
An Abstract Model for Process Mediation ?

Michael Altenhofen1, Egon Börger2, and Jens Lemcke1

1 SAP Research, Karlsruhe, Germany
{michael.altenhofen, jens.lemcke}@sap.com

2 Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it

On sabbatical leave at SAP Research, Karlsruhe, Germany
egon.boerger@sap.com

Abstract. We define a high-level model to mathematically capture the
behavioural interface of abstract Virtual Providers (VP), their refine-
ments and their composition into rich mediator structures. We show for
a Virtual Internet Service Provider example how to use such a model for
rigorously formulating and proving properties of interest.

1 Introduction

For the configuration [1] and composition [2,3] of web services in interaction pro-
tocols, a central role is played by process mediation (see MIBIA [4], WSMF [5],
WebTransact [6]). We propose here an abstract model for mediators (Sects. 2, 3),
viewed as Virtual Providers (VP). The model supports provably correct media-
tor composition and the definition of appropriate equivalence concepts (Sect. 4),
which underlay algorithms for the discovery and run-time selection of services
satisfying given requests. In Sect. 5 we illustrate our definitions by a Virtual
Internet Service Provider case study.

We start with a simple interaction model where each single request receives
a single answer from the VP, with no need to relate multiple requests. However,
to process single requests the VP has a hierarchical structure at its disposition:
each request arriving at VP is viewed as root of a so-called seq/par tree of further
requests, which are forwarded to other providers. The children of a request node
represent subrequests which are elaborated in sequence. Each subrequest node
may have in turn children representing multiple subsubrequests, which are elab-
orated independently of each other. Nestings of such alternating seq/par trees
and other more sophisticated hierarchical subrequest structures can be obtained
by appropriate compositions of VPs as defined in Sect. 4.1.

The compositionality of our mediator model stems from an explicit sepa-
ration of its tree processing component from its communication interfaces for
sending/receiving requests/answers. This separation, defined in Sect. 2 on the
basis of an abstract message passing system, supports a flexible definition of the
service behaviour of VPs and of their behavioural equivalence (Sect. 4), which

? Work on this paper was partly funded by the EU-project DIP.

2 M. Altenhofen, E. Börger, and J. Lemcke

also allows one to clearly identify the place of data mediation during the dis-
covery and runtime selection of providers able to satisfy given requests. Further-
more, the separation of communication from proper request processing supports
a smooth integration of a variety of workflow and interaction patterns [7,8].

In Sect. 2.3 the single-request oriented model is refined by a notion of internal
state, so that the relevant information about previous requests, which may be
related to an incoming request, can be extracted from the internal state — in
practical Web applications typically by a wrapping session handling module.
This refinement step is only a tiny illustration of much more one can do to turn
our abstract VP model in a faithful way into fully developed mediator code.

As modelling framework we use Abstract State Machines (ASM),3 a form
of pseudo-code working on arbitrary structures. An introduction into the ASM
method for high-level system design and analysis is available in textbook form
in [9], but most of what we use here is self-explanatory. The various refinements
used are instances of the general ASM refinement concept defined in [10].

2 The Communication Interface of Virtual Providers

We see a VP as an interface (technically speaking as an ASM module
VirtualProvider) providing the following five methods (read: ASMs):

ReceiveReq for receiving request messages (elements of a set InReqMssg
of legal incoming request messages) from clients,4

SendAnsw for sending answer messages (elements of a set OutAnswMssg)
back to clients,
Process to handle request objects, elements of a set ReqObj of internal
representations of ReceivedRequests, typically by sending to providers a series
of subrequests to service the currently handled request currReqObj ,5

SendReq for sending request messages (elements of a set OutReqMssg) to
providers (possibly other VPs, see the VP composition in Sect. 4.1),
ReceiveAnsw for receiving incoming answer messages (elements of a set
InAnswMssg) from providers.

This module view of VirtualProvider — as a collection of defined and callable
machines, without a main ASM defining the execution flow — separates the
specification of the functionality of VP components from that of their schedulers.
The underlying architecture is illustrated in Fig. 1.

3 This is not the place for a systematic comparison of different methods. The model
developed in this paper starts from scratch, which explains that, besides what is
cited in Sect. 6, there is no other related work we used.

4 Since instances of VirtualProvider can be composed (see Sect. 4.1), such a client
can be another VP ′ asking for servicing a subrequest of a received request.

