
Modeling for Change
via Component-Based Decomposition

and ASM Refinement

Egon Börger
Università di Pisa

Dipartimento di Informatica
I-56125 Pisa, Italy

boerger@di.unipi.it

Simone Zenzaro
Università di Pisa

Dipartimento di Informatica
I-56125 Pisa, Italy

zenzaro@di.unipi.it

ABSTRACT
This paper is part of a larger effort to concretely compare dif-
ferent approaches to modelling and implementing software
intensive systems, in particular Business Processes (BPs).
We illustrate for the Atm case study [3] how to use the
Abstract State Machines Method [10] to develop executable
models by a) first defining a high-level (easily changeable
and reusable) model that can be checked by the domain ex-
pert to capture the requirements and b) then refining this
model to executable code which the software expert can
check to behave correctly with respect to the requirements
model.1

1. INTRODUCTION
The growing awareness of the importance of high-level

modelling for the development of reliable software-intensive
systems goes together with a puzzling variety of modelling
approaches coming with languages and tool suites for mod-
elling and model validation, verification and implementa-
tion. This holds also for the Business Process (BP) domain
where up to today despite of intensive efforts (see [23, pg.5]
and [7] for further references) no satisfactory standardiza-
tion helps the BP expert to decide upon which approach to
adopt.

In this paper we contribute to the endeavor to concretely
compare—using (necessarily small but characteristic) case
studies from the literature—some well-known modeling ap-
proaches with respect to their conceptual well-foundedness
(semantics) and important pragmatic properties (e.g. ease
of developing, understanding, changing, reusing, implement-
ing, validating, verifying, documenting models, etc.). We

1The authors gratefully acknowledge support of this work by
a fellowship from the Alexander von Humboldt Foundation
for a summer term research stay at the universities of Düs-
seldorf, Bonn-Rhein-Sieg and Kiel, sequel to the Humboldt
Forschungspreis awarded to the first author in 2007/08.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
S-BPM ONE ’15, April 23-24, 2015, Kiel, Germany
Copyright 2015 ACM 978-1-4503-3312-2/15/04 ...$15.00
http://dx.doi.org/10.1145/2723839.2723854.

use the Abstract State Machine (ASM) method [10] to cap-
ture the requirements of the often-used Atm case study [3]
by a high-level (so-called ground [6]) model which can be a)
inspected for correctness (in its application domain meaning,
called ground model correctness [6]) and then b) correctly re-
fined to an executable version [24]2—so that the features of
interest can be concretely compared to those of other models
and implementations [12, 13].

Through the development of the ground model we illus-
trate three characteristic properties of the ASM method.

Minimality of ground models: we show that when an
element is introduced into the ASM model it is not to
comply with some need of the modeling framework but
to directly reflect a feature in the requirements. In fact
it is crucial that the modeling process is guided by the
given application domain problems, not by modelling
framework constraints, so that a domain expert can
apply the method without further ado.
Decomposition of ASM models: we apply the ASM
refinement method [5]3 which allows one to organize
complex behaviour by splitting it into (a structure of)
components (horizontal refinement) which can be in-
spected in isolation for correctness, respecting Parnas’
code inspection guide lines.4 Guided by the require-
ments [3] we decompose the Atm ground model into
ASM components to separate a) normal, failure (ex-
ception) and interrupt (by cancel commands or time-
outs) behavior, b) the successive stages of normal Atm
behavior and c) concurrency aspects (involving multi-
ple tills). Furthermore we stepwise detail the compo-
nents (by vertical refinement) leading from the high-
level architectural ground model view to an executable

2The ASM method permits refinements also for other en-
gines (e.g. [4]) and by code generation (see for example the
ASM2C++ compiler used in [8]).
3See the further theoretical underpinning and development
based upon a KIV theorem prover formalization in [18, 19,
21, 20, 22].
4‘the key to inspection of any complex product is a policy of
divide and conquer, i.e., having the inspector examine small
parts of the product in isolation, while making sure that
1) nothing is overlooked and 2) that the correctness of all
inspected components implies the correctness of the whole
product. The decomposition of the inspection into discrete
steps must assure that each step is simple enough that it can
be carried out reliably and that one inspection step can be
carried out without detailed knowledge of the others.’ [17]

model.
Completeness of ground models: to make it checkable
by the domain expert that every feature in the require-
ments that is relevant for the intended system behavior
is present in the ground model we define its compo-
nents by control state ASMs, a class of ASMs with an
intuitive graphical (FSM-like flowchart) representation
which is easy to grasp for application domain experts
and by its rigorously defined behavioural semantics en-
hances similar (but semantically only loosely defined)
UML [15] and BPMN [16] diagrams. Furthermore the
simple combination of graphical and textual definitions
in control state ASMs allows one to smoothly but pre-
cisely integrate data and resource conditions into the
control-flow perspective. This allows the BP expert
to see the requirements modelled completely (cover-
ing control flow, data and resources) and without am-
biguity yet close to familiar notations so that model
inspection becomes feasible, reducing the risk of mis-
understanding between experts and model or software
developers.

