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Zusammenfassung. We define a high-level model of an operating system
(OS) kernel which can be refined to concrete systems in various ways, reflec-
ting alternative design decisions. We aim at an exposition practitioners and
lecturers can use effectively to communicate (document and teach) design
ideas for operating system functionality at a conceptual level. The operational
and rigorous nature of our definition provides a basis for the practitioner to
validate and verify precisely stated system properties of interest, thus helping
to make OS code reliable. As a by-product we introduce a novel combination
of parallel and interruptable sequential Abstract State Machine steps.

1.1 Introduction
We show how to develop from scratch an easily understandable, accurate high-
level view of an OS kernel. The model we propose is algorithmic in nature and
can be understood without prior knowledge of formal methods. It can be used by
lecturers for teaching the principles of OS design and by practitioners for experi-
ments in OS design (they can realise alternative design decisions by refining the
abstract model). In addition, the mathematically accurate character of our opera-
tional model permits validation (by simulation) and verification (by proof) of the
behavioral properties of such kernels.

We base our work on the recent book [Cra07a], a study of formal models of
operating systems kernels which comes with a companion book on the refinement
of such models [Cra07b]. The two books use Z [Spi92], and sometimes Object-
Z [Smi00], as well as CCS [Mil89] as their description languages. In order to
make our model understandable by readers without knowledge of formal specifi-
cation languages, we use pseudo-code descriptions written as Abstract State Ma-
chines (ASMs). We introduce a novel combination of parallel and interruptable
sequential ASM steps. ASMs guarantee that our descriptions have a mathemati-
cally precise meaning (given by the semantics of ASMs [BS03]); this accurately
and directly supports the intuitive operational understanding of the pseudo-code.
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Using ASMs also implies that the model can be seamlessly refined to code, a
process that can be difficult when starting from purely axiomatic Z specificati-
ons [Hal97]. Refinements of ASMs to code can be performed either by program-
ming (e.g., [Mea97, BBD+96]) or compiling to executable code (e.g., [BPS00]).

Our OS kernel model mainly follows the swapping kernel in [Cra07a, Ch.4],
which captures the essentials of the MINIX Kernel [Tan87]. As a by-product, the
ASM model defined here and the Z model in [Cra07a, Ch.4] can be used in a
concrete comparison of the two specification methods.

The kernel is organized as a layered architecture. At the bottom is the hardware.
It is linked, via interrupt service routines (ISRs) to a scheduler. It also connects to
layers of (in priority order) communicating device, system and user processes. It
uses a clock to implement alarms and a storage-management scheme including a
swapping mechanism for storing active processes on disk. The link between the
hardware and the software model is a collection of hardware-controlled locations
monitored by the software model. The kernel model is a collection, inter alia, of
interacting components such as the clock process (and associated driver and ISR),
the swapper, the scheduler. Due to space limitations, we focus on the clock inter-
rupt but the method is general and can also be used for other kinds of interrupt.

1.2 Clock Interrupt Service Routine

An OS Kernel consists of various interacting components. Central to the kernel
is the clock process. It interacts with priority-based scheduling of device, system
and user processes that pre-empts user-defined processes. It controls the timing
of the swapping of active user processes between main store and a disk; it also
implements alarms that wake sleeping processes when their sleep period has ex-
pired. The main program of this component is the clock interrupt service routine
CLOCKISR. It is triggered by hardware clock ticks, here formalized by a monito-
red predicate HwClockTick. Ticks are assumed to occur at regular intervals, whose
length is expressed abstractly by the constant function, ticklength.1

Upon a HwClockTick, one execution round of the clock interrupt service routine
is triggered. It consists of three successive steps of CLOCKISR:

DESCHEDULE the current process currp, changing its status from running
to ready and saving its current state. In case currp is a user process that had
RunTooLong, it is moved from the head to the tail of the queue of user pro-

1Some hardware clock ticks can be missed, due to locking. Thus the system time now reflects the
relative time resulting from the perceived hardware clock ticks.
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cesses that are ready to execute (thus implementing a round robin scheme).
DRIVETIMEDFEATURES. This decomposes into:

– Update the current system time now;
– Wake up the CLOCKDRIVER component which performs further ti-

ming updates related to process suspension and storage management.
Then trigger the SWAPPER, a storage management process using a ti-
me criterion to swap user processes between main store and disk;

– Wake up the DEZOMBIFIER which is related to swapping.