5 Since the underlying message passing system is abstract, VirtualProvider can
be instantiated in such a way that also Process itself can be a provider and thus
service a subrequest ‘internally’. This reflects that the mediation role for a request
is different from the role of actually servicing it.

An Abstract Model for Process Mediation 3

VIRTUALPROVIDER

PROCESS

Scheduler

InReqMssg

OutAnswMssg InAnswMssg

OutReqMssg
SENDREQ

SENDANSW

RECEIVEREQ

RECEIVEANSW

Fig. 1. Architecture

MODULE VirtualProvider =
ReceiveReq SendAnsw Process SendReq ReceiveAnsw

2.1 Abstract Message Passing

For sending/receiving request/answer messages we abstract from a concrete mes-
sage passing system by using abstract communication interfaces (predicates) for
mail boxes of incoming and outgoing messages.

ReceivedReq in ReceiveReq expresses that an incoming request message
has been received from some client (supposed to be encoded into the mes-
sage).
ReceivedAnsw in ReceiveAnsw expresses that an answer message (to a pre-
viously sent supposed to be retrievable request message) has been received.
An abstract machine Send is used a) by SendAnsw for sending out answer
messages to requests back to the clients where the requests originated, b) by
SendReq for sending out requests to providers. We assume the addressees
to be encoded into messages.

We separate the internal preparation of outgoing messages in Process from
their actual sending in Send by using the following abstract predicates for mail
boxes of outgoing mail:

SentAnswToMailer expresses that an outgoing answer message (elaborated
from a Process internal representation of an answer) was passed to Send.
SentReqToMailer expresses that an outgoing request message (corresponding
to an internal representation of a request) has been passed to Send.

2.2 The Send/Receive submachines

The interaction between a client and a virtual provider, which is triggered by
the arrival of a client’s request message so that ReceivedReq(inReqMsg) becomes

4 M. Altenhofen, E. Börger, and J. Lemcke

true, is characterized by creating a request object (a request ID, say element r of
a set ReqObj of currently alive request objects), which is appropriately initialized
by recording in an internal representation the relevant data, which are encoded
in the received request message. This includes decorating that object by an
appropriate status, say status(r) := started , to signal to (the scheduler for)
Process its readiness for being processed.

This requirement for the machine ReceiveReq is captured by the following
definition, which is parameterized by the incoming request message inReqMsg
and by the set ReqObj of current request objects of the VirtualProvider. For
simplicity of exposition we assume a preemptive ReceivedReq predicate.6

ReceiveReq(inReqMsg ,ReqObj) = if ReceivedReq(inReqMsg) then
CreateNewReqObj(inReqMsg ,ReqObj)

where CreateNewReqObj(m,R) =
let r = new(R)7 in Initialize(r ,m)

The inverse interaction between a virtual provider and a client, which consists
in sending back a message providing an answer to a previous request of the
client, is characterized by the underlying request object having reached, through
further Processing, a status where a call to SendAnsw with corresponding
parameter outAnswMsg has been internally prepared by Process — namely by
setting the answer-mailbox predicate SentAnswToMailer for this argument to
true. Thus one can specify SendAnsw, and symmetrically SendReq with the
request-mailbox predicate SentReqToMailer , as follows:

SendAnsw(outAnswMsg ,SentAnswToMailer) =
if SentAnswToMailer(outAnswMsg) then Send(outAnswMsg)

SendReq(outReqMsg ,SentReqToMailer) =
if SentReqToMailer(outReqMsg) then Send(outReqMsg)

For the definition of ReceiveAnsw we use as parameter the AnswerSet function
which provides for every requestor r , which may have triggered sending some
subrequests to subproviders, the AnswerSet(r), where to insert (the internal
representation of) each answer contained in the incoming answer message.8

ReceiveAnsw(inAnswMsg ,AnswerSet)9 =
if ReceivedAnsw(inAnswMsg) then

insert answer(inAnswMsg) into AnswerSet(requestor(inAnswMsg))

6 Otherwise a Delete(inReqMsg) has to be added, so that the execution of
ReceiveReq(inReqMsg ,ReqObj) switches ReceivedReq(inReqMsg) to false.

7 new is assumed to provide at each application a sufficiently fresh element.
8 The function requestor(inAnswMsg) is defined below to denote the value of

seqSubReq in the state when the request message outReq2Mssg(s) for the parallel
subrequest s was sent out to which the inAnswMsg is received now.

