
Why Use Evolving Algebras for Hardware and

Software Engineering? ?

Egon B�orger

Universit�a di Pisa, Dipartimento di Informatica, Corso Italia 40,
I-56125 Pisa, Italy

Abstract. In this paper I answer the question how evolving algebras

can be used for the design and analysis of complex hardware and soft-

ware systems. I present the salient features of this new method and
illustrate them through several examples from my work on speci�cation

and veri�cation of programming languages, compilers, protocols and ar-

chitectures. The de�nition of a mathematical model for Hennessy and
Patterson's RISC architecture DLX serves as a running example; this

model is used in [24] to prove the correctness of instruction pipelining.

I will point out the yet unexplored potential of the evolving algebra
method for large-scale industrial applications.

Ich habe oft bemerkt, dass wir uns durch allzuvieles Symbolisieren

die Sprache f�ur die Wirklichkeit unt�uchtig machen.

Christian Morgenstern2

It needs some courage to come after three decades of intensive research in

the area of formal methods and to advocate yet another general method for

software and hardware design. However the huge gap between much of academic

theory and the prevailing software and hardware practice is still with us, as is a

wide-spread scepticism about the industrial bene�t of formal methods (see the

discussion in the literature about what are the right methods and criteria [33,

68, 69, 47, 78, 31, 32]) for software engineering to become a \mature engineering

discipline"[54]. I accept with pleasure the invitation to explain to this audience

how the new evolving algebra approach contributes to bridging this gap. I will

try to convince you that it o�ers a mathematically well founded and rigorous but

nevertheless simple discipline practical and scalable to industrial applications.

The notion of evolving algebra has been discovered by Gurevich in an at-

tempt to sharpen Turing's thesis by considerations from complexity theory (see

[39]) where the notion has led to important new developments [6]. At that time

I was trying to develop a mathematical model for the programming language

Prolog; this led me to the idea to use the notion of evolving algebras for de�n-

ing transparent and simple speci�cations of complex dynamic systems at various

? In: Miroslav BARTOSEK, Jan STAUDEK, Jiri WIEDERMANN (Eds.),

SOFSEM'95, 22nd Seminar on Current Trends in Theory and Practice of Informatics,
Springer LNCS 1012, 1995,235{271.

2 Translation: I have often observed that by over-symbolizing we make the language

ine�cient to use in the real world.

levels of abstraction and to relate such speci�cations through hierarchies of prov-

ably correct stepwise re�nements. I understood that using this notion one can

develop a powerful and elegant speci�cation method which a) supports the way

programmers work and and b) provides a rigorous basis for it. Through numerous

real-world case studies this idea has been con�rmed.

I will illustrate the main features of this new approach through examples

from evolving algebra speci�cations and veri�cations of real-life programming

languages, compilers, protocols and architectures (see [11] for an annotated bib-

liography complete up to 1994). The running technical example is an abstract

mathematical de�nition of the well known RISC architecture DLX [49]. For DLX

the notion of sequential evolving algebra su�ces; note however that in [41] this

notion has been extended to that of distributed evolving algebras which turned

out to be natural and powerful for modeling distributed systems. I start from

scratch without presupposing any knowledge of DLX. It is not the worst argu-

ment for a speci�cation method that for this architecture one can de�ne a clear

mathematical model which is easy to manipulate; the model has been used in

[24] in a correctness proof of current instruction pipelining techniques.

The discussion leads also to the question what constitutes a proof and what is

the role of ground models when we apply our mathematical notions and methods

to the physical and technical world.

More precisely I will explain in sections 1{9 the following 9 features of the

evolving algebra approach to the speci�cation and veri�cation of complex com-

puter systems:

1. freedom of abstraction by which evolving algebras o�er hierarchical structur-

ing combined with systematic use of stepwise re�nement and by which they

support the software life-cycle phases from initial speci�cations to executable

code,

2. powerful but simple mechanism for information hiding and de�ning precise

interfaces which makes evolving algebra models easily adaptable,

3. locality principle for dynamics,

4. separating speci�cations from veri�cations,

5. avoiding the \formal system straitjacket",

6. satisfactory links to application domains by appropriate ground models,

7. support of abstract operational views,

8. scalability to large complex systems including hardware/software co-design,

9. easy learning by the practitioner without presupposing any previous theoret-

ical training, although the method has a rigorous mathematical foundation.

Other formal methods (VDM, Z, RAISE, B, : : : 3) share some of these fea-

tures, but to my knowledge only evolving algebras combine them all.

3 This is not the place for the interesting task to compare evolving algebras to other

formal methods in the literature.