RESCHEDULE: schedule the next currp (which may be the interrupted pro-
cess DESCHEDULEd in the first step of CLOCKISR). It is selected from the
processes ready to execute and its state is restored.

We assume the HwClockTick event to be preemptive (read: the monitored predi-
cate becomes false once the triggered rule has fired).

CLOCKISR = if HwClockTick then
DESCHEDULE step 2 DRIVETIMEDFEATURES step RESCHEDULE

We will describe the concepts involved in the description of CLOCKISR (Pro-
cesses of various kinds, the current process currp (∈ Process), scheduler and time
and storage management) in the following sections.

1.2.1 Defining the Submachines of CLOCKISR

The dynamic set Process of processes is divided into three disjoint subsets repre-
senting three distinct kinds of processes with different scheduling level schedlev:
user, system and device processes. There is an additional special process: idleProcess.

Process = DeviceProcess∪SystemProcess∪UserProcess∪ {idleProcess}
RealProcess = Process\{idleProcess}

The currently executing process currp can be thought of as the only one with
status(currp) = running (read: instruction pointer ip pointing into its code); it
is selected by the scheduler from a queue, readyq, of processes whose status
is ready. Each process has a current state which is saved when the process is
DESCHEDULEd and restored when it is RESCHEDULEd. The two submachines
SAVESTATE and RESTORESTATE are detailed in Sect. 1.6.

2step denotes an interruptable sequential composition of ASMs, defined in Sect. 1.8, to be distinguis-
hed from the atomic sequential composition denoted by seq and defined in [BS03, Ch.4.1]
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When the current process is DESCHEDULEd, besides saving its state, its status
is changed from running to ready. If currp is a user process, its time quantum is
updated. This means that a location, timeQuant(currp), is decremented, followed
by a check whether currp has consumed the assigned time quantum and must
therefore be removed from the processor. If currp has RunTooLong, it is removed
from the head of the queue readyq(schedlev(currp))3 of all ready processes of its
scheduler level that can be be chosen by the scheduler for execution. This is where
it was when the scheduler selected it as currp (but did not remove it from this
queue). When currp is returned to the queue, it is placed at the end. 4

Locking Mechanism. Since the synchronous parallelism of simultaneously exe-
cuting all applicable rules of an ASM, M, implies the atomicity of each single
M-step, at this level of abstraction, we need no other locking techniques. If, in
further refinement steps which map the simultaneous one-step execution of diffe-
rent submachines to a sequence of single machine steps, a locking mechanism is
required, we indicate this at the top level by a pair of brackets (M)Lck. Formally
this stands for the execution of M to be preceded by an execution of an appropriate
LOCK and to be followed by an UNLOCK machine, using the atomic sequential
composition of ASMs (see [BS03, Ch.4.1]):

(M)Lck = LOCK seq M seq UNLOCK

DESCHEDULE =

SAVESTATE seq
(

status(currp) := ready
HANDLEPROCESSQUANTUM(currp)

)
Lck

where
HANDLEPROCESSQUANTUM(p) =

if p ∈ UserProcess then
timeQuant(p) := timeQuant(p)−1
if RunTooLong(p) then

REMOVEHEAD(readyq(schedlev(p))) seq
ENQUEUE(p,readyq(schedlev(p))) // insertion at the end

3The removal is needed because SCHEDULENEXT selects a ready process to become the new currp
but does not remove that process from the ready queue. The definition of OnInterrupt in [Cra07a,
p.177] uses MAKEREADY(p), but does not include the removal from the head of the queue.