9 Without loss of generality we assume this machine to be preemptive (i. e.
ReceivedAnsw(inAnswMsg) gets false by firing ReceiveAnsw for inAnswMsg).

An Abstract Model for Process Mediation 5

Behavioral interface types. Through the definitions below, we link calls of
ReceiveReq and SendAnsw by the status function value for a currReqObj .
Thus the considered communication interface is of the “provided behavioural
interface” type, discussed in [11]: the ReceiveReq action corresponds to receive
an incoming request, through which a new reqObj is created, and occurs before
the corresponding SendAnsw action, which happens after the outgoing answer
message in question has been SentAnswToMailer when reqObj was reaching the
status deliver . The pair of machines SendReq and ReceiveAnsw in Process
realizes the symmetric “required behavioural interface” communication interface
type, where the Send actions correspond to outgoing requests and thus occur
before the corresponding ReceiveAnsw actions of the incoming answers to
those requests.

2.3 Refinement by a “state” component

It is easy to extend ReceiveReq to equip virtual providers with some state for
recording information on previously received requests, to be recognized when for
such a request at a later stage some additional service is requested. The changes
on the side of Process defined below concern the inner structure of that machine
and its refined notion of state and state actions. We concentrate our attention
here on the refinement of the ReceiveReq machine. This refinement is a simple
case of the general ASM refinement concept in [10].

The first addition needed for ReceiveReq is a predicate NewRequest to
check, when an inReqMsg is received, whether that message contains a new re-
quest, or whether it is about an already previously received request. In the first
case, CreateNewReqObj as defined above is called. In the second case, in-
stead of creating a new request object, the already previously created request
object corresponding to the incoming request message has to be retrieved, using
some function prevReqObj (inReqMsg), to RefreshReqObj by the additional
information on the newly arriving further service request. In particular, a deci-
sion has to be taken upon how to update the status(prevReqObj (inReqMsg)),
which depends on how one wants the processing status of the original re-
quest to be influenced by the additional request or information presented
through inReqMsg . Since we want to keep the scheme general, we assume
that an external scheduling function refreshStatus is used in an update
status(r) := refreshStatus(r , inReqMsg).10 This leads to the following refinement
of ReceiveReq (we skip the parameters ReqObj , prevReqObj):

ReceiveReq(inReqMsg) = if ReceivedReq(inReqMsg) then
if NewRequest(inReqMsg) then

CreateNewReqObj(inReqMsg ,ReqObj)
10 What if status(prevReqObj (inReqMsg)) is simultaneously updated by the refined

ReceiveReq and by Process as defined below? In case of a conflicting update
attempt the ASM framework stops the computation; at runtime such an inconsis-
tency is notified by ASM execution engines. Implementations will have to solve this
problem in the scheduler of VirtualProvider.

6 M. Altenhofen, E. Börger, and J. Lemcke

else let r = prevReqObj (inReqMsg) in RefreshReqObj(r , inReqMsg)

3 The Processing Submachine of VirtualProviders

In this section we define the signature and the transition rules of the ASM
Process for the processing kernel of a virtual provider. The definition provides
a schema, which is to be instantiated for each particular Processing kernel
of a concrete Virtual Provider by giving concrete definitions for the abstract
functions and machines we are going to introduce. For an example see Sect. 5.

Since we want to abstract from the scheduler, which calls Process for par-
ticular current request objects currReqObj , we describe the machine as para-
metrized by a global instance variable currReqObj ∈ ReqObj . The definition is
given in Fig. 2 in terms of control state ASMs, using the standard graphical
representation of finite automata or flowcharts as graphs with circles (for the
internal states, here to be interpreted as current value of status(currReqObj)),
rhombuses (for test predicates) and rectangles (for actions).

started INITIALIZE(seqSubReq) subReqProcessg

ITERATE-
SUBREQ-

PROCESSG

Finished-
SubReqProcessg

COMPILEOUTANSWMSG
from

AnswerSet(currReqObj)
deliver

NoYes

Fig. 2. Processing(currReqObj)

Figure 2 expresses that each Processing call for a started request object
currReqObj triggers to Initialize an iterative sequential subrequest processing,
namely of the immediate subrequests of this currReqObj , in the order defined
by an iterator over a set SeqSubReq(currReqObj). This reflects the first part of
the hierarchical VP request processing view, namely that each incoming (top
level) request object currReqObj triggers the sequential elaboration of a finite
number of immediate subrequests, members of a set SeqSubReq(currReqObj),
called sequential subrequests. As explained below, each sequential subrequest
may trigger a finite number of further subsubrequests, which are sent to external
providers where they are elaborated independently of each other, so that we call
them parallel subrequests of the sequential subrequest.