1 Freedom of Abstraction

It is well known that general abstraction principles are needed to cope with

the complexity of large systems. Whereas the algebraic speci�cation theory [79]

shows a way to deal with abstract data types and the action semantics approach

[64] proposes a scheme for constructing complex operations out of basic compo-

nents, evolving algebras o�er the possibility to choose both, the data and the

basic actions, at any level of abstraction and independently of each other. The

way this is done is simple and corresponds to common practice in systems en-

gineering: when specifying a software or hardware system one has to de�ne its

basic objects and the elementary operations which the system uses for its actions

(dynamical behaviour). In other words one has to de�ne the basic domains and

functions of a system. This leads in a natural way to the mathematical notion

of structures as formalization of system states, as I am going to explain now.

1.1 Universes

Each system S deals with certain basic objects which might be classi�ed into

di�erent categories. This is reected in an evolving algebra model of S by corre-

sponding sets (also called universes or domains), one for each category of objects.

These sets can be completely abstract|this is the case if no restriction is im-

posed on the corresponding category of objects. In case that the objects are

assumed to have certain properties or to be in certain relations with other ob-

jects, we formalize these properties and relations by corresponding conditions

(integrity constraints) which the objects in those sets are required to satisfy.

The evolving algebra approach accepts any precise formulation of such condi-

tions, in whatever language or framework they are given. The domains might

also be equipped with certain functions providing some basic structure which

can be used in the operations to be performed by the system.

In the remaining part of this subsection I illustrate this data abstraction

principle by a discussion of basic DLX domains. I will try to show that the

evolving algebra approach allows one to make well known ideas rigorous following

simple patterns of reasoning every programmer is familiar with.

DLX is a general purpose register machine,.i.e. the operands of the basic op-

erations are stored internally in CPU registers. Thus registers are basic objects

of the architecture and are formalized as elements of a set REG. The content of

registers is represented abstractly by a function reg : REG ! WORD where

WORD is not furthermore speci�ed at this stage but is intended to be imple-

mented by a set of words. One use of registers in DLX is to contain addresses

for memory access. This can be reected abstractly by a set ADDR satisfying

ADDR �WORD and coming with a function mem : ADDR !WORD which

yields the content of the memory at the given address. We will see below that var-

ious interesting features of DLX can be described appropriately and succinctly

on the basis of such an abstract notion of memory.

DLX is a load{store machine, i.e. the operands of ALU{instructions are not

memory addresses but are taken from registers or from the instruction itself.

This design decision for the location of operands can be reected by an abstract

set INSTR of instructions on which functions are de�ned which provide the

operands. The design decision for DLX that no instruction can have more than

two operands and that some instructions have a so called immediate value as

(part of) an operand is reected by the fact that we can formalize by three

abstract functions how the machine gets its operands froman instruction, namely

fst op; scd op : INSTR ! REG and ival : INSTR ! VALUE . These functions

are partial because the R{type instructions have two register operands whereas

the I{type instructions take only one operand from a register and have the other

one directly encoded into the instruction as immediate value and the J{type

instructions (J for jumps) have only an immediate operand. We can use once

more an abstract function iop : INSTR ! BOOL to formalize the mode of

addressing operands without imposing any details for the instruction format. In

accordance with this view we also use an abstract function

opcode : INSTR ! ALU SET [TRANSFER [CONTROL

to split the instructions into three disjoint sets which have the obvious intended

interpretation as set of arithmetical and logical, data transfer or jump instruc-

tions. At a certain abstraction level we will de�ne these sets explicitly following

[49, p.165]. For example ALU SET is split into ALU and SET where ALU con-

tains the usual arithmetical, logical and shift instructions and SET contains the

usual operations for zero-test and �;� etc. tests (in R{type and in I{type form),

i.e.

ALU = fADD;SUB; : : : ; AND;OR; : : :; SLL; SRL; : : : ; ADDI; : : :g:

Similarly TRANSFER is split into sets LOAD, STORE, INTERRUPT and

CONTROL into JUMP and BRANCH. The principles of pipelining in DLX

can be described without further speci�cation of the instruction format. This

means that we also do not formulate here any conditions which assure that no

instruction needs both to calculate an address and to perform an operation on

data. This feature will become apparent from the formalization of the instruction

interpretation below; it is this feature which allows us in the pipelined version of

the architecture to combine the execution step proper with the e�ective address

calculation for memory access and jump instructions.

The above mentioned universes are static|i.e. they do not change; in general,

the evolving algebra framework permits universes also to be dynamic. Since the

main intention of the concept of evolving algebras is to reect the dynamical

system behaviour in a direct and simple way, there is a construct for growing of

universes, namely extend A by x1; : : : ; xn with | endextend where `|' is

used to de�ne certain properties or functions for (some of) the new objects xi of

the universe A. We use it in our Prolog model [27] which reects the underlying

resolution tree. Upon calling a user-de�ned activator the system creates as many

new children nodes to start alternative computations as there are candidate

clauses in the procedure de�nition of the activator in the user's database db.