4This deviates from the definition of UpdateProcessQuantum in [Cra07a, p.133] and from its use in
the clock driver run process [Cra07a, p.184]. If UpdateProcessQuantum is called only by the clock
driver run process (which is signaled by the ServiceISR of the CLOCKISR), the process which
was currp when the interrupt occurred and should be subject to HANDLEPROCESSQUANTUM has
already been descheduled by the ServiceISR of the CLOCKISR [Cra07a, p.177] and is not current
any more so that UpdateProcessQuantum does not apply to it, but to the clock driver process (for
which it would have no effect because the clock driver run process is not a user process).
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RunTooLong(p) = (timeQuant(p)−1 ≤ minUserTimeQuant)

Similarly, RESCHEDULE involves saving the value of currp in a location prevp,
letting the scheduler determine the new value for currp and to RESTORESTATE of
the selected process. When no process is ready, the idleProcess is scheduled for
execution. Otherwise, a ready process is selected by the scheduler and is made the
new currp (with status running). We treat the scheduler level of currp as a derived
location defined by currplev = schedlev(currp).

We recall that, by selecting a new element in SCHEDULENEXT making it the
currprocess, this element is not removed from the readyq. The removal may be
done when the process is DESCHEDULEd, as explained above.

RESCHEDULE = SCHEDULENEXT seq RESTORESTATE(currp)5

where SCHEDULENEXT =
prevp := currp // record currp as previous current process
let p = selectLowLevelScheduler(readyq)

if p = undef // nothing to select since readyq is empty
then currp := idleProcess else

currp := p
status(p) := running

DRIVETIMEDFEATURES updates the system time now by adding ticklength to
it and triggers driver processes CLOCKDRIVER and DEZOMBIFIER, in that order.
CLOCKDRIVER updates the various time counters related to process suspension
and swapping, readies (or “alarms”) the processes that are to be resumed and wakes
up the SWAPPER process. DEZOMBIFIER kills all zombie processes which by (the
updated value of) now remain without children processes. Both processes are detai-
led below. The triggering macros WAKE(ClockDriver) and WAKE(DeZombifier)
are defined in terms of semaphore SIGNALing, which we define in Sect. 1.7, to-
gether with the corresponding semaphore mechanism to PUTTOSLEEP(device),
which is defined in terms of the semaphore WAIT operation. At this point it suffi-
ces to be aware that, for a device process p, when the device semaphore is signaled,
MAKEREADY(p) is called, whereas WAIT calls MAKEUNREADY(p).

MAKEREADY(p) =
(

ENQUEUE(p,readyq(schedlev(p)))
status(p) := ready

)
Lck

MAKEUNREADY(r) =
DELETE(r,readyq(schedlev(r)))
if r = head(readyq) then RESCHEDULE

5The use of seq could be avoided here by including RESTORESTATE(p) into SCHEDULENEXT.
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We assume a unique semaphore device_sema for each device.

DRIVETIMEDFEATURES =
now := now+ ticklength
WAKE(clockDriver) seq WAKE(deZombifier)

1.3 The CLOCKDRIVER Component
The role of the CLOCKDRIVER routine is twofold, based on the new value of
system time now which was previously updated during execution of CLOCKISR.

UPDATESTORAGETIMES deals with the time a process, p, has been main-
store (residencyTime(p)) or swap-disk resident (swappedOutTime(p)). As a
consequence WAKE(swapper) calls SWAPPER for the updated time values.
RESUMEALARMEDPROCESSES in case there are suspended real proces-
ses whose waiting time has elapsed by now, i.e. processes, p, with a defi-
ned sleeping time alarmTime(p) which no longer exceeds the system time,
now. RESUMEALARMEDPROCESSES cancels these alarmTime(p) (by ma-
king them undefined) and calls MAKEREADY(p) so that p’s execution can
continue.

CLOCKDRIVER is assumed to be initialized as sleeping by executing operation
clockDriver_sema.WAIT, which is also performed each time the clock driver has
finished one of its runs and is PUTTOSLEEP.

CLOCKDRIVER =

 UPDATESTORAGETIMES

WAKE(swapper)
RESUMEALARMEDPROCESSES


Lck

PUTTOSLEEP(clockDriver)

On every clock tick, UPDATESTORAGETIMES increments the time that each pro-
cess has been main-store or swap-disk resident.6 It is assumed that a process that
is not marked as swapped out is resident in main store.