Process uses for the elaboration of the sequential subrequests of currReqObj
a submachine IterateSubReqProcessg specified below. Once Process has

An Abstract Model for Process Mediation 7

FinishedSubReqProcessg , it compiles from currReqObj (which allows to access
AnswerSet(currReqObj)) an answer, say outAnswer(currReqObj), and trans-
forms the internal answer information a into an element of OutAnswMssg using
an abstract function outAnsw2Mssg(a). We guard this answer compilation by a
check whether AnswToBeSent for the currReqObj evaluates to true.

For the sake of illustration we also provide here the textual definition of the
machine defined in Fig. 2. For this purpose we use a function initStatus to yield
for a control state ASM its initial control status, which is hidden in the graphical
representation. The function seqSubReq(currReqObj) denotes the current item
of the iterator submachine IterateSubReqProcessg defined below.

Process(currReqObj) =
if status(currReqObj) = started then

Initialize(seqSubReq(currReqObj))
status(currReqObj) := subReqProcessg

if status(currReqObj) = subReqProcessg then
if FinishedSubReqProcessg then

CompileOutAnswMsg from currReqObj
status(currReqObj) := deliver

else
StartNextRound(IterateSubReqProcessg)

where
CompileOutAnswMsg from o = if AnswToBeSent(o) then

SentAnswToMailer(outAnsw2Mssg(outAnswer(o))) := true
StartNextRound(M) = (status(currReqObj) := initStatus(M))

The submachine to IterateSubReqProcessg is an iterator machine defined in
Fig. 3. For every current item seqSubReq , it starts to FeedSendReq with a re-
quest message to be sent out for every immediate subsubrequest s of the current
seqSubReq , namely by setting SentReqToMailer(outReq2Mssg(s)) to true. Here
outReq2Mssg(s) transforms the outgoing request into the format for an outgoing
request message, which has to be an element of OutReqMssg . Since those imme-
diate subsubrequests, elements of a set ParSubReq(seqSubReq), are assumed to
be processable by other providers independently of each other, FeedSendReq
elaborates simultaneously for each s an outReqMsg(s).

Simultaneously IterateSubReqProcessg also Initializes the to be com-
puted AnswerSet(seqSubReq) before assuming status value waitingForAnswers,
where it remains until AllAnswersReceived . When AllAnswersReceived , the ma-
chine IterateSubReqProcessg will ProceedToNextSubReq.

As long as during waitingForAnswers, AllAnswersReceived is not yet true,
ReceiveAnsw inserts for every ReceivedAnsw(inAnswMsg) the retrieved in-
ternal answer(inAnswMsg) representation into AnswerSet(seqSubReq) of the
currently processed sequential subrequest seqSubReq , which is supposed to be
retrievable as requestor of the incoming answer message.

IterateSubReqProcessg =

8 M. Altenhofen, E. Börger, and J. Lemcke

AllAnswers-
Received

FEEDSENDREQ with
ParSubReq(seqSubReq(currReqObj))

INITIALIZE(AnswerSet(seqSubReq(currReqObj)))

waitingForAnswers

PROCEEDTONEXTSUBREQ

Fig. 3. IterateSubReqProcessg

if status(currReqObj) = initStatus(IterateSubReqProcessg) then
FeedSendReq with ParSubReq(seqSubReq(currReqObj))
Initialize(AnswerSet(seqSubReq(currReqObj)))
status(currReqObj) := waitingForAnswers

if status(currReqObj) = waitingForAnswers then
if AllAnswersReceived then

ProceedToNextSubReq
status(currReqObj) := subReqProcessg

where FeedSendReq with ParSubReq(seqSubReq) =
forall s ∈ ParSubReq(seqSubReq)

SentReqToMailer(outReq2Mssg(s)) := true

For the sake of completeness we now define the remaining macros used in Fig. 3,
though their intended meaning should be clear from the chosen names. The
Iterator Pattern on SeqSubReq is defined by the following items:

seqSubReq , denoting the current item in the underlying set SeqSubReq ∪
{Done(SeqSubReq(currReqObj)) },
functions FstSubReq and NxtSubReq operating on the set SeqSubReq and
NxtSubReq also on AnswerSet(currReqObj),
the stop element Done(SeqSubReq(currReqObj)), constrained by not being
an element of any set SeqSubReq .