The child relation is needed for the backtracking behaviour of the system and

is formalized using a function father . To each new node ti the corresponding

clause occurrence ci in the program db is associated using a function cll and

the current node records the candidates to be selected as possible alternatives to

continue the current computation. This is formalized by the following Call Rule

of Prolog:
ifis user de�ned (act) ^ mode = Call

then extend NODE by t1; : : : ; tn with

father(ti) : = currnode

cands (currnode) : = [t1; : : : ; tn]

cll(ti) := ci

endextend

mode := Select

where [c1; : : : ; cn] = procdef (act ; db)

By the way domain extension and deletion of elements can be reduced to

function updates [41].

1.2 Dynamic Functions

Once it has become clear what are the basic objects of a system S, one has to

think about what are the elementary operations which are performed on those

objects in S. Typically, a basic operation consists of setting a certain value, given

the values of certain parameters. The most general framework of such operations

is the following function update:

f(t1; : : : ; tn) := t

where f is an arbitrary n{ary function and t1; : : : ; tn represent the parameters

at which the value of the function is set to t. Evolving algebras allow function

updates with arbitrary functions f and expressions ti; t of any complexity or

level of abstraction. Functions whose values can change are called dynamic in

contrast to static functions which do not change.

Function updates provide the basic notion of destructive assignment at any

level of abstraction. The above Call Rule for Prolog updates the dynamic func-

tions father ; cands; cll ; currnode;mode. The last two functions have arity 0 and

thus correspond to (global) variables in programming which can be updated dy-

namically and at di�erent moments can assume di�erent values. Also the typical

fetch{execution mechanism in an architecture can be described in terms of two

0{ary functions, say IR; PC 2 REG for the instruction register (containing the

currently executed instruction) and the program counter (containing the address

of the next instruction to be fetched). The updating of the program counter is

expressed by the function update reg(PC) := next(reg(PC)) where the func-

tion next : INSTR ADDR ! INSTR ADDR � ADDR determines for a given

instruction address (in PC) the next instruction address (to be stored in PC).

The fetching of the next instruction to be executed is described by the function

update reg(IR) := mem(reg(PC)): Clearly we rely here upon the obvious in-

tegrity constraint that the range of the restriction of mem to INSTR ADDR is

a subset of INSTR.

Function updates are the mechanism by which the dynamics of arbitrary

systems can be described in an explicit way. In accordance with usual practice

the execution of updates in evolving algebras can be conditioned by guards,

giving rise to transition rules of the form if Cond then Updates: Cond is an

arbitrary boolean valued expression (�rst{order logic formula) and Updates a

�nite set of updates. If Cond is true the rule can be executed by simultaneously

executing each update in the set Updates. (The simultaneous execution of more

than one update helps to avoid an explicit description of intermediate storage,

see for example the updates a := b; b := a.)

The above Call Rule for Prolog is a typical example of an evolving algebra

transition rule. This type of rules su�ces to describe the sequential control of

DLX following elementary ideas familiar to every programmer; see section 1.4.

1.3 States as Static Algebras

To speak about a system means to talk about its objects in terms of functions and

relations de�ned on them. Domains, functions, and relations constitute what in

mathematics is called a structure. Structures without relations are traditionally

called algebras. Since relations (and in particular sets) can be represented by

their characteristic functions, for simplicity we deal only with algebras.

A sequential evolving algebra can be de�ned as a �nite set of transition

rules if Cond then Updates: The e�ect of a transition rule R when applied to

an algebra A is to produce another algebra A0 which di�ers from A by the new

values for those functions at those arguments where the values are updated by

the rule R.

The consistency of updates is the responsibility of the programmer who may

use special tools for the purpose. For the simple evolving algebra model for the

sequential control of DLX de�ned in the next subsection it is obvious from the

form of the rules that they are consistent.

Note that no rule changes the type of the functions; only the incarnation

(the concrete interpretation) of a function changes by changing some of its val-

ues. We speak therefore of algebras also as static algebras, to distinguish them

from evolving algebras. Evolving algebras are transition systems which transform

static algebras.

Thus, the abstraction principle which is built into the notion of evolving

algebra can be summarized as follows: (static) algebras as \states" and guarded

destructive assignments for abstract functions as basic dynamic operations. This

is the most general notion of state and of dynamic changes of states modern

mathematics o�er. As a consequence evolving algebras are the most general

notion of a (discrete) dynamic system. A priori no restriction is imposed on the

abstraction level where one might want to place an evolving algebra description

of a system.