UPDATESTORAGETIMES = forall p ∈ RealProcess
if status(p) = swappedout

then swappedOutTime(p) := swappedOutTime(p)+1
else residencyTime(p) := residencyTime(p)+1

6For the reasons explained in Sect. 1.2.1 we have transfered the submachine
HANDLEPROCESSQUANTUM [Cra07a, p.184] from CLOCKDRIVER to DESCHEDULE.
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RESUMEALARMEDPROCESSES =
let alarmed = {p ∈ RealProcess | alarmTime(p)≤ now}
forall p ∈ alarmed

alarmTime(p) := undef
MAKEREADY(p)

1.4 The DEZOMBIFIER Component
The DEZOMBIFIER process counts as a driver process. Its execution is triggered
using the deZombifier_semaphore. It is assumed that it is initialized as sleeping
using deZombifier_sema.WAIT. It handles the dynamic set, zombies, of so-called
zombie processes, i.e. processes, p, with status(p) = zombie, which have almost
terminated but could not release their storage due to their sharing code with their
children processes, some of which up to now have not yet terminated. It is necessa-
ry, in an atomic action, to delete from zombies all those elements which remain
without child processes, canceling these ‘dead’ zombies as children of their parent
processes (if any). We consider children as derived from the parent function by
children(p) = {q | parent(q) = p}.

DEZOMBIFIER =
( KILLALLZOMBIES )Lck

PUTTOSLEEP(deZombifier)
where KILLALLZOMBIES =

let deadzs = {z ∈ zombies | children(z) = /0}
zombies := zombies\deadzs
forall z ∈ deadzs parent(z) := undef

1.5 The SWAPPER Component
SWAPPER swaps user processes between main store and disk memory, so that mo-
re processes can be in the system than main store alone could otherwise support.
A process is swapped from disk when its value of swappedOutTime is the maxi-
mum of the swappedOutTimes of all processes currently on disk. SWAPPER counts
as a driver process. It is assumed that it is initialized in a sleeping state (by exe-
cution of swapper_sema.WAIT). The swapper_semaphore is used to restart the
swapper using the WAKE(swapper) operation. SWAPPER is suspended again after
one round of DISKSWAPs.

SWAPPER = DISKSWAP step PUTTOSLEEP(swapper)
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1.5.1 The DISKSWAP Component

DISKSWAP uses a function, nextProcessToSwapIn, to determine the next process,
p, that is to be swapped. If p exists, it is the process with maximum value of
swappedOutTime. DISKSWAP then computes the memory size of the process,
memSize(p), and checks whether the system CanAllocateInStore the requested
memory space (s). If yes, the machine executes SWAPPROCESSINTOSTORE(p,s);
otherwise, it determines the swapOutCandidate(s) with the requested memory si-
ze, s. If such a candidate exists, SWAPPROCESSOUT(cand,mem(cand)) frees the
main store region, mem(cand), occupied by cand. The machine will then use the
freed memory region and perform SWAPPROCESSIN(p,s).

DISKSWAP = if nextProcessToSwapIn 6= undef then
let p = nextProcessToSwapIn
let s = memSize(p) // determine needed process memory size

if CanAllocateInStore(s) // enough free space in main store?
then START(SWAPPROCESSINTOSTORE(p,s))7

else let cand = swapOutCandidate(s)
if cand 6= undef then

START(SWAPPROCESSOUT(cand,mem(cand))
step SWAPPROCESSINTOSTORE(p,s))

where 8

nextProcessToSwapIn =
ιp (swappedOutTime(p) =

max{swappedOutTime(q) | status(q) = swappedout})
swapOutCandidate(s) = ιp ∈ UserProcess with

status(p) = ready
memSize(p) ≥ s
residencyTime = max{residencyTime(q) | q ∈ UserProcess and

status(p) 6= swappedout}

This definition implies that no swap takes place if there are no swapped-out
processes (and thus there are no processes that can be swapped in) or if the next
process to be swapped out (the one with the greatest main-store residency time)
does not make the requested main-store space available.

7START is defined in Sect. 1.8.
8Hilbert’s ι operator denotes the unique element with the indicated property, if there is one; otherwise

its result is undefined.
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1.5.2 Storage Management Background
The storage management used by DISKSWAP works on an abstract notion of
main memory: a sequence of Primary Storage Units (e.g. bytes or words), i.e.
mem : PSU∗. It is assumed that each process, p, occupies a contiguous subse-
quence (called a memory region) of mem, starting at address memStart(p), of size
memSize(p) and denoted mem(p) = (memStart(p),memSize(p)). Thus the storage
area of p is

[mem(memStart(p)), . . . ,mem(memStart(p)+memSize(p)−1)].