We avoid a premature introduction of classes and instead
concentrate the attention on discovering an appropriate ar-
chitecture of components with as abstract as possible (‘con-
ceptual’, application domain focussed) data and operations,
a concern shared with the object-oriented world view. Thus
we focus on finding out who are the actors of a system
and what are the elements which regulate their interaction
(shared locations, communication constructs, conditions), a
concern shared with the subject oriented approach to BPM
(S-BPM [11]). In this way we pave the way for efficient
model reuse.

The architectural Atm model in Sect. 2 is detailed in
Sect. 3 by models for the components reacting to user in-
put and events and is followed by models for the Central-
Resource and the communication mechanism (Sect. 4). In
Sect. 5 we shortly discuss verification, validation and reuse
concerns.

2. MODELING THE ATM

The requirements suggest a natural sequence of actions
an Atm performs during a session with a user. We follow
it to structure our Atm model using corresponding com-
ponents M as displayed in Fig. 1. During the execution
of M various failures may happen which trigger the ATM to
HandleFailure(M). The Fail(M) reasons of every compo-
nent M depend on security and reliability constraintsin [3]:

Fail(ProcessCardInsertion) if the insertedCard is
not a ValidCard
Fail(ProcessPin) if the inserted pin is not a ValidPin
Fail(ProcessOpRequest) if during the handling of a
user’s Withdrawal request the LocalAvailability check
for the requested amount of money failed (because 5

AmountATMUnavailabe or AmountExceedsDailyLimit)

5We introduce the first LocalAvailability check case for re-
liability and the second one for security reasons, trying to
minimize accesses to the central resource and thereby the
possibility that the needed connection can be interrupted.
This models ‘that the amount withdrawn within the day
must be stored on the card or database’ [3] by deciding for
the ‘stored on the card’ alternative.

Figure 1: Atm (Component Structure Macro View)
and HandleFailure

Fail(ProcessCentralResourceResponse) if after
Atm had started to WaitFor(ContactCentralResource)
a ContactResponse(ConnectionRefused) arrives (from
the CentralResource or from the network).

We reflect this behaviour by defining the involved normal
and failure actions as separate Atm components. This yields
the model (structure) in Fig. 1,6 a control state ASM whose
component ASMs are detailed in Sect. 3.7

The requirements [3] forsee also interruptions which can
be triggered by a) Cancel commands the user can input
‘any time’ and b) by various Timeout events due to real-
time constraints. We model the effect of such events by an
InterruptTrigger component (which triggers a compo-
nent to HandleInterrupts) so that the Atm ground model
can be defined as parallel composition of two machines:

GroundAtm =
if ThereAreInterrupts

then HandleInterrupt

else

{
Atm
HandleFailure

InterruptTrigger

3. REQUIREMENTS CAPTURE FOR THE
ATM COMPONENTS

3.1 ProcessCardInsertion

6For layout reasons the names of Machines are displayed
in the figures (where they appear always in rectangles) in
upper camelcase, i.e. as Machine.
7The flowchart diagram yields a syntactically correct con-
trol state ASM as defined in [10] via an unfolding of the
submachines, see Fig. 14. To better visualize the compo-
nent structure and interaction we hide in Fig. 1 the initial
and final control states in the submachines as well as the
connections between (more precisely the identification of)
the final state of one and the initial state of the next sub-
machine by displaying only the names for the components
and the connecting arrows.

A session with (an instance of) the Atm is started when a
user physically inserts a card. We describe this by a moni-
tored predicate CardInserted , assumed to become true when
a card is physically inserted and false when it is physically
Removed . In the model a session can be started only if the
till is in idle mode.

To ProcessCardInsertion the machine checks whether
the insertedCard is a ValidCard . If it is, the machine will
ReadCard, Initialize Session and StartPinRequest , oth-
erwise it moves into Fail(InvalidCard) mode. This explains
the control state ASM definition of ProcessCardInsertion
in Fig. 2 in classical flowchart notation: ovals represent
modes, rectangles machines (where two or more machines
appearing in one rectangle are executed in parallel), rhombs
conditions to proceed to the target machine or mode. We
highlight Fail(type) modes in which HandleFailure(type)
(see Sect. 3.7) is started.

Figure 2: ProcessCardInsertion

To ReadCard means to (try to) retrieve all relevant (static
or dynamic) uniquely determined card attribute values from
insertedCard , e.g.

circuit(card) indicates the card type, pinCode(card),
account(card),
centralResource(card) holds the current status of the
account(card),
dailyLimit(card),
alreadyWithdrawn(day , card) indicates the total amount
of money withdrawn this day in previous sessions at
some tills using card , etc.8

It is an implementation issue to decide whether these at-
tribute values are locally copied as part of ReadCard. Thus
we abstract from single updates by writing currCard :=
insertedCard and retrieve the attribute values by apply-
ing attribute functions to currCard . For robustness reasons
we include into the ReadCard component the case that
no reading can take place if a card is inserted that is not
Readable (e.g. corrupted or not an Atm card at all).

Since an Atm session needs some auxiliary locations to
store intermediate data we include into the model to Ini-
tializeSession which is assumed to update all private ATM
locations to their default values, for example by

if dayOfLastWithdrawal(card) < today then
alreadyWithdrawn(today , card) := 0

8In a ground model ASM we deliberately name the ob-
jects and operations of discourse in application domain
and not in data representation terms, speaking for example
about cards, accounts and account(card) directly instead of
cardIds and accountIds assuming cards to be uniquely asso-
ciated with accountIds, typical concerns which are dictated
by how to represent the objects in code and not by the mat-
ter, here that there is a function determining the unique
account belonging to a card .

where today is updated at midnight by a Calendar com-
ponent of the ATM.