This freedom explains the success of the simple and transparent evolving

algebra models for the semantics and the implementation of numerous complex

programming languages like Prolog [7, 8, 27, 28], C [43], VHDL [20, 21], Occam

[17, 16], for protocols [22, 55], architectures [14, 13, 24], real{time algorithms

[45, 46], etc. which have been developed in a relatively short time by a relatively

small number of persons who used only evolving algebras as tool. It is also the

feature of evolving algebras which assure extensibility and reusability; see the ease

with which the Prolog model in [7, 8, 27] could be modi�ed to provide models for

various well known extensions of Prolog by parallelism [25], constraints [30, 29],

types [2], functional [23] or object{oriented features (see [9] for a detailed survey).

The importance of the freedom of abstraction is also con�rmed by a common

experience in the design of algorithms. Namely, the need to model phenomena

of the real world, which are given a priori, leads the designer of programs to use

`abstract structures', as has been well expressed a long time ago by N. Wirth:

\... Data in the �rst instance represent abstractions of real phenomena and are

preferably formulated as abstract structures not necessarily realized in common

programming languages." [80, p.10]

The reciprocal dependency of algorithms and data structures makes it im-

portant for the designer not to be hindered by inappropriate restrictions of the

framework; in Wirth's words: \It is clear that decisions about structuring data

cannot be made without knowledge of the algorithms applied to the data and

that, vice versa, the structure and choice of algorithms often depend strongly on

the structure of the underlying data. In short, the subjects of program compo-

sition and data structures are inseparably intertwined." [80, p.9]

By their power of abstraction evolving algebras o�er the freedom the designer

needs to `tailor' his models to the given level of abstraction and to express his

ideas without introducing any extraneous formal overhead. This allows one to

build an arbitrarily complex system as a hierarchy of appropriate simpler evolv-

ing algebras , making systematic use of stepwise re�nement. As a consequence

the evolving algebra method supports all the software life-cycle phases from

initial speci�cations to executable code; see for example [3, 28, 16].

1.4 The Sequential Control for DLX

The sequential control of DLX is formalized as in Prolog's Call rule by the values

of mode for the di�erent execution phases. In mode OPERAND the operands

of the previously fetched instruction are decoded by putting them into the two

register �le exits (0{ary functions) A;B from where they are taken as input by

the ALU. The next value of mode is determined by the result opcode(IR) of

decoding the operation code.

For ALU or SET instructions the ALU computes the value of the function

opcode(IR)0 for the given operands and outputs it to the register �le entry C

from where this result is written in mode WRITE BACK into the corresponding

destination register dest(IR) in the register �le.4

For LOAD or STORE instructions �rst|i.e. in mode MEM ADDR|the

Memory Address Register MAR is used for the result of the MEM ADDR cal-

culation (which involves the immediate value and the value in A); for STORE

4 For the sequential model of DLX an additional register TEMP appears in [49] which

temporarily stores the right second operand (namely fst op(IR) or ival(IR), depend-

ing on the type of the instruction); this call for an intermediate mode ALU'.

instructions also the value to be transfered to the memory is passed from B to

the Memory Data Register MDR. Then|i.e. in mode MEM ACC|the memory

is accessed for the transfer of data between MDR and the calculated memory

position. In case of LOADing the data are then|i.e. in mode WRITE BACK|

written from MDR into the destination register in the register �le.5

The special interrupt address register IAR is accessed only by instructions

in INTERRUPT = fMOVS2I, MOVI2Sg (for moving the interrupt information

from or to IAR) or by the system jump TRAP (for moving PC into IAR).

The set JUMP splits into PLAINJ, LINKJ and fTRAPg. The characteristic

di�erence of LINKJ instructions is that they record the current value of PC in

the destination register.

These explanations should su�ce for an understanding of the following evolv-

ing algebra rules which formalize the diagrams in [49] for the sequential control

of DLX; the model is complete except for the oating point related DLX instruc-

tions which are left out for reasons of space.

For notational succinctness the function reg is systematically suppressed and

the abbreviation � � � �
0 := �

0 is used where
0 is obtained from by

substituting reg(R) for R. For the same reason the standard argument IR for

the static decoding functions is dropped and an abbreviation new mode is used

with AS standing for ALU[SET ,M for LOAD[STORE, I for INTERRUPT,

J for JUMP [BRANCH.

if mode = FETCH

then IR mem (PC)

PC next (PC)

mode := OPERAND

if mode = OPERAND

thenA fst op

B scd op

mode := new mode

if mode = ALU

then if iop(opcode)

then TEMP ival

else TEMP B

mode : = ALU
0

new mode =8>><
>>:

ALU ifopcode 2 AS

MEM ADDR ifopcode 2M

IAR ifopcode 2 I

JUMPS ifopcode 2 J

if mode = ALU'

then C opcode
0(A; TEMP)

mode : = WRITE BACK

if mode = WRITE BACK

then dest C

mode : = FETCH

if mode = MEM ADDR

then MAR A+ ival

if opcode 2 STORE

thenmode : = pass B to MDR

else mode : =MEM ACC

if mode = pass B to MDR

then MDR B

mode : =MEM ACC

5 Note that in DLX it is supposed that depending on the operation code only a subword

of what has been loaded from the memory to MDR is copied into the destination

register; this calls for an intermediate mode SUBWORD.

if mode = MEM ACC

^ opcode 2 STORE

then mem(MAR) MDR

mode : = FETCH

if mode = MEM ACC

^ opcode 2 LOAD

then MDR mem(MAR)

mode : = SUBWORD

if mode = SUBWORD

then C opcode
0(MDR)

mode : = WRITE BACK

if mode = IAR

then if opcode =MOV S2I

then C IAR

mode : = WRITE BACK

if opcode =MOV I2S

then IAR A

mode : = FETCH

if opcode 2 BRANCH

&mode = JUMPS

then if opcode0(A)

then PC PC + ival

mode : = FETCH

if mode = JUMPS

then if opcode = TRAP then IAR PC

PC ival

if opcode 2 PLAINJ [LINKJ

then if iop(opcode) then PC ival + PC

else PC A

if opcode 2 fTRAPg [PLAINJ thenmode : = FETCH

if opcode 2 LINKJ then C PC

mode : = WRITE BACK

2 Information Hiding and Interfaces

Information hiding, introduced by D. Parnas [67], calls for modular structuring of

systems. In a practical speci�cation method, information hiding has to go hand in

hand with a good discipline to handle interfaces. The evolving algebra approach

o�ers both in a most general way through the concepts of oracle functions and

externally alterable functions.

Let f be a function of an evolving algebra A. If f has no updates of the form

f(t1; : : : ; tn) := t in any transition rule of A, it is called an oracle function of

A; if f does appear in an update f(t1; : : : ; tn) := t of a transition rule of A it

is called internally updatable or internally alterable. Dynamic functions whose

values can be a�ected by the environment are called externally alterable.

Oracle functions are completely determined by the environment. They can

be static or dynamic; if they are dynamic they are externally but not internally

alterable. For the description of distributed systems it is convenient that in the

evolving algebra framework one can speak about functions which are both exter-

nally and internally alterable; for such functions it depends on the system which

discipline is imposed to avoid conicts between external and internal changes of

the function.

Usually the rules of A give some crucial information on the dynamical be-

haviour of internally updatable functions f of A . In contrast the rules of A give

no information on how an oracle function f of A operates; such a function can-

not be modi�ed (`written') by A, but it can be used (`read') in the rules of A to

determine arguments at which an internally updatable function is changed dy-

namically or to determine the new value in such updates. Oracle functions and

externally alterable functions f are used to represent inuences of the environ-

ment in which the given evolving algebra is intended to work. It is the task of the

system designer to provide the information on f which he wants the programmer

to know and to use. In the evolving algebra approach this interface information

can range from nothing at all|this is the case of a function for which only the

number and the types of its arguments and values are known|to a full speci�-

cation by some axioms or by a set of equations or by another evolving algebra

(module), etc. Note that due to the abstraction principle explained in the pre-

vious section the evolving algebra approach imposes no restriction at all on the

choice of externally alterable or oracle functions and the way they are described.

The use of evolving algebras does not trivialize the di�cult task of \designer

control of the distribution of information" ([67]:p. 344), but at least it does not

hinder this task by extraneous overhead of formalities and o�ers a exible and

open framework to guarantee information hiding and the de�nition of precise

abstract interfaces.

As a consequence, the evolving algebra approach helps to ensure that pro-

grams, once developed, can be extended, maintained and reused as components

of larger systems in a systematic and reliable way. Also it integrates well into

existing development environments without requiring a complete revision of the

latter. Another pragmatically important feature in this context is that through

skilful introduction of the appropriate abstractions high{level evolving algebra

speci�cations allow one often to produce precise de�nitions of modules which are

considerably shorter than implementations of those modules in a programming

language.

In the following subsection I explain some examples showing the power of

abstraction which is o�ered through the introduction of externally alterable or

oracle functions in evolving algebra descriptions of complex systems.

Examples of Externally Alterable and Oracle Functions. The code re-

lated functions fst op, scd op, iop, ival, opcode and next in DLX are static, de-

termined by an initialization (not given here) which contains the given program

to be executed. The four simple rules [27] which de�ne the complete behaviour

of Prolog for user{de�ned predicates make crucial use of two oracle functions

procdef and unify.

