always considered an arbitrary update set with usually many
updates at the same time. Under these circumstances we generalised the notion
of schedule and serialisability using the common terminology from ASMs. In this
way we stimulate also more parallelism in transactional systems.

We would like to see further detailings of the proof to a mechanically verified
one, e.g. using the ASM theories developed in KIV (see [1] for an extensive list
of relevant publications) and PVS [6,9,8] or the (Event- [3]) B [2] theorem prover
for an (Event-) B transformation of TA(M,TaCtl) (as suggested in [7]).

References

1. The KIV system. http://www.informatik.uni-augsburg.de/lehrstuehle/swt/

se/kiv/.
2. J.-R. Abrial. The B-Book. Cambridge University Press, Cambridge, 1996.
3. J.-R. Abrial. Modeling in Event-B. Cambridge University Press, 2010.
4. E. Börger and R. F. Stärk. Abstract State Machines. A Method for High-Level

System Design and Analysis. Springer, 2003.
5. R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Addison Wesley,

2006.
6. A. Gargantini and E. Riccobene. Encoding Abstract State Machines in PVS.

In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele, editors, Abstract State
Machines: Theory and Applications, volume 1912 of Lecture Notes in Computer
Science, pages 303–322. Springer-Verlag, 2000.

7. U. Glässer, S. Hallerstede, M. Leuschel, and E. Riccobene. Integration of Tools for
Rigorous Software Construction and Analysis (Dagstuhl Seminar 13372). Dagstuhl
Reports, 3(9):74–105, 2014.

8. W. Goerigk, A. Dold, T. Gaul, G. Goos, A. Heberle, F. W. von Henke, U. Hoffmann,
H. Langmaack, H. Pfeifer, H. Ruess, and W. Zimmermann. Compiler correctness
and implementation verification: The verifix approach. In P. Fritzson, editor, Int.
Conf. on Compiler Construction, Proc. Poster Session of CC’96, Linköping, Swe-
den, 1996. IDA Technical Report LiTH-IDA-R-96-12.

9. G. Goos, H. von Henke, and H. Langmaack. Project Verifix. http://www.info.

uni-karlsruhe.de/projects.php/id=28&lang=en.
10. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan

Kaufmann, 1993.

15

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/
http://www.info.uni-karlsruhe.de/projects.php/id=28&lang=en
http://www.info.uni-karlsruhe.de/projects.php/id=28&lang=en

11. J. Gurevich. Sequential abstract state machines capture sequential algorithms.
ACM Transactions on Computational Logic, 1(1):77–111, 2000.

12. M. Kirchberg, K.-D. Schewe, and J. Zhao. Using Abstract State Machines for
the design of multi-level transaction schedulers. In J.-R. Abrial and U. Glässer,
editors, Rigorous Methods for Software Construction and Analysis – Papers Dedi-
cated to Egon Börger on the Occasion of His 60th Birthday, volume 5115 of LNCS
Festschrift, pages 65–77. Springer, 2009.

13. K.-D. Schewe, T. Ripke, and S. Drechsler. Hybrid concurrency control and recovery
for multi-level transactions. Acta Cybernetica, 14(3):419–453, 2000.

16