The validity check consists in checking whether the in-
sertedCard is Readable and belongs to one of the Circuits of
card types the ATM accepts.

ValidCard =
Readable(insertedCard) and
circuit(currCard) ∈ Circuit

3.2 ProcessPin

To ProcessPin means to first AskFor(Pin). If upon
reaching Ready(Pin) ValidPin is false but the user Has-
MoreAttempts, pin requests can be repeated until they reach
Fail(InvalidPin) or ValidPin—if no InterruptTrigger oc-
curred due to a Cancel command or a Timeout(AskFor(Pin))
during the execution of AskFor(Pin). This explains the
definition of ProcessPin in Fig. 3.

For the ValidPin check it is required that the inserted pin
is ‘encoded by the till and compared with a code stored on
the card’[3]. We reflect this by applying an abstract (for con-
crete circuits refinable) encodePin function to the collected
Pin userInput which is recorded in location valFor(Pin) (by
the AskFor(Pin) submachine ProcessInputStream(Pin)
defined below).

ValidPin =
(pinCode(currCard) = encodePin(valFor(Pin)))

Figure 3: ProcessPin

3.2.1 User Input Requesting Submachine AskFor.
Repeatedly an ATM does AskFor userInput for a Pin,

an operation (Balance, Statement , Withdrawal) or the re-
quested Amount of money. Unless an InterruptTrigger
occurs it stores this input in a location valFor(param) and
enters mode Ready(param) (so that it can also ResetTimer
with these param).

AskFor(param) =
valFor(param) := userInput
mode := Ready(param)
ResetTimer(AskFor(param))

For a refinement which models how to read and process
keywise provided input streams see Sect. 5.2.

3.2.2 Timing Mechanism.
To satisfy the requirements for eventual completion within

real-time constraints of each started transaction a timing
mechanism is needed. To keep the granularity of timing
flexible and to abstract from implementation details we in-
troduce for each timedOpn a timer(timedOpn) which comes
with an appropriate deltaTime(timedOpn) determining the
Timeout(timedOpn) predicate. The monitored location now
describes the current system time.

SetTimer(timedOpn) = (timer(timedOpn) := now)
Timeout(timedOpn) =

now − timer(timedOpn) > deltaTime(timedOpn)
ResetTimer(timedOpn) = (timer(timedOpn) :=∞)
// this update falsifies Timeout(timedOpn)

3.3 ProcessOpRequest

Once a ValidPin is identified ProcessOpRequest must
AskFor(OpChoice) and SetTimer(OpChoice) (the latter
for real-time concerns). When after the user’s choice it
reached mode Ready(OpChoice) it checks whether there are
RequiredData for the chosen operation op. If not (case op ∈
{Balance,Statement}) it enters mode Ready(ContactCR).
Due to [3] there are RequiredData only for op = Withdrawal ,
namely the requested amount of money the machine must
AskFor and CheckLocalAvailability: whether Amoun-
tATMUnavailable or AmountExceedsDailyLimit. This ex-
plains the definition in Fig. 4 (next page).

How to seamlessly combine the mere control flow view
of CheckLocalAvail with data is illustrated by the ASM
refinement in Sect. 5.1.9

CheckLocalAvail =
choose m ∈ {Ready(ContactCR),

Fail(AmountAtmUnavail),
Fail(AmountExceedsDailyLimit)} do

mode := m
if m = Ready(ContactCR) then

amount := valFor(Amount)

3.4 ProcessCentralResourceContact.
We use an abstract Send machine which encodes and

Sends messages from a sender (here represented by the ad-
dress Atm of the till which tries to establish the contact) to a
receiver (here represented by the centralResource(currcard))
address with the appropriate opChoiceData. The message
must contain the information on the currCard , the user’s
operation choice valFor(OpChoice) and for a Withdrawal

9Into the submachine CheckLocalAvail one could intro-
duce yet another timer(CheckLocalAvail) but we abstain
from this because this machine executes automatically and
presumably fast.

operation the requested amount . To further specify Send is
out of the scope of this case study.

ContactCentralResource =
Send(encodetill(Atm,Cr ,RequestData))
Display(WaitingForCentralResourceContact)

where
Atm = address(till(self))
Cr = address(centralResource(currCard))
RequestData =

opChoiceData(currCard , valFor(OpChoice))
opChoiceData(card , opn) ={

(card , opn) if opn ∈ {Balance,Statement}
(card , opn, amount) if opn = Withdrawal

Figure 5: ProcessCentralResourceContact

ProcessCentralResourceContact only triggers the
underlying physical process and sets the appropriate timer
for ContactCentralResource. Reasonably the machine can be
interrupted but not Fail since failed Sending is detected by
ProcessCentralResourceResponse. This explains the
definition in Fig. 5.

3.5 ProcessCentralResourceResponse

A ContactResponse(ConnectionRefused) may arrive (from
the network or from the central resource) and lead from
WaitFor(ContactCentralResource) to a Fail mode, unless
an InterruptTrigger occured.