The function procdef is supposed to provide for given literal l and program

db the clauses in db which are relevant for l, in the order in which they have

to be applied. The whole backtracking behaviour of Prolog (including optimiza-

tions like determinacy detection) can be described on the basis of this abstract

function procdef. If one considers Prolog without program modifying operations

like assert, retract, then procdef is a static oracle function. If one wants to model

also Prolog's programmodi�cation features then procdef becomes a dynamic and

internally updatable function (see [15, 26]). Through the re�nement process by

which the Prolog model of [27] is linked in a provably correct way to the WAM

implementation model in [28] procdef receives an explicit de�nition.

unify is supposed in [7, 8, 27] to provide for each pair of literals either a

unifying substitution or the information that there is no such uni�cation. The

function describes the abstract behaviour of uni�cation without being bound to

any concrete uni�cation algorithm. It also hides from the programmer the details

about the representation of terms which appear in the re�ned WAM models of

[28]. As a result the abstract PROLOG model of [27] and its re�nement to the

WAM model of [28] could easily be extended to constraint logic programming

languages with or without types where uni�ability appears as a particular case of

constraints (see the evolving algebra de�nitions of PROLOG III [30], Protos{L

[2], and CLP(R) [29]).

The oracle function �nd-catcher for which a recursive de�nition is given in

[27] leads to a concise formalization of the error{handling predicates catch and

throw of Prolog.

In the evolving algebra model [20, 21] for the IEEE VHDL Standard we have

obtained a simple and uniform rule set for signal assignments by introducing

for the inertial delay an oracle function reject for which we give a natural and

easily understandable recursive de�nition. Similarly, a transparent description is

obtained for the propagation of signal values by introducing oracle functions for

the so{called driving and e�ective values; the former is determined by a recursion

on the signal sources, the latter by a recursion on port association elements from

ports to signals. In both cases the recursive de�nitions replace rather complex

algorithmic characterizations in the VHDL'93 language reference manual [56].

In the abstract evolving algebra models of Occam (see [17]) which are the

starting point for the correctness proof of a compilation scheme into Transputer

instructions in [16] we have taken great advantage of the usual owchart layout of

programs; we de�ne it by oracle functions which in the later re�nement steps are

replaced by recursive de�nitions of the compiling function. Considerable simpli-

�cations for both the speci�cations and the proofs have also been obtained there

by leaving the evaluation and compilation of expressions and the implementation

of values abstract, realized by appropriately restricted oracle functions.

For Lamport's mutual exclusion protocol, known as the Bakery Algorithm,

a considerable simpli�cation of the correctness proofs in the literature has been

achieved in [22] by introducing two externally alterable functions, namely Ticket

and Go, on which three natural conditions and an induction principle are im-

posed which imply the correctness of the protocol.

The widely used parallel virtual machine PVM realizes a distributed com-

putation model which is characterized by the reactive behaviour of concurrently

operating PVM daemon processes, each residing on one of several host comput-

ers. The daemons are triggered by the environment; they carry out the PVM

instructions of the local tasks they have to manage and interact with each other

through asynchronous message{passing communication. No daemon can inu-

ence when, from where and which request or message will reach him, rather

he has to wait for the next such event to come whenever he is idle. We have

modelled this intuition faithfully by introducing an externally alterable oracle

function event which for a given daemon might yield a PVM instruction or a

message as value. If event(pvmd) is de�ned and has the value instr/mssg, then

the daemon pvmd is going to execute/read instr/mssg. This is formalized in our

PVM model [18, 19] by a rule of form

if event(pvmd) = instr/mssg then execute instr/read mssg

for each individual PVM instruction instr or PVM message mssg, where ex-

ecute instr/read mssg represents the corresponding updates. An integrity con-

straint on the function event is that a de�ned value of event(pvmd) remains

stable until the PVM daemon pvmd has evaluated the function. However, we as-

sume `destructive reading' such that event(pvmd) is reset to undef or indicates

the next event as soon as the pvmd has read the current value. The dynamic

oracle function event thus directly reects the way in which tasks interact with

their local PVM daemon when they want PVM routines to be invoked. Using

the dynamic oracle function event we abstract from the speci�c way how the

daemon's walk through his sequence of instructions/messages is determined by

the activities of his tasks.

In all these cases the externally alterable or static functions allowed us to

de�ne a precise interface with respect to which the model under discussion works

in a simple and transparent way. If for such an abstract model one wants to prove

general properties about the behaviour of the system where externally updatable

or oracle functions play a role, one has to state and assume the properties which

are used. In order to guarantee an unchanged interface behaviour these properties

have to be proved to be satis�ed when those functions are de�ned explicitly or

implemented in later re�nement steps or modi�ed by changing requirements.