Initialize(seqSubReq) = let r = FstSubReq(SeqSubReq(currReqObj)) in
seqSubReq := r
ParSubReq(r) := FstParReq(r , currReqObj)

FinishedSubReqProcessg =
seqSubReq(currReqObj) = Done(SeqSubReq(currReqObj))

ProceedToNextSubReq =
let o = currReqObj

s = NxtSubReq(SeqSubReq(o), seqSubReq(o),AnswerSet(o)) in

An Abstract Model for Process Mediation 9

seqSubReq(o) := s
ParSubReq(s) := NxtParReq(s, o,AnswerSet(o))

This iterator pattern foresees that NxtSubReq and NxtParReq may be deter-
mined in terms of the answers accumulated so far for the overall request object,
i. e. taking into account the answers obtained for preceding subrequests.

Initialize(AnswerSet(seqSubReq)) = (AnswerSet(seqSubReq) := ∅)

AllAnswersReceived = let seqSubReq = seqSubReq(currReqObj) in
for each req ∈ ToBeAnswered(ParSubReq(seqSubReq))

there is some answ ∈ AnswerSet(seqSubReq)

The definition foresees the possibility that some of the parallel subrequest mes-
sages, which are sent out to providers, may not necessitate an answer for the
virtual provider: a function ToBeAnswered filters them out from the condition
waitingForAnswers to leave the current iteration round.

The answer set of any main request object can be defined as a derived function
of the answer sets of its sequential subrequests:

AnswerSet(reqObj) =
Combine({AnswerSet(s) | s ∈ SeqSubReq(reqObj)})

4 Mediator Composition and Equivalence Notions

We show how to combine VPs and how to define their service behaviour, which
allows one to define rigorous equivalence notions for VPs one can use a) to
formulate algorithms for the discovery and runtime selection of providers suitable
to satisfy given requests, and b) to prove VP runtime properties of interest.

4.1 Composing Virtual Providers

Instances VP1, . . . ,VPn of VirtualProvider can be configured into a sequence
with a first virtual provider VP1 involving a subprovider VP2, which involves a
subprovider VP3, etc. For such a composition it suffices to connect the commu-
nication interfaces in the appropriate way (see Fig. 1):

SendReq of VPi with the ReceiveReq of VPi+1, which implies that in
the message passing environment, the types of the sets OutReqMssg of VPi

and InReqMssg of VPi+1 match (via some data mediation).
SendAnsw of VPi+1 with the ReceiveAnsw of VPi , which implies that
in the message passing environment, the types of the sets OutAnswMssg of
VPi+1 and InAnswMssg of VPi match (via some data mediation).

Such a sequential composition allows one to configure mediator schemes (see
Fig. 4) where each element seq1 of a sequential subrequest set SeqSubReq1 of
an initial request can trigger a set ParSubReq(seq1) of parallel subrequests par1,
each of which can trigger a set SeqSubReq2 of further sequential subrequests seq2

of par1, each of which again can trigger a set ParSubReq(seq2) of further parallel
subrequests, etc. This provides the possibility of unfolding arbitrary alternating
seq/par trees. More complex composition schemes can be defined similarly.

10 M. Altenhofen, E. Börger, and J. Lemcke

Mediator SchemeRequestor Interface Provider Interface

Virtual Provider

connected to
n

1
m

Mediator
orchestration

Fig. 4. Mediator Scheme

4.2 Defining Equivalence Notions for Virtual Providers

To be able to speak about the relation between incoming requests and out-
going answers, one has to relate the elements of the corresponding sets InRe-
qMssg and OutAnswMssg on the provider side (the left hand side in Fig. 1)
or OutReqMssg and InAnswMssg on the requester side of a VP (the right
hand side in Fig. 1). In the first case this comes up to unfold the func-
tion originator , which for an outAnswMsg yields the inReqMsg to which
outAnswMsg represents the answer. In fact this information is retrievable by
CompileOutAnswMsg from the currReqObj , if it was recorded there by
CreateNewReqObj(inReqMsg ,ReqObj) as part of Initialize.