Possible CentralResourceResponses which do not Fail but
lead to normal TerminateOp mode10 are the following (see
Fig. 6 and Fig. 7)11:

A response to a Statement or Balance request or a re-
sponse to a Withdrawal request indicating that the in-
formation on the account held at the central resource
was not available there (InfoUnavailable). In these
cases the machine will TerminateOp with Ejecting
the currCard and Displaying the appropriate infor-
mation to the user: the actual balance or that InfoU-
vailable or the confirmation that the requested state-
ment will be sent by post or that the requested amount
cannot be allowed any more for the account.
A response stating that currCard is what the require-
ments call an IllegalCard , i.e. a card that has been

10To refine ProcessCentralResourceResponse such that
a user in one session can request several operations is left as
a model change exercise.

11Closing the connection to the Central Resource serves to
minimize the dependence of a till from the connection.

Figure 4: ProcessOpRequest

blocked (e.g. by the owner who reported that it has
been lost/stolen or by the bank because of irregular
card owner behaviour). In this case the requirements
request to TerminateOp with Keeping the currCard
and maybe informing the user about this.
A response that the requested amount of money is
granted. In this case the requirements request to Ter-
minateOp with Ejecting the money amount , an ac-
tion tills usually perform only after the currCard has
been Ejected by the till and been Removed by the
user.

Figure 6: ProcessCentralResourceResponse

3.5.1 Atm Communication Predicates.
We define here the conditions which guard the action to be

taken upon arrival of a response from the Central Resource.
We model the arrival of such a response message as update
of a monitored Atm (say mailbox) location CRresp by the
underlying message passing system. Assuming that initially
(e.g. in InitializeSession) this location is set to a mes-
sage defaultValue we can formulate the arrival of a response
message as CRresp having been updated to a value that is
different from its defaultValue. Functions type, answer re-
trieve from a response message its type and content:

ResponseFromCR(param) =
(CRresp 6= defaultVal and type(CRresp) = param)

GrantedAmount =
type(CRresp) = Withdrawal and answer(CRresp) =
Ok

RefusedAmount =
type(CRresp) = Withdrawal and

(answer(CRresp) = notOk or
answer(CRresp) = InfoUnavailable)

In TerminateOp(CRresp,Eject(currCard)) the CRresp
parameter serves for type(CRresp) ∈ {Balance,Withdrawal}
to permit Display(CRresp) (see the definition below) to
retrieve the information on the answer(CRresp).

3.6 Terminate and TerminateOp

Atm enters TerminateOp mode to a) Eject or Keep the
currCard (depending on the given reason to terminate) and
b) for a successful Withdrawal to also Eject the requested
amount of money. To model this we define TerminateOp
as parametrized by a) the reason why to TerminateOp—
about which the user is informed by Displaying a screen
(or a voice communication)—and b) the sequence of actions
to be executed for that reason.

TerminateOp(reason, actions) =
Display(reason)
TerminationActions := actions

Since to Terminate it may be that the till HasMoreTer-
minationActions to perform, the machine iterates perform-
ing each single TerminationAction before it re-enters the

Figure 7: ProcessPositiveResponse

idle mode (in which it is ready to start a new session).12

This explains the definition of Terminate in Fig. 8. Dur-
ing this phase the user cannot provide any more any input,
a robustness condition for the till.

Figure 8: Terminate

In TerminateAction the actions can be EjectActions
(i.e. Eject(card) or Eject(money)) but—to satisfy the re-
liability requirement ‘to minimise the possibility of the use
of stolen cards’ [3]—also KeepActions (namely Keep(card)
or Keep(money), see Fig. 9) in case the user did not with-
draw the ejected card/money within some time interval, say
of length deltaTime(Removal).

Figure 9: TerminateAction

To Dispense in case of a GrantedAmount response from

12To ClearSession upon moving back to idle mode belongs
to garbage collection. InitializeSessionFor(insertedCard)
prevents old session values to move into a new session.

the central resource, after the currCard has been Ejected
there is still MoneyToWithdraw so that, to satisfy the dailyLimit
requirement, the Atm is defined in Fig. 10 to:

RecordMoneyWithdrawalOnCard for today be-
fore the currCard is Ejected,
RecordMoneyWithdrawalAtAtm after the success-
ful removal of the money amount requested by the
user.

Figure 10: Dispense(o)

Retract =
Remove

// physically remove card or money from slot
LogMissedWithdrawal
mode := TerminateOp

RecordMoneyWithdrawalOnCard =
if MoneyToWithdraw then

// true only if GrantedAmount
alreadyWithdrawn(today , currCard) :=

amount + alreadyWithdrawn(today , currCard)
dayOfLastWithdrawal(currCard) := today

RecordMoneyWithdrawalAtAtm(o) =
money(Atm) := money(Atm)− o
// called only after successful money Witdrawal

To make the interface between the logical ASM ground
model and its physical environment explicit we leave Remove
abstract and interpret it when concerning a card as trigger-
ing the physical action to insert the ejected card into a stock
of retained cards.