The entire main store is considered to be partitioned into a) memory regions
occupied by user processes and b) free memory regions. The former are denoted
by a set, usermem, of RegionDescriptions, (start,size), with start address start and
length size. The latter are denoted by the set holes ⊆ RegionDescr.

These concepts allow us to define what, for a given memory region of size s,
CanAllocateInStore(s) means: namely that there is a memory hole h ∈ holes of
that size. The computation of this predicate must be protected by a pair of LOCK

and UNLOCK machines.

CanAllocateInStore(s) = forsome h ∈ holes s ≤ size(h)

SWAPPROCESSINTOSTORE(p,s) will first ALLOCATEFROMHOLE(s) a hole, h,
of sufficient size and use it as the main-store region in which to REQUESTSWAPIN

of p, starting at start(h).9 The request is put into the swapReqBuff er of the swap
disk driver process, SWAPDISKDRIVER (defined below), which will SIGNAL the
swapDiskDriver_donesemaphore when the requested disk-to-main-store transfer
operation has been completed. Then SWAPPROCESSINTOSTORE(p,s) can update
the attributes of the newly swapped-in process (its base address, in the relocation
register, memStart,10 status, residencyTime, swappedOutTime11) and then insert it
into the scheduler’s queue using MAKEREADY(p).

SWAPPROCESSINTOSTORE(p,s) also invokes READYDESCENDANTS if there
are process descendants sharing code the process owns. In fact, when p is swapped
out, all its descendants are suspended and placed in the set blockswaiting(p) (see
below). Once the parent is swapped in again, all of its children become ready to
execute since the code they share has been reloaded into main store (it is supposed
to be part of the parent’s memory region).

9We succinctly describe this sequence with the ASM construct let y = M(a) in N, defined in [BS03,
p.172].

10There is no need to update memSize(p) since it is known to be s, the size of p = nextProcessToSwapIn.
11Resetting swappedOutTime(p) to 0 prevents it from being considered when looking for future

swapOutCandidates.
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SWAPPROCESSINTOSTORE(p,s) =
let h = ALLOCATEFROMHOLE(s) in memStart(p) := start(h)
step REQUESTSWAPIN(p,memStart(p))
step swapDiskDriver_donesema.WAIT

step
DELETE(p,SwappedOut)
UPDATERELOCATIONREG(p) // update process base address
residencyTime(p) := 0
swappedOutTime(p) := 0
MAKEREADY(p)

step if children(p) 6= /0 and IsCodeOwner(p) then
READYDESCENDANTS(p)

where
READYDESCENDANTS(p) = forall q ∈ blockswaiting(p)

DELETE(q,blockswaiting)
MAKEREADY(q)

REQUESTSWAPIN uses a swapDiskMsg_semaphore to ensure exclusive access
to the swapReqBuff er. After writing the request to the buffer, the machine wakes
up the SWAPDISKDRIVER (defined below) to handle the request.

REQUESTSWAPIN(p, loadpt) =
swapDiskMsg_sema.WAIT

step swapReqBuff := SWAPIN(< p, loadpt >)
step

swapDiskMsg_sema.SIGNAL

WAKE(swapDiskDriver)

ALLOCATEFROMHOLE chooses a hole, h, of the requested size. When the ma-
chine is called, there is at least one such hole and typically the first appropriate
hole in mem is chosen. It places the region (start(h),s) into usermem; it is also
assigned to the output location result. It deletes h from the set of holes and inserts
the new hole (start(h)+ s,size(h)− s) provided that size(h)− s > 0.

ALLOCATEFROMHOLE(s) =
choose h ∈ holes with s ≤ size(h)
INSERT((start(h),s),usermem)
result:= (start(h),s)
DELETE(h,holes)
if size(h)− s > 0 then INSERT((start(h)+ s,size(h)− s),holes)


Lck
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SWAPPROCESSOUT(p,st,sz) will SWAPPROCESSOUTOFSTORE(p,st,sz); if p
has children it must also BLOCKDESCENDANTS(p). The reason for blocking the
children is that they share the code of their parent. Therefore, when a parent pro-
cess is swapped out, one has to MAKEUNREADY its children (and transitively their
children, etc.) since their code is no longer in store but on disk. All descendants of
the process are put into a set blockswaiting(p), their status is updated to waiting.12

The descendants form the transitive closure child+ of the child function.

