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1 Dubrovnik

Dean Rosenzweig passed away in the second week of January 2007. I met Dean for the first time 24
years ago, during the winter School Foundation of Computation Theory Profs. Rasiowa, Karpinski
and Kirin had organized at the Inter-University Centre for Post-graduate studies in Dubrovnik
from 16.1. - 29.1.1983. Dean attended my lectures on Complexity of Logical Theories and I noticed
him as a particularly bright, sharp and very knowledgeable young colleague with a strong taste for
elegance in mathematical matters and a wide range of interests. I vividly remember strolling with
Dean and his friends long night hours through the streets of the historic Dubrovnik and along the
town wall, discussing issues of logic, complexity, semantics whilst enjoying the splendid view on
the town, its harbor, the hills and the sea. We shared the love for Dubrovnik and the town became
our fate.

2 ASM Models for Logic Programming Concepts

In fact we met again in Dubrovnik seven years later, during two invited lectures I delivered at the
Logic and Computer Science Conference ( LIRA, 6.9. - 9.9.1990) and the International Summer
Seminar on Artificial Intelligence (CAS, 3.9. - 7.9.1990). Dean was again in the audience when I
explained The Dynamic Algebra Approach to Semantics of Prolog and Prolog III and the use of
ASMs to construct a practically useful Formal Model for Semantics of Constraint Logic Program-
ming Systems. In those lectures I presented the use of ASMs to build ground models [10] for logic
programming systems and explained among others the problem Prolog experts had challenged me
to solve as test for the usefulness of such models, namely to explain through them the intricate
optimization features of the Warren Abstract Machine implementation of Prolog and to verify the
correctness of the WAM, which represented the state-of-the-art of logic programming practice and
at the time was understood only by a small number of experts worldwide.

Dean enthousiastically joined the project to which he brought his detailed knowledge of logic
programming implementation issues.1 Through intensive work both of us enjoyed enormously,
started right after my talks in Dubrovnik and going through the fall and winter of 1990/91, when
Dean visited me repeatedly at IBM in Heidelberg where I was spending a sabbatical and in Pisa,
we built a series of 12 stepwise refined ASM models linking my ASM model of Prolog [4,5] to
an ASM model for the Prolog implementation by WAM code, proving the correctness of each
refinement step and thus verifying the WAM implementation of Prolog. Less than a year later I
could report the successful outcome of this work in an invited talk on the Correctness proof for
a class of Prolog Compilers on Warren’s Abstract Machine, delivered to the 13th International
Conference on Information Technology Interface (ITI’91) in Dubrovnik-Cavtat (10.6. - 14.6.1991),
with Dean again present in the audience, and published in [25,26,30].

The Prolog-to-WAM work represented the first full-fledged ASM method case study that proved
the potential of using ASMs for a practical and effectively verifiable design of a complex system,
from its high-level specification to an optimized implementation. For three reasons the work became
a landmark in the short history of ASMs.

1 On Dean’s web page I found a reference to an apparently unpublished paper [44] he had never mentioned
to me that seems to document the source of this knowledge.



The WAM paper represents the first extensive field test for the practicality of the ASM refine-
ment concept [11], which became one of the three constituents of the Asm method [12], together
with the concept of ASM ground models [10] and the very notion of ASM [37], and had been
defined and adopted for the first time in [4,5,7] to construct the Prolog ground model, starting
from a four-rule kernel for core Prolog and extending it by specific machines for the various
types of built-in predicates. The Prolog-to-WAM refinement hierarchy extended by vertical re-
finements the horizontal refinements that had been used for building the Prolog ground model.
Whereas the horizontal refinements support a separation of orthogonal language features by
modules of rule sets and have been reused for numerous adaptations and extensions of Prolog
(surveyed in [9] and [32, Sect.9.2]) and later for richer languages (e.g. Java [55] and C# [19]),
the vertical refinement steps add the definition and analysis of those features at successively
richer levels of implementation detail. In fact for the KIV verification effort of Prolog-to-WAM
(see the next bullet), ASMs had to be embedded into dynamic logic together with a formaliza-
tion of two specializations of the ASM refinement notion, for which Schellhorn [49] proved a
general modularisation theorem and used it as scheme to prove the correctness of the ASM re-
finement steps in the Prolog-to-WAM hierachy. An improved version of this theorem appeared
later in [50], see also the continuation of the analysis of the ASM refinement notion in [51].
The WAM paper triggered the first full-fledged machine-supported ASM verification effort.
My suggestion to the German Research Council (DFG) project “Deduktion” to mechanize
the Prolog-to-WAM compiler correctness proof was taken up by two theorem proving groups,
resulting in an attempt to use Isabelle [41] for this purpose and in a complete mechanical KIV
verification of the entire refinement chain [54,52,53,49].
The WAM paper has triggered the first illustrations of effective reuse of ASMs, namely by
adapting the Prolog-to-WAM ASM refinement hierarchy and the related correctness proofs
for other logic programming languages and their proven to be correct implementations, e.g. of
CLP(R) on IBM’s constraint logical arithmetical machine [31], of PROTOS-L on IBM’s WAM
extension for type-constraint logic programming [3,2] and of the Prolog Distributed Processor
extending the WAM for parallel execution of Prolog on distributed memory [1]. Through this
work we learnt much of what later gave me the confidence to embark on an ASM analysis of
Java and C# and their implementation on the Java Virtual Machine respectively the .NET
Common Language Runtime [55,19,33,34].