Remark. RecordMoneyWithdrawalOnCard is done
at the latest possible moment, namely just before currCard
is physically Ejected. Nevertheless the risk remains that
should the ATM fail to also Eject the requested and granted
amount of money (although amount has been checked be-
fore in CheckLocalAvail to be AtmAvailable), then the
amount has been added anyway to alreadyWithdrawn for
parameters (today , currCard) and thus affects checking the
WithinDailyLimit condition for further withdrawal attempts
made later today by the user of the currCard . To pre-
pare the ground for a later correction of such a mismatch
LogMissedWithdrawal is added to Remove.13

3.7 Failure Handling Submachines
In failure mode Fail(param) the machine HandleFailure

is called which depends on the parameter indicating the
kind of Failure (read: non successfully completed Atm ses-
sion) that happened. For the Fail(InvalidPin) case the re-
quirements request to Keep(currCard) as “Illegal”, in the
other Failure cases an Atm typically will Eject the card.14

Other options are possible, e.g. one could offer in case of
Fail(AmountExceedsDailyLimit) more attemptsFor(Amount)
with lower amounts by inserting a loop as illustrated for at-
temptsFor(Pin), but in view of the case study character of
this work we leave this as an exercise.15

13In a real ATM more logging takes place, easily included
into our model, but since the case study requirements do
not mention logging we do not consider it further.

14In particular we interpreted the meaning of“Illegal card”[3]
as refering to cards the central resource declares as illegal,
excluding unreadable cards and cards not belonging to the
till’s circuits—which in the model are ejected.

15For the same reason we leave it as an exercise to define
a refinement that reflects the particular ‘change any time’
case that ‘Customers can change ... any time ... the amount
they want to withdraw’ mentioned in [3].

HandleFailure(param) =
if mode = Fail(param) then

if param = InvalidPin then
TerminateOp(InvalidPin,Keep(currCard))

else
TerminateOp(param,Eject(currCard))

CloseConnectionToCentralResource
mode := TerminateOp

where
CloseConnectionToCentralResource =

ResetTimer(ContactCentralResource)
DisconnectAtmFromCR
//trigger to physically disconnect

In the same way one can define other HandleFailure
components, e.g. allowing the user to continue with some
operation at the till or to include triggering repair services
in case of physical defects of the till, etc., depending on the
requirements.

3.8 The Interrupt Components
If the user has Pressed the CancelKey when the Atm IsIn-

CancelRegion or if a Timeout(timedOpn) happens, then the
machine InterruptTrigger activates HandleInterrupt,
e.g. by inserting these events into InterruptEvent .16 Han-
dleInterrupt chooses a highPriority interrupt event e to
Handle(e); when defining the highPriority function one
could for example declare Cancel commands to be of higher
priority than Timeouts. For Cancel events e occurring when
IsInCancelRegion(Atm) and for Timeout events e concern-
ing a timedOpn occurring when IsInTimerRegion(timedOpn)
Handle(e) means to TerminateSession with Ejecting
the card.

Remark. For running ATM scenarios in CoreASM with
an input providing user, in [24] ‘any time’ is interpreted as
‘any user input time’.

InterruptTrigger =
if Pressed(CancelKey)

and IsInCancelRegion(Atm) then
Insert(Cancel , InterruptEvent)

forall timedOpn ∈ {AskFor(param),
ContactCentralResource,
Removal} do

if Timeout(timedOpn) and
IsInTimerRegion(timedOpn) then

Insert(timer(timedOpn), InterruptEvent)
ResetTimer(timedOpn)

16In general one will have multisets or sequences, but in this
case study a set suffices.

HandleInterrupt =
let e = highPriority(InterruptEvent)

Handle(e)
Delete(e, InterruptEvent)

where
Handle(Cancel) =

if IsInCancelRegion(Atm) then
TerminateSession(Cancel)

Handle(timer(timedOperation)) =
if IsInTimerRegion(timedOperation) then

TerminateSession(Timeout(timedOperation))
TerminateSession(p) =

DisconnectAtmFromCR
TerminateOp(p,Eject(currCard))
mode := TerminateOp

One can define IsInCancelRegion and IsInTimerRegions
by refering to the Modes17 in which an interrupt event should
have effect. The following definition expresses that no Cancel
command has any effect outside a user session (when mode =
idle) or when the Atm is performing automatically its fi-
nal stage to Terminate the session. Also a Timeout has
an effect for a timedOperation only if it IsInTimerRegion.
HandleInterrupt discards interrupt events which happen
outside the region where they are defined to have an effect.

IsInCancelRegion(Atm) =
mode 6∈ {idle} ∪Mode(Terminate)

IsInTimerRegion(AskFor(param)) =
mode ∈ {AskFor(param),WaitFor(param)}

IsInTimerRegion(ContactCentralResource) =
mode = WaitFor(ContactCentralResource)

IsInTimerRegion(Removal) =
(mode = WaitFor(Removal))

3.9 The ATM Calendar Component
For a correct handling of the requested dailyLimit of cards

a Calendar component (which in turn requires a Clock
component) is needed which updates today every midnight,
using a calendar function to compute the nextDay :18

Calendar =
if now = midnight then today := nextDay(today)

4. MODELING THE CENTRALRESOURCE

Concentrating on what the requirements impose for a cor-
rect communication between tills and a central resource we
only need to model two modules to AcceptRequests and
to HandleRequests. We make no assumption on their

17By Mode(M) we denote the set of possible mode values
of M .