SWAPPROCESSOUT(p,st,sz) =
SWAPPROCESSOUTOFSTORE(p,st,sz)
step if children(p) 6= /0 and IsCodeOwner(p) then

BLOCKDESCENDANTS(p)
where

BLOCKDESCENDANTS(p) = forall q ∈ child+(p)
INSERT(q,blockswaiting(p))
status(q) := waiting
MAKEUNREADY(q)

SWAPPROCESSOUT(p,st,sz) and SWAPPROCESSINTOSTORE(p,sz) are inver-
se operations. The former performs REQUESTSWAPOUT of p’s memory region
(starting at st upto st + sz) by storing the request in the swapReqBuff er of the
SWAPDISKDRIVER. It inserts p into SwappedOut and updates its attributes (its
status, swappedOutTime and residencyTime13). It uses FREEMAINSTORE(st,sz)
to delete the memory region to be swapped out from usermem (of size sz, starting
at st) and to insert it into holes, merging any adjacent holes that result. Finally it
must MAKEUNREADY(p).

SWAPPROCESSOUTOFSTORE(p,st,sz) =
REQUESTSWAPOUT(p,st,st + sz)
step swapDiskDriver_donesema.WAIT14

step
INSERT(p,SwappedOut)
status(p) := swappedOut

12This leaves the case open that a child may be waiting for a device request completion and not in the
readyq when its parent is swapped out, so that really it cannot immediately be stopped.

13Setting the residencyTime to 0 prevents it from being considered when looking for a future
nextProcessToSwapIn.

14In op.cit., p.188, this protection does not appear as part of swapProcessOut. We include it to guaran-
tee that before the attributes of the process to be swapped out are updated, the process has actually
been swapped out, so that no interference is possible with the subsequent swapReqBuff value of
SWAPPROCESSINTOSTORE.
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residencyTime(p) := 0
swappedOutTime(p) := 0
FREEMAINSTORE(st,sz)
MAKEUNREADY(p)

The submachines of SWAPPROCESSOUTOFSTORE are defined as follows:

FREEMAINSTORE(region) =
( FREEMAINSTOREBLOCK(region) seq MERGEADJACENTHOLES )

where

FREEMAINSTOREBLOCK(region) =
DELETE(region,usermem)
INSERT(region,holes)

MERGEADJACENTHOLES = forall h1,h2 ∈ holes15

if start(h1)+ size(h1) = start(h2) then
DELETE(h1,holes)
DELETE(h2,holes)
INSERT((start(h1),size(h1)+ size(h2)),holes)

REQUESTSWAPOUT(p,s,e) uses a swapDiskMsg_semaphore to ensure exclu-
sive access to swapReqBuff , like REQUESTSWAPIN. It writes the request to swap
out the main store region of p (the region between the start and end values s,e) and
wakes up SWAPDISKDRIVER to handle the request.

REQUESTSWAPOUT(p,s,e) =
swapDiskMsg_sema.WAIT

step swapReqBuff := SWAPOUT(< p,s,e >)
step

swapDiskMsg_sema.SIGNAL

WAKE(swapDiskDriver)

SWAPDISKDRIVER is assumed initially to wait on swapDiskDriver_sema. When
the semaphore is signaled, it READs the swapReqBuff er, which holds the code
for data transfer operations the swapper requests the disk to perform. It performs
HANDLEREQUEST (if the operation is not the empty NullSwap). It signals its
donesemaphore before it suspends on swapDiskDriver_sema. HANDLEREQUEST

performs the requested data transfer (between main store mem and disk memory
dmem), process deletion or creation (with a given process image) on the disk. The
swapReqBuff er is cleared when it is READ.
15A similar but slightly more complex machine is needed when three or more consecutive holes

h1,h2,h3, . . . may occur which are pairwise (h1,h2), (h2,h3), . . . adjacent.
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SWAPDISKDRIVER =
let rq = READ(swapReqBuff )

if rq 6= NullSwap then
HANDLEREQUEST(rq)
swapDiskDriver_donesema.SIGNAL

PUTTOSLEEP(swapDiskDriver)
where

HANDLEREQUEST(rq) = case rq of
SwapOut(p,start,end) → dmem(p) := [mem(start), . . . ,mem(end)]
SwapIn(p, ldpt) → forall ldpt ≤ i < ldpt +memSize(dmem(p))

mem(i) := dmem(p)(i)
DelProc(p) → dmem(p) := undef
NewProc(p, img) → dmem(p) := img