At this point, having experienced through the Prolog-to-WAM work the huge potential the
ASM method offers for mathematically rigorous and elegant system design and verification work,
Dean was hooked to the method and became an affecionado for the rest of his life. Since he was
one of the not too numerous persons who combine a strong love for pure mathematics with the
readiness to apply his mathematical skills to address practical problems, it was not any more
difficult to convince him to join me also for the collaboration I had started with the ISO Prolog
standardization committee [14]. If the ASM approach to defining the semantics of Prolog for a
long time encountered much incomprehension and considerable resistance in the logic programming
and language semantics communities, this has not been the case within the ISO standardization
committee, where the partners were language designers and software engineers responsible for the
at the time leading logic programming systems from Quintus, IBM, Siemens, Interface and BIM.
Already in 1991, in a second invited talk to the ITI’91 Dubrovnik-Cavtat conference, I could
present the work with Dean on An Analysis of Database Views and their Uniform Implementation,
which had been triggered by the discussions in the standardization group [16]2. In the paper [23]
with Dean we used the ASM model for Prolog to solve the Problems with assert, retract and
abolish in Prolog, theme of a talk we presented together in the same summer to the ISO WG 17
Meeting in Paris (01.07. - 03.07.1991). Also the paper [28] belongs here, where we provided an
ASM-based specification of the solution-collecting predicates findall, setof,bagof of Prolog, which
paved the way for a logico–mathematical analysis, rationale and criticism of various proposals

2 See the preliminary version The View on Database Updates in Standard Prolog: A Proposal and a
Rationale published as ISO/ETC JTCI SC22 WG17 Prolog Standardization Report no. 74, February
1991, pp. 3–10.



made for implementations of these predicates. The paper was also issued as Prolog. Copenhagen
Papers 2, ISO/IEC JTC1 SC22 WG17 Standardization report no. 105, by the National Physical
Laboratory in Middlesex in 1993 (pp. 33–42).

As a sequel to the Prolog-to-WAM work we streamlined the early Prolog models [4,5,7,8,6],
work that was reported by Dean in form of a poster presentation Full Prolog in a Nutshell at the
10th International Conference on Logic Programming (ICLP ’93) in Budapest (21.06. - 24.06.1993)
and published in [24,27,29].

As was typical for Dean, he would try to extract from the concrete work done some theoretical
insight. In [36] he defined an ASM interpretation of many-step SOS, denotational semantics and
Hoare logic for the language of while-programs. Correctness and completeness theorems are stated
based on a simple flowchart model of the language.

3 ASM Models of Concurrency Concepts

When in the Fall of 1992 I started the project to systematically test the practical impact of the ASM
method beyond the semantics of programming languages, by trying out ASMs for the modeling and
rigorous mathematical and experimental analysis of a variety of complex real-life computer-based
systems, one of the first relevant fields I investigated was computer architecture. Dean joined me,
again enthousiastically, in the reverse engineering study commissioned by a group of physicists
in Pisa and Rome for the massively parallel APE100 architecture. As starting point for the work
in Giuseppe Del Castillo’s Tesi di Laurea dedicated to this study, we developed with Dean and
Paola Glavan, at the time one of Dean’s students, a programmer’s view ground model [13] for
this architecture, which was presented by Dean in his talk on A formal model for the APE100
architecture viewed through the APESE language at the Physics Department of Università di Pisa
on 28.10.1993 and then refined in [15] to a provably correct decomposition of the control unit
processor zCPU, a VLSI-implemented microprocessor with pipelining and VLIW parallelism, built
from formally specified basic architectural components.