One can then define the ServiceBehavior(VP) of a virtual provider VP =
VirtualProvider as (based upon) the correspondence between any inReqMsg
and the outAnswMsg related to it by the originator function:

originator(outAnswMsg) = inReqMsg

Two virtual providers VP ,VP ′ can be considered equivalent if an equivalence
relation ServiceBehavior(VP) ≡ ServiceBehavior(VP ′) holds between their ser-
vice behaviours. To concretely define such an equivalence involves detailing of
the meaning of service ‘requests’ and provided ‘answers’, which comes up to pro-
viding further detail of the abstract VP model in such a way that the intended
‘service’ features and how they are ‘provided’ by VP become visible in concrete
locations.

On the basis of such definitions one can then formally define different VPs to
be alternatives for a Strategy pattern [12, p. 315] for providing requested services.
For the run-time selection of mediators, any suitable provider interface can be
viewed as one of the implementations (“mediator orchestration”) of a Strategy
pattern assigned to a requester interface. This provides the basis for investigating
questions like: How can one assure that a provider interface matches the Strategy
pattern of the requester? How and starting from which information can one build
automatically the Strategy pattern implementations?

An Abstract Model for Process Mediation 11

5 Illustration: Virtual Internet Service Provider

One of the use cases in the DIP project (see http://dip.semanticweb.org) deals
with a Virtual Internet Service Provider (VISP). A VISP resells products that
are bundled from offerings of different providers. A typical example for such a
product bundle is an Internet presence including a personal web server and a
personal e-mail address, both bound to a dedicated, user-specific domain name,
e. g. michael-altenhofen.de. Such an Internet presence would require this do-
main name to be registered (at a central registry, e. g. DENIC).

Ideally, the VISP wants to handle domain name registrations in a unified
manner using a fixed interface. We assume now that this interface contains only
one request message RegisterDomain, requiring four input parameters:

DomainName, the name of the new domain that should be registered
DomainHolderName, the name of the domain owner
AdministrativeContactName the name of the domain administrator
TechnicalContactName, the name of the technical contact

On successful registration, the answer will contain four so-called RIPE-
Handles,11 uniquely identifying in the RIPE database the four names provided
in the request message. We skip the obvious instantiation of VirtualProvider
to formalize this VISP.

5.1 A possible VP refinement for RegisterDomain

We now consider the case that the VISP is extending it’s business into a new
country whose domain name registry authority implements a different interface
for registering new domain names, say consisting of four request messages:

RegisterDH (DomainHolderName),
RegisterAC (AdministrativeContactName),
RegisterTC (TechnicalContactName),
RegisterDN (DomainName,DO-RIPE-Handle,AC-RIPE-Handle,
TC-RIPE-Handle).

A VP instance for that scenario is depicted in Fig. 5.12 Within this VP, the
incoming request RegisterDomain is split into a sequence of two subrequests. The
first subrequest is further divided into three parallel subrequests, each registering
one of the contacts. Once all answers for these parallel subrequests have been
received, the second sequential subrequest can be performed, whose outgoing
request message is constructed from the answers of the previous subrequest and
the DomainName parameter from the incoming request.

Using the notational convention of appending Obj when referring to the
internal representations of the different requests, we formalize this VP instance
by the following stipulations. We start with refining the Initialize ASM:

11 RIPE stands for “Réseaux IP Européens”, see http://ripe.net.
12 We use mnemonic abbreviations for the request message and parameter names.

12 M. Altenhofen, E. Börger, and J. Lemcke

VISP

RegisterDomain(
 DN,DHN, ACN,TCN)

DNRH, DHRH,
ACRH, TCRH

RegAccts

RegDomain

RegisterDH(DHN)

DHRH

RegisterAC(ACN)

ACRH

RegisterTC(TCN)

TCRH

RegisterDN(DN,DHRH,
ACRH,TCRH)

DNRH

VP

Fig. 5. VP instance

Initialize(RegisterDomainObj,RegisterDomain(DN, DHN, ACN, TCN) =
params(RegisterDomainObj) := {DN, DHN, ACN, TCN}
SeqSubReq(RegisterDomainObj) := {RegAccnts,RegDomain}
FstSubReq({RegAccnts,RegDomain}) := RegAccnts
NxtSubReq({RegAccnts,RegDomain},RegAccnts,−) := RegDomain
NxtSubReq({RegAccnts,RegDomain},RegDomain,−) := nil
FstParReq(RegAccnts,RegisterDomainObj) :=

{RegisterDH(DHN),RegisterAC(ACN),
RegisterTC(TCN)}

NxtParReq(RegDomain,RegisterDomainObj,AS) :=
{RegisterDN(DN, handle(DHRHObj),
handle(ACRHObj), handle(TCRHObj)}