The most general concept of modularity which is present through the notions

of externally alterable and oracle functions is deliberately kept open in the def-

inition of evolving algebras. The resulting exibility in using and dealing with

di�erent module structures is an advantage for real{life speci�cation endeavors.

Nothing prevents us from restricting this notion to speci�c and even syntactic

concepts of compositionality where the need arises; an example where it turned

out to be useful to stick to a simple and well known automaton{theoretic con-

cept of composition of evolving algebras through sequencing, juxtaposition, and

feedback can be found in [13].

3 Locality Principle for Dynamics

It is typical for large systems that their overall behaviour is determined by the

actions of their components, i.e. by local changes. Even for the dynamic perfor-

mance of large sequential systems it is characteristic that at each moment and in

a given context only a few things do change whereas the rest remains unchanged.

The complexity of the behaviour of a large system is due to the overall e�ect

of a lot of small local changes. Often descriptions which build upon the locality

phenomenon are considerably simpler and more natural than global descriptions

which try not to refer to single computation steps. Exploiting a locality property

can lead often to a modular design. In contrast to a widely held view not only the

description of the system behaviour, but also the mathematical reasoning about

it can become considerably simpler if the locality principle is used. It allows one

to concentrate on the parameters which do change and not to have to worry

about the other state components which do not change under the considered

transition.

The evolving algebra method allows one to reect this characteristic interplay

between global and local dynamic system behaviour in a direct and faithful way

by viewing (global) system states as static algebras and by providing the pos-

sibility to express local updates f(t1; : : : ; tn) := t in a uniform way at any level

of abstraction. We have used the locality principle with advantage for modelling

parallel or distributed systems. See for example the succinct formalization given

in [19] for the PVM message{passing interface. Another example is the parallel

version DLXp of DLX which we have de�ned as starting point for several further

re�nement steps leading to the pipelined version of DLX and a mathematical

proof of its correctness [24].

3.1 The Basic Parallel Control for DLX with Pipelining

The re�nement of DLX to a parallel model DLXp in this section is taken from

[24]. It resolves structural pipelining hazards and serves as link between DLX

and its further re�nements to the fully pipelined model in which also data and

control hazards are resolved by the architecture.

The intuitive idea of pipelining is simple. The execution of an instruction is

done in DLX in �ve stages, namely Instruction Fetch (IF), Instruction Decode

which includes reading the operands (ID), EXecution proper for ALU operations

which include (data or branch) address calculations using the ALU (EX), MEM-

ory access (MEM) and Writing the computed result Back into the �nal register-

�le destination (WB). Since at each stage di�erent actions are taken, ideally

one can pipeline DLX by letting the processor execute during each clock cycle

simultaneously one di�erent pipe stage for each of �ve instructions. Roughly this

can be described by eliminating the sequential control and by replacing where

necessary the mode guards by opcode(I) guards which correspond to the pipe

stage of the instruction I in question. The resulting rule system should then be

interpreted under the lock-step parallelism semantics of evolving algebras; under

this semantics at each moment each rule whose guard is true is applied.

Special care has to be taken however to avoid conicts resulting from de-

pendencies between instructions which can occur when some of their execution

stages overlap. Structural hazards arise when during one clock cycle two instruc-

tions compete for resources, each functional architectural unit of DLX being

available at each step only once. For example fetching a new instruction on each

clock cycle would create a mem access conict with load/store instructions. This

can be avoided by increasing the memory bandwidth. We introduce therefore an

additional memory access function meminstr which is used only for fetching in-

structions and which is supposed to be a subfunction of mem; in this way we

abstract from any particular implementation feature related to using separate

instruction and data caches.

Similarly one avoids to use the ALU for incrementing the program counter

PC by providing a separate PC-incrementer. This is reected by the constraint

that our abstract function next has to be implemented without using the ALU.

Note that the ALU is also not needed for the zero test in BRANCH{instructions

because this test can be done using the standard exit of registers.

Some of the values which appear during the execution of an instruction at a

certain pipe stage are needed also at later pipe stages and therefore should not

be overwritten by the corresponding values of a subsequent instruction occurring

in the pipeline. An example is the immediate value ival(IR) which is used by

jump instructions in their EX stage. For reasons of simplicity we abstract from

possible optimizations and provide three additional 0{ary functions (latches)

IR1, IR2, IR3 to keep full copies of a fetched instruction through the three pipe

stages EX, MEM, WB. Similarly two latches PC1 and C1 are used to save the

values of PC and C respectively for one pipe stage; PC1 provides at pipe stage

EX of an instruction I a copy of the value of PC after the FETCH stage of I

(serving in case I is a jump instruction the execution of which triggers a transfer

or an update of that PC{value);C1 provides at pipe stage WB of an instruction

I a copy of the ALU output value C computed in the pipe stage EX of I (which

is the case for instructions with ALU/SET{operations, for LINKJ instructions

and for the interrupt instruction MOVS2I).