The swap request buffer READ and WRITE operations are defined using a sema-
phore swapDiskMsg_sema which provides the necessary synchronization between
the swap disk process and the swapper process. 16

WRITE(rq) =
swapDiskMsg_sema.WAIT

step swapReqBuff := rq
step swapDiskMsg_sema.SIGNAL

READ =
swapDiskMsg_sema.WAIT

step
result:= swapReqBuff
swapReqBuff := Nullswap

step swapDiskMsg_sema.SIGNAL

1.6 Scheduling and State Handling
A standard specialization of SCHEDULENEXT comes as a data refinement of the
selectLowLevelScheduler function to select head(readyq). Selecting a process should
respect the priorities of the three kinds of processes and apply the FIFO princi-
ple within each kind. To this end, device processes, p, are declared to have hig-
hest priority (lowest schedlev(p) = 1) and user processes the lowest priority (so
16In [Cra07a, p.160] a more complex scheme is used for READing, where, in order to guaran-

tee mutual exclusion, another semaphore swapDiskBuff _mutex is used to protect the access to
swapDiskMsg_sema.
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highest schedlev(p) = 3). Each subqueue is managed as a FIFO queue (a Round-
Robin scheduler), refining for these queues both ENQUEUE = INSERTATEND and
DEQUEUE = REMOVEHEAD. Thus readyq is a derived location: the concatenati-
on of the three readyq(i) for device, system and user processes (i = 1,2,3). They
are concatenated in priority order, so that when selecting the head of readyq, the
scheduler always chooses a ready process with highest priority.

readyq = readyq(1).ready(2).readyq(3)

selectLowLevelScheduler(readyq) =
{

head(readyq) if readyq 6= []
undef else

1.6.0.1 Defining SAVESTATE and RESTORESTATE.

SAVESTATE copies the current processor (hardware) frame, composed of the ‘state’
of currp consisting of the instruction pointer ip, a set regs of registers, the stack,
the status word statwd, which are implicitly parameterized by a processor argu-
ment hw, to the process currp (read: its description in the process table).17

SAVESTATE = if currp 6= idleProcess then
ip(currp) := ip
regs(currp) := regs
stack(currp) := stack
statwd(currp) := statwd

RESTORESTATE is the inverse operation. It installs the new current processor
frame from the one stored in the process description, whereas the idleProcess has
no stack and has empty registers and a cleared status word.

RESTORESTATE =
if currp 6= idleProcess then

ip := ip(currp)
regs := regs(currp)
stack := stack(currp)
statwd := statwd(currp)

else
ip := idleProcessStartPoint
regs := nullRegs
stack := nullStack
statwd := clearStatWord

17We suppress here the timeQuant location because we use only its process description version
timeQuant(p). See rule HANDLEPROCESSQUANTUM in Sect. 1.2.1.
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1.7 Semaphores
Semphores are described in detail in operating systems texts (e.g., [TAN]). They
are composed of a counter, semacount, and a queue of processes waiting to en-
ter the critical section, waiters. The semaphone counter is initialized to the value
allowed, the number of processes simultaneously permitted in the critical section.
The increment and decrement operations performed by SIGNAL and WAIT must
be atomic, hence the use of LOCK and UNLOCK pairs.

To access the critical section, WAIT must be executed and SIGNAL is executed
to leave it. WAIT subtracts 1 from semacount; SIGNAL adds 1 to it. As long as
semacount (initialized to allowed > 0) remains non-negative, nothing else is done
by WAIT and the currprocess can enter the critical section. If semacount is negati-
ve, at least allowed processes are currently in the critical section (and have not yet
left it). Therefore, if semacount < 0, the currprocess must be added to the set of
waiters, processes waiting on the semaphore. It is unreadied and its state is saved;
its status becomes waiting.