AnswToBeSent(RegisterDomainObj) := true
ToBeAnswered({RegisterDH,RegisterAC,RegisterTC}) :=

{RegisterDH,RegisterAC,RegisterTC}
ToBeAnswered({RegisterDN}) := {RegisterDN}
status(RegisterDomainObj) := started

where
AS = {DHRHObj,ACRHObj,TCRHObj}

handle(X) =

DHRH if X = DHRHObj
DNRH if X = DNRHObj
ACRH if X = ACRHObj
TCRH if X = TCRHObj

The derived function Combine computes the union of the two answer sets:

Combine(RegisterDomainObj) =
AnswerSet(RegAccnts) ∪AnswerSet(RegDomain)

An Abstract Model for Process Mediation 13

Function answer maps an incoming message to its internal representation:

answer(inAnswMsg) =

DHRHObj if inAnswMsg = DHRH
DNRHObj if inAnswMsg = DNRH
ACRHObj if inAnswMsg = ACRH
TCRHObj if inAnswMsg = TCRH

The abstract function Formatted is used to transform the parameters into the
format expected by the requester, in our case the VISP:

outAnsw2Msg({DHRHObj,DNRHObj,ACRHObj,TCRHObj}) =
Formatted({DNRH, DHRH, ACRH, TCRH})

In [13] we give five other simple examples for refinements of VP to capture the
execution semantics of some workflow patterns discussed in [14].

5.2 Proving Properties for VPs

Once one has a mathematical model of VPs, this can be used to prove properties
of interest for the model and its refinements to executable code. We illustrate
this by a proof sketch that the two VISPs defined above are equivalent.

The claim follows if we can show the correctness of both VPs with re-
spect to the requested service, namely that any successful initial inReqMsg to
RegisterDomain(DN ,DHN ,ACN ,TCN) will receive an outAnswMsg containing
four RIPE-Handles, one for each of the RegisterDomain(DN ,DHN ,ACN ,TCN)
parameters. For the first VP this is trivial under the assumption
that the (sub)provider provides real RIPE handles as answers to
RegisterDomain(DN ,DHN ,ACN ,TCN) requests. For the refined VP, the claim
can be stated more precisely by saying that the following holds for every suc-
cessful pair of inReqMsg and corresponding outAnswMsg (the correspondence is
formally established by their belonging to one reqObj in VP, successful refers to
the fact that in the example VP we consider only the case of successful registra-
tions, without further interaction between requester and mediator):

CorrectnessLemma.
For corresponding successful inReqMsg , outAnswMsg holds :
RIPE -Handle(DomainName(inReqMsg)) =

DomainNameRipeHan(outAnswMsg)
RIPE -Handle(DomainHolderName(inReqMsg)) =

DomHolderNameRipeHan(outAnswMsg)
RIPE -Handle(AdminContactName(inReqMsg)) =

AdmContactNameRipeHan(outAnswMsg)
RIPE -Handle(TecContactName(inReqMsg)) =

TecContactNameRipeHan(outAnswMsg)

Here the function RIPE -Handle denotes a real-life RIPE handle, which uniquely
identifies its argument name in the RIPE database. DomainNameRipeHan, etc.

14 M. Altenhofen, E. Börger, and J. Lemcke

denote projection functions, which extract the corresponding information from
the outAnswMsg = Formatted({DNRH, DHRH, ACRH, TCRH}).

Proof. A simple analysis of VISP runs shows that an incoming request
message RegisterDomain(DN ,DHN ,ACN ,TCN) triggers VP to Send first
three subrequests RegisterDH (DHN), RegisterAC (ACN), RegisterTC (TCN),
which are (assumed to be) answered by RIPE handles DHRH , ACRH , TCRH .
Then VP Sends the subrequest RegisterDN (DN ,DHRH ,ACRH ,TCRH),
which is (assumed to be) answered by a domain name ripe handle DNRH . By
definition of the answer function, the outAnswMsg contains a Formatted ver-
sion of the four RIPE handles obtained for the parameters in the inReqMsg ,
from where the projection functions extract these RIPE handles.

We want to stress that the proof works only under the assumption that the
subproviders work correctly, i. e. that they provide upon request ripe handles for
domain holder names, administrative contact names, technical contact names
and domain names. This is the best one can prove for VP, which is only a medi-
ator and relies for the correctness of the provided service upon the correctness
of its subproviders.