In DLX the register MDR is the only interface between the register-�le and

the memory and serves for both loading and storing to the memory. In the

pipelined version for DLX however a load instruction I which in the pipeline

immediately precedes a store instruction I
0 would compete with I

0 for writing

into MDR in its pipe stage MEM (when consequently I
0 in its pipe stage EX

wants to write B intoMDR). This resource conict is resolved by doublingMDR

into two registers LMDR and SMDR and by re�ning the DLX{rules correspond-

ingly. (Note that the re�ned rule pass B to MDR requires a new direct link from

the exit of B to the entry of SMDR in order to avoid the use of the ALU for this

data transfer.)

Since all pipe stages proceed simultaneously and the time which is needed

for moving an instruction one step down the pipeline is a machine cycle, the

length of the latter is determined by the time required for the slowest pipe

stage. In order to balance the length of the pipeline stages the two ALU{rules of

DLX are combined into one DLXp{rule. Similarly the SUBWORD{rule (which

selects and outputs to C the required portion of the word just loaded from the

memory) is incorporated into the WRITE BACK{rule under the guard that the

value to be written comes through a loading instruction from the memory, i.e.

has not been computed by executing an ALU/SET, LINKJ, MOVS2I instruction

in which case the value comes from C1. This is done at the expense of linking

the exit of LMDR directly (without passing through C1) to the entry of the

register-�le and adding to the latter a selector for choosing among C1 and (the

required portion of) LMDR.

Note also that transferring a subword of LMDR into a destination register

can be realized without using the ALU by relying upon the usual register shift

functions.

We prove in [24] that the evolving algebra DLXp obtained from DLX as

described above resolves structural conicts and therefore is a correct imple-

mentation of DLX under the assumption that the compiler takes care about

avoiding data and control hazards. (In the further re�nement steps we show how

this assumption can be dismissed by additional architectural changes.)

The IF stage is described by the following FETCH updates:

IR meminstr(PC) if :jumps then PC next(PC)

where the condition jumps� opcode(IR1) 2 JUMP or (opcode (IR1) 2 BRANCH

and opcode(IR1)'(A)) prevents the inconsistency with updates of PC in the EX

stage of jump instructions (see the JUMP rule below).

The ID stage is described by the following OPERAND and latch updates:

A fst op(IR) B scd op(IR) PC1 PC

IR1 IR IR2 IR1 IR3 IR2

The EX stage is described by the following nine rules:

ALU if opcode(IR1) 2 ALU [SET

then if iop(opcode(IR1))

then C opcode(IR1)0(A; ival(IR1))

else C opcode(IR1)0(A;B)

MEM ADDR

if opcode(IR1) 2 LOAD [STORE

thenMAR A+ ival(IR1)

pass B to MDR

if opcode(IR1) 2 STORE

then SMDR B

INTERRUPTS2I

if opcode(IR1) =MOV S2I

then C IAR

INTERRUPTI2S

if opcode(IR1) =MOV I2S

then IAR A

TRAP

if opcode(IR1) = TRAP

then IAR PC1

PC ival(IR1)

JUMP

if opcode(IR1) 2 PLAINJ [LINKJ

then if iop (opcode (IR1))

then PC ival(IR1) + PC1

else PC A

LINKJ

if opcode(IR1) 2 LINKJ

then C PC1

BRANCH

if opcode(IR1) 2 BRANCH

then if opcode(IR1)0(A)

then PC PC1 + ival(IR1)

The MEM stage is described by the following three rules:

STORE

if opcode(IR2) 2 STORE

thenmem(MAR) SMDR

LOAD

if opcode(IR2) 2 LOAD

then LMDR mem(MAR)

C1 C

The WB stage is described by the following WRITE BACK rules:

if opcode(IR3) 2 ALU [SET [fMOV S2Ig [LINKJ

then dest(IR3) C1

if opcode(IR3) 2 LOAD

then dest(IR3) opcode
0(IR3)(LMDR)

4 Separating Speci�cations from Veri�cations

The use of evolving algebra allows one to tune speci�cations to a given applica-

tion domain without having to care about the peculiarities of an a priori given

veri�cation system.

To many this feature of the evolving algebra approach will appear as either

trivial or not desirable at all. They will insist that a good speci�cation system

has to come together with speci�c proof and implementation principles and

techniques. Surprisingly one �nds here representatives from both proof theory

and software engineering. Many proof{theoretically inclined researchers tend to

identify a semantic de�nition