WAIT =



let newcount = semacount−1
semacount := newcount
if newcount < 0 then

ENQUEUE(currp,waiters) // insert at the end
status(currp) := waiting
SAVESTATE(currp)
MAKEUNREADY(currp)


Lck

The SIGNAL operation adds one to semacount. If, after this addition, semacount
is still not positive, waiters contains processes. The one which first entered waiters
is removed and leaves the critical section; it is made ready. Otherwise only the
addition of 1 is performed.

SIGNAL =



let newcount = semacount +1
semacount := newcount
if newcount ≤ 0 then
let cand = head(waiters)

MAKEREADY(cand)
DELETE(cand,waiters)


Lck

We define WAKE and PUTTOSLEEP for the semaphore associated with each
device with allowed = 1 as follows. The typical assumption is that the device is
initialized by a WAIT use (omitting the critical section).
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WAKE(device) = device_sema.SIGNAL

PUTTOSLEEP(device) = device_sema.WAIT

1.8 Appendix. The step Mechanism for ASMs

In contrast to the seq mechanism for sequential substeps of atomic turbo ASM
steps, as defined in [BS03, Ch.4.1], the step mechanism we define here provides a
form of non-atomic, interruptable sequential ASM execution that can be smoothly
integrated into the basic synchronous parallelism of standard ASMs. The definition
uses the concept of control states (also called internal states) known from Finite
State Machines (FSMs). A step is considered to consist of the execution of an
atomic machine in passing from a source to a target control state. An interruption
is allowed to happen in each control state (or more generally in each control state
belonging to a specified subclass of control states); when the interrupted machine
is readied again, it continues in the control state in which it had been interrupted.18

The definition of what one might call stepped ASMs starts from control state
ASMs as defined in [BS03, p.44], namely ASMs whose rules are all of the form
shown in Fig. 1.1.

n

cond 1

cond nrule

1rule

i

j

jn

1

if ctl_state = i then
if cond1 then

rule1
ctl_state := j1

· · ·
if condn then

rulen
ctl_state := jn

Abbildung 1.1: Control state ASMs: flowchart and code

A stepped ASM is defined as a control state ASM, with rules as in Fig. 1.1, such
that all submachines rulej (j ∈ {j1, . . . , jn}) are step− free, i.e. contain no ctl_state
update. 19 The additional step-freeness condition guarantees the atomicity of what
is considered here as ‘step’ in passing from a source control state i to a target

18This definition is inverse to the one Lamport has adopted for the +CAL language [Lam08], where
atomicity is grafted upon the basic sequential execution paradigm. See also [AB09].

19For example turbo ASMs are step-free.
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control states j; in other words the execution of any rulej in a given state terminates
in one ‘step’ if the update set of rulej is defined in this state (along the standard
definition of the semantics of ASM rules, see [BS03, Table 2.2]), otherwise the
step is not defined.20

Notation. We denote for a stepped ASM M the start ctl_state value by start(M);
where needed we denote the end ctl_state value by end(M).

START = (ctl_state := start(M))

The following notation hides the control states underlying a stepped ASM.

M1 step . . . step Mn = case ctl_state of

start(Mi) with i < n :
{

Mi

ctl_state := start(Mi+1)

start(Mn) :
{

Mn

ctl_state := end(Mn)

where usually every Mi is step-free. However, we also use the following notational
short form (flattening out the steps in submachine definitions):

M step N =
M1 step . . . step Mm step N1 step . . . step Nn

where
M = M1 step . . . step Mm
N = N1 step . . . step Nn

The above definition of stepped ASMs also covers the use of interruptable struc-
tured iteration constructs. For example, if M is a stepped ASM with unique end
control-state end(M), the following machine is also a stepped ASM with unique
start and end control states, say start respectively end. It can be depicted graphi-
cally by the usual FSM-like flowchart.

while Cond do M =
if ctl_state = start then

if Cond then START(M)
else ctl_state := end

if ctl_state = end(M) then ctl_state := start

Acknowledgement. We thank Donato Ferrante and Andrea Vandin for critical
remarks on an early draft of this paper.
20For example for an ASM with an iterative submachine, in some state the update set may not be

defined.
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