18An issue to be addressed for a real Atm is what should hap-
pen to attempts to withdraw money around midnight. We
leave it as an exercise to develop a refinement (in particu-
lar of RecordMoneyWithdrawalOnCard) which imple-
ments a decision about to which day to attribute the real
withdrawal.

synchronization by the central resource. Thus we stipulate
that there is a set Request into which the AcceptRequests
component can insert messages (say already decoded into a
request format the Central Resource works with) which ar-
rived in the Mailbox of the central resource from a till and
from where asynchronously the HandleRequests compo-
nent can fetch requests to handle them.

Since requests can be assumed to have a unique identity it
is consistent to permit in the model simultaneous access to
Request by the two components, even for multiple messages
or (under certain constraints, see below) multiple requests
at a time. This is easily modelled exploiting the ASM par-
allelism and leaves the greatest possible freedom to schedule
message accepting and handling by the central resource any
way which is reasonable to implement the required ‘con-
current access to the database from two or more different
tills’ [3], not restricted to interleaving (which is the preferred
way to deal with concurrency in verification tools supporting
e.g. the (Event)-B [1, 2] and TLA+ [14] approach to model-
ing)19. In particular it permits to separate the two distinct
features of the concurrency concern stated in [3], namely to

guarantee exclusive access to an account upon ‘concur-
rent access to the database from two or more different
tills’ both concerning a same account, so that two si-
multaneously present requests cannot violate the other
requirement that only ‘any amount up to the total in
the account may be withdrawn’,
allow for flexible priority resp. scheduling policies to
implement concurrent database accesses for different
accounts.

CentralResource =
AcceptRequests
HandleRequests

where AcceptRequests = if MailboxCR 6= ∅ then
choose R ⊆ MailboxCR and R 6= ∅

forall msg ∈ R

{
Insert(decodeCR(msg),Request)
Delete(msg ,MailboxCR)

The freedom of choosing a mailbox subset allows one to
exploit for further refinements of choose any form of paral-
lelism the central resource offers.

We adopt a similar approach for HandleRequests, illus-
trating the use of selection functions when modelling with
ASMs. Consider a (possibly dynamic) function selectCR

which each time it is applied to the (dynamically changing)
set Request chooses a Consistent non-empty subset R ⊆
Request . Then one can Handle all requests in R in paral-
lel. The set is Consistent if it contains no multiple Withdraw
requests concerning a same account. 20

19This does not contradict the fact that the behavioural spec-
ifications in the ASM, (Event-) B and TLA+ approaches
(namely by control state ASMs, (Event-) B machines resp.
TLA+ state machines) are often rather similar. The differ-
ence is that the ASM method allows one to state and prove
properties using mathematics, not only the tool supported
part of it.

20This definition guarantees exclusive Withdrawal access per
account and leaves any other combination of accesses to the
same account to the database parallelism. For simultane-
ous Withdrawal and Balance (or Statement) access to the
same account by two users it provides the account total be-

HandleRequests = if Request 6= ∅ then
let R = selectCR(Request)
//NB. R is assumed to be Consistent

forall r ∈ R

{
Handle(r)
Delete(r ,Request)

where Consistent(R) =
thereisno r , r ′ ∈ R with r 6= r ′

and account(r) = account(r ′)
and op(r) = op(r ′) = Withdrawal

Remark on concurrency. Another approach to guar-
antee transactional behaviour of the Central Resource in the
presence of multiple HandleRequests instances is to de-
fine HandleRequests(request) for single requests and then
to harness a set of its instances by the transaction control
operator defined in [9].

To retrieve request resp. to encode response data Handle(req)
uses appropriate functions like sender(req), card(req), op(req),
account(req), etc. which we deliberately leave abstract to
be further refinable for concrete databases. Handle(req)
triggers the CentralResource to Send a CRresponse of type
op(req) to the sender(req), where op(req) is one of Withdrawal ,
Statement or Balance.

For Balance requests ‘Information on accounts is held in
a central database and may be unavailable’ and in this case
viewing the account balance(acc) ‘may not be possible’ [3].
It seems reasonable to apply the same principle to Amount
requests. This explains the definition of Handle(req) in
Fig. 11 (next page).

5. MODEL VERIFICATION, VALIDATION,
REFINEMENTS

5.0.1 Ground Model Correctness.
All the till properties required in [3] hold for the Atm

ground model, in fact they drove its definition. In particular
the model is defined to ‘minimize the possibility of the use
of stolen card to gain access to an account’ by Keeping “Il-
legalCard”s (including cards that are recognized as blocked)
and cards or money which after having been Ejected are
not Removed in due time.

The model by its abstract communication concepts (namely
Send, MailboxCR, ResponseFromCR and CRresp) not only
leaves space for a great variety of different communication
protocols, but also permits to refine the features for the con-
nection between tills and the central resource to any reason-
able (feasible) implementation, e.g. using ‘a data line be-
tween each till and the central database’ as suggested in [3]
and considering that the connection used for the communica-
tion can be interrupted (by a Timeout or a Cancel command
from the user or by being simply Refused by the network or
the database).