6 Conclusions and Future Work

Our formal, high-level ASM model of process mediation provides a basis for
“communicating and documenting design ideas” and supports “an accurate and
checkable overall understanding” of the controversially discussed topic of process
mediation, a part of the Semantic Web Services (SWS) usage process [4,5,6].
ASM models can help to provide explicit, exact and formal specifications with
an accurate meaning of all underlying terms, needed to produce a consistent
view of the general SWS usage process. Furthermore, the ASM method allows
to “isolate the hard part of a system” [9, p. 14-15] and thus to concentrate on the
essential parts for refinement, targeted at bridging controversial approaches, like
dynamic composition vs. static composition, through explicitly showing their
differences by deriving them as different refinements of the same abstractions.
We look for more involved practical instantiations of VP than the simple one
illustrated in Sect. 5. Another direction of research concerns replacing the simple
communication patterns used by VP by more complex ones. ReceiveReq and
SendAnsw are identified in [15] as basic bilateral service interaction patterns,
namely as mono-agent ASM modules Receive and Send; the FeedSendReq
submachine together with SendReq in Process realize an instance of the basic
multilateral mono-agent service interaction pattern called OneToManySend
in [15], whereas the execution of ReceiveAnsw in IterateSubReqProcessg
until AllAnswersReceived is an instance of the basic multilateral mono-agent
OneFromManyReceive pattern from [15]. One can refine VP to concrete busi-
ness process applications by enriching the communication flow structure built
from basic service interaction patterns as analysed in [15].

Besides the mediation and composition topics, VP has proven to be useful as
a basis for formal specifications of distributed semantic discovery frameworks.

An Abstract Model for Process Mediation 15

As shown in [16], only minor changes on the VP structure are required in or-
der to specify a formal, high-level ASM model of distributed semantic discovery
services. The different distribution and semantic matchmaking strategies, de-
pending on the technology used for an implementation of a discovery service,
can be derived as different refinements of the same abstractions.

References

1. Stumptner, M.: Configuring web services. In: Proceedings of the Configuration
Workshop at the 16th European Conference on Artificial Intelligence (ECAI).
(2004) 10–1/10–6

2. Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and
monitoring web service composition. In: AIMSA. (2004) 106–115

3. Lee, Y., Patel, C., Chun, S.A., Geller, J.: Compositional knowledge management for
medical services on semantic web. In: WWW (Alternate Track Papers & Posters).
(2004) 498–499

4. Bornhövd, C., Buchmann, A.: Semantically meaningful data exchange in loosely
coupled environments. In: Proceedings of the International Conference on Infor-
mation Systems Analysis and Synthesis (ISAS). (2000)

5. Fensel, D., Bussler, C.: The web service modeling framework wsmf. Electronic
Commerce Research and Applications 1 (2002) 113–137

6. Pires, P.F., Benevides, M.R.F., Mattoso, M.: Building reliable web services com-
positions. In: Web, Web-Services, and Database Systems. (2002) 59–72

7. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14 (2003) 5–51

8. Barros, A., Dumas, M., ter Hofstede, A.: Service interaction patterns: Towards a
reference framework for service-based business process interconnection. Technical
report, Faculty of IT, Queensland University of Technology (2005)

9. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer (2003)

10. Börger, E.: The ASM refinement method. Formal Aspects of Computing 15 (2003)
237–257

11. Barros, A., Dumas, M., Oaks, P.: A critical overview of the web services choreog-
raphy description language (WS-CDL). White paper (2005)

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1995)

13. Altenhofen, M., Börger, E., Lemcke, J.: An execution semantics for mediation pat-
terns. In: Proc. of 2nd WSMO Implementation Workshop WIW’2005, Innsbruck,
Austria, CEUR Workshop Proceedings (2005) ISSN 1613-0073, online CEUR-
WS.org/Vol-134/lemcke-wiw05.pdf.

14. Cimpian, E., Mocan, A.: D13.7 v0.1 Process mediation in WSMX – WSMX working
draft (2005) http://www.wsmo.org/TR/d13/d13.7/v0.1/.

15. Barros, A., Börger., E.: A compositional framework for service interaction pat-
terns and communication flows. In: Proc. 7th International Conference on Formal
Engineering Methods (ICFEM). LNCS, Springer (2005)

16. Friesen, A.: A high-level specification for semantic web service discovery frame-
work. In preparation (2005)