With Igor Durdanovic, the second student Dean brought into the ASM community, we devel-
oped a truly concurrent ASM ground model for Occam, which I presented in a talk to the Pro-
comet’94 IFIP Working Conference on Programming Concepts, Methods and Calculi and which
was published in the Proceedings [18]. The model improved the parse tree determined ASM model
in [38]. It has been enriched in [17] by a series of refinement steps to a proven to be correct
Transputer implementation of Occam.

This work inspired Dean to develop within the framework of ASMs a theory of concurrent
computation, which was illustrated in [35] (see also [42]) by ASM models for the Chemical Abstract
Machine and the π-calculus and generalized the approaches developed in [38,21,22] in connection
with ASM models for Occam, Concurrent Prolog and Parlog. It was superseded only by the more
general definition of distributed ASM runs in the Lipari Guide [37]. Using the latter notion, with
Yuri Gurevich we analyzed in [20] Lamport’s Bakery algorithm—first of all in terms of an ASM
ground model to faithfully reflect Lamport’s mutual exclusion protocol. By abstracting from the
low-level read and write operations of the ground model, we defined a high-level model with atomic
actions (non-overlapping reads and writes) for a simple proof of the desired correctness and liveness
properties from simple axioms. In a third refinement step we turned atomic into durative actions,
allowing overlapping of reads and writes to shared registers, and proved that the corresponding
assumptions made for the machine with atomic actions still hold. This work has later been analyzed
again by Dean and Gurevich [39] in terms of partially ordered runs of distributed ASMs, abstracting
from the mapping of moves to linear real time we had used in our original proofs in [20].

During this experimentation period, which was important for the development of the ASM
method through its applications, Dean also helped me to eventually convince Yuri to dedicate
the special session, which Gurevich had been asked to organize as part of the IFIP 13th World
Computer Congress in Hamburg, not to complexity theory but to ASMs, which at the time were
called Evolving Algebras. The meeting we helped Yuri to organize (see the chapter on Stream C on
Evolving Algebras in the Proceedings [40, 377-441]) became a rather successful start of the series



of annual international ASM workshops, the 24th one of which Dean has been planning to hold in
2009 in Dubrovnik, the town where then two decades ago he had been attracted to ASMs. I was
dreaming about iterating my walks with Dean through the enchanted place...

4 Conclusion

Dean’s wide spread interest also covered logic and recently cryptographic protocols. He related
ASMs to linear logic [43], studied typed hybrid multimodal logic [45] and exploited ASMs for
poblems in cryptography [48,46,47]. These interests are also reflected in the subjects Dean lectured
about. The graduate courses he taught over the last six years were on cryptographic protocols,
logics of knowledge and belief for cryptographic protocol analysis, applied logic, higher order logic,
hard algorithmic problems and a programming course Processing of Natural Language.

With Dean a part of my own research life has gone, related to the crucial period in the first half
of the 90’ies of the last century when through a collaborative effort involving dozens of colleagues
on the two sides of the Atlantic we slowly learnt enough about complex real-life computer-based
systems and their implementations to eventually understand and formulate the ASM method as
an accurate, scientifically well-founded engineering method that supports the trustworthy design,
analysis and documentation of such systems also under industrial constraints. Dean’s insightful
contributions to this effort will not be forgotten by all those who had the chance to work with him.
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G. Jäger, S. Martini, and M. M. Richter, editors, Computer Science Logic, volume 702 of Lecture Notes
in Computer Science, pages 182–215. Springer-Verlag, 1993.



36. P. Glavan and D. Rosenzweig. Evolving algebra model of programming language semantics.
In B. Pehrson and I. Simon, editors, IFIP 13th World Computer Congress, volume I: Technol-
ogy/Foundations, pages 416–422, Elsevier, Amsterdam, 1994.

37. Y. Gurevich. Evolving algebras 1993: Lipari Guide. In E. Börger, editor, Specification and Validation
Methods, pages 9–36. Oxford University Press, 1995.

38. Y. Gurevich and L. S. Moss. Algebraic operational semantics and Occam. In E. Börger, H. Kleine
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