The model satisfies the property that ‘once a user has
initiated a transaction, the transaction is completed at least
eventually and preferably within some real time constraint’.
It follows for every run from the modelled Timeout features.

fore the withdrawal. If one wants to get the account total
after the simultaneous Withdrawal to be sent back to the
information requesting user one can refine the consistency
condition accordingly and refine the Handle(req) machine
defined below by a new clause for simultaneous Withdrawal
and Balance (or Statement) requests for the same account.

To support ground model inspection by validation through
testing (running scenarios) the GroundAtm has been re-
fined in [24] to a CoreASM executable version. As to be ex-
pected through experiments with the CoreASM executable
version we found various flaws, incoherences and places for
improvement of GroundAtm. Due to the mathematical
foundation of ASMs which we need not explain here—the
interested reader is referred to [10]—the implementation cor-
rectness obtainable by ASM refinements can be shown us-
ing mathematical (including machine supported) methods,
accompanying traditional code inspection, testing and prop-
erty verification methods. For references see [10, Ch.9.4.3].

5.0.2 Reuse and changes during maintenance by re-
finements.

The concern to keep the ground model components and
definitions as abstract as possible, driven by the desire to re-
flect the requirements without adding anything concerning
implementation issues, yields automatically a model which
can be easily changed to accommodate changing require-
ments in three ways: a) by defining some abstract model
elements in a specific way (which is supported by the ASM
refinement method [5]) or b) by adding new elements to cap-
ture new features via conservative (purely incremental) ASM
refinements or c) by changing the definitions for given model
elements to capture non-incremental requirements changes.
We mentioned some simple examples in the preceding sec-
tions.

5.1 Refinement of the CheckLocalAvail Com-
ponent

CheckLocalAvail of Sect. 3.3 is data refined by the defi-
nition in Fig. 12. The refinement provides the exact reasons
(of local availability) for which the machine may become
Ready to contact the central resource.

Figure 12: CheckLocalAvail

5.2 Refinement of the AskFor Component
We refine AskFor to stepwise read and process input

key values unless interrupted. The refined machine starts
to InitializeInputElaboration, in particular to Display
the request to the user,21 and then enters WaitFor(param)

21To capture a robustness constraint—namely that keys
pressed before the Atm begins to WaitFor(param) yield
no input—through InitializeInputElaboration user in-

Figure 11: Handle(req)

mode to ReadInputStream and to ProcessInputStream
until by a Confirm input it moves to Ready(param) (see
Fig. 13).

InitializeInputElaboration(param) =
Initialize(inputStream) // Start listening to user input
Initialize(userInput) // Start processing user input
Display(AskFor(param))
if param = Pin then

CountDown(attemptsFor(Pin))

Initialize(Stream) = (Stream := [])

CountDown(attemptsFor(Pin)) =
attemptsFor(Pin) := attemptsFor(Pin)− 1

The CountDown of attemptsFor(Pin) serves for multiple
attemptsFor(Pin) insertion, assuming that attemptsFor(Pin)
is initialized to an Atm specific positive value (e.g. in Ini-
tializeSession).22

5.2.1 Submachine to ReadInputStream from User.
What shall happen if a user hits simultaneously multi-

ple keys? Typically the hardware transforms this into a
randomly ordered inputStream. We model this by using a
function randomOrder which randomly yields for any set

put is taken only after having called AskFor(param) and is
stopped when this machine is exited.

22Some banks use a dailyPinRequestLimit(card) to prevent
repeated successive sessions attempting to find out the cor-
rect pin. It is a simple model change exercise to refine
ProcessPin correspondingly. Be aware of the resulting
feature interaction with dailyLimit in case a user on one
day makes numerous Withdrawals without exceeding the
dailyLimit and without inserting an invalid pin.

a sequence randomOrder(set) that is Added to the current
inputStream. Furthermore typically the hardware before ap-
plying randomOrder to a set will truncate(set) in a device
dependent manner to a subset. A function inputVal yields
elementwise for every pressed key in a given sequence its
input value.

ReadInputStream =
let PressedKeys = {key | Pressed(key)}
let Newinput = inputval(randomOrder(

truncate(PressedKeys)))
// Insert at the left end
AddAtTheLeft(Newinput , inputStream)

ProcessInputStream =
if inputStream 6= [] then

let val = fstOut(inputStream)
RemoveAtTheRight(val , inputStream)

5.2.2 Submachine to ProcessInputStream(param).
It does UpdateInputBy the values that are LegalFor

param (e.g. (alpha-) numerical values or keys with pre-
defined values), one by one (say from right to left) from
inputStream to (subsequently to be elaborated) userInput
until a Confirming value is encountered triggering a normal
Ready(param) exit (unless an InterruptTrigger occurs).
The Delete key (which the requirements impose to be con-
sidered as LegalFor every parameter) reflects that the user
can change the input any time.

What should happen if the user provides an IllegalForparam
input value? How to HandleIllegalInput(val , param) is
a functional behaviour issue not considered in [3]. Here we
decided to ignore such input, but to inform the user about
it by a Display.

Figure 13: AskFor(param)

UpdateInputBy(val , param) =
if val 6= Delete then AddToInput(val , param)
if val = Delete then

RemoveFromInput(val , param)

AddToInput(val , param) =
userInput := concatenateAtTheRight(userInput , val)
Display(concatenateAtTheRight(userInput , val), param)

RemoveFromInput(val , param) =
userInput := removeLast(userInput)
Display(removeLast(userInput), param)

Confirmingparam(val) if and only if param ∈ {Pin,Amount} and val = Confirm
param = OpChoice and

val ∈ {Balance,Statement ,Withdrawal}
Record(input , param) =

if param ∈ {Pin,Amount} then
valFor(param) := input

if param ∈ {Balance,Statement ,Withdrawal} then
valFor(param) := param

Remark. Since the values ReadInputStream has to
AddAtTheLeft and the values ProcessInputStream has
to RemoveAtTheRight are different occurrences of the
inputvalue of pressed keys the two operations can consis-
tently be executed simultaneously at the right resp. left end
of inputStream.

To appear in the Proceedings of S-BPM One 2015 to be
published by ACM.

6. REFERENCES
[1] J.-R. Abrial. The B-Book. Cambridge University

Press, Cambridge, 1996.

[2] J.-R. Abrial. Modeling in Event-B. Cambridge
University Press, 2010.

[3] AnonymousAuthor. Automatic teller machine or till:
Case study. Formulated 1999 as Modelling in two
formalisms: The FM’99 ATM modelling challenge for
the FM99 Conference and as A Cash-point Service
Example in the IFAD document V6.3.0a, reused 2013
for the Dagstuhl Seminar on Integration of Tools for
Rigorous Software Construction and Analysis to which
A. Fleischmann added in 2014 the change and cancel
requirements.

[4] The ASM Metamodel website.
http://asmeta.sourceforge.net.

[5] E. Börger. The ASM refinement method. Formal
Aspects of Computing, 15:237–257, 2003.

[6] E. Börger. Construction and analysis of ground
models and their refinements as a foundation for
validating computer based systems. Formal Aspects of
Computing, 19:225–241, 2007.

[7] E. Börger. Approaches to modeling business processes.
A critical analysis of BPMN, Workflow Patterns and
YAWL. J.SSM, pages 1–14, 2011.

[8] E. Börger, P. Päppinghaus, and J. Schmid. Report on
a practical application of ASMs in software design. In
Abstract State Machines: Theory and Applications,
volume 1912 of LNCS, pages 361–366. Springer, 2000.

[9] E. Börger and K.-D. Schewe. Specifying transaction
control to serialize concurrent program executions. In
Proc. ABZ 2014, volume 8477 of LNCS, pages
142–157. Springer, 2014.

Figure 14: ATM (Detailed View with Unfolded Components)

[10] E. Börger and R. F. Stärk. Abstract State Machines.
A Method for High-Level System Design and Analysis.
Springer, 2003.

[11] A. Fleischmann, W. Schmidt, C. Stary, S. Obermeier,
and E. Börger. Subject-Oriented Business Process
Management. Springer Open Access Book, 2012.

[12] A. Hense. A CSPm model for the automated teller
machine case study. In J. Ehlers and B. Thalheim,
editors, Proc. S-BPM ONE 2015 (Special Session on
Comparative Case Studies). ACM, ACM Digital
Library, 2015. Docu of executable available at
http://www.bis.inf.fh-brs.de/bpmcasestudies/.

[13] A. Hense and R. Malz. Automation of the automated
teller machine case study with YAWL. In J. Ehlers
and B. Thalheim, editors, Proc. S-BPM ONE 2015
(Special Session on Comparative Case Studies). ACM,
ACM Digital Library, 2015. Docu of YAWL executable
available at
http://www.bis.inf.fh-brs.de/bpmcasestudies/.

[14] L. Lamport. Specifying Systems: The TLA+ Language
and Tools for Hardware and Software Engineers.
Addison-Wesley, 2003. Available at
http://lamport.org.

[15] OMG. UML 2.0 superstructure specification.
http://www.omg.org/cgi-bin/doc?formal/05-07-04.

[16] OMG. Business Process Model and Notation
(BPMN). http://www.omg.org/spec/BPMN/2.0,
2011. formal/2011-01-03.

[17] D. Parnas and M. Lawford. The role of inspection in
software quality assurance. IEEE Transactions on
Software engineering, 29(8):674–676, 2003.

[18] G. Schellhorn. Verification of ASM refinements using
generalized forward simulation. J.Universal Computer
Science, 7(11):952–979, 2001.

[19] G. Schellhorn. ASM refinement and generalizations of
forward simulation in data refinement: A comparison.
Theoretical Computer Science, 336(2-3):403–436, 2005.

[20] G. Schellhorn. ASM refinement preserving invariants.
J.UCS, 14(12), 2008.

[21] G. Schellhorn. Completeness of ASM refinement.
Electr. Notes TCS, 214, 2008.

[22] G. Schellhorn. Completeness of fair ASM refinement.
SCP, 76(9):756–773, 2011.

[23] A. ter Hofstede, W. van der Aalst, M. Adams, and
N. Russell, editors. Modern Business Process
Automation. Springer, 2010.

[24] S. Zenzaro. A CoreASM refinement implementing the
ATM ground model.
http://www.bis.inf.fh-brs.de/bpmcasestudies/,
October 2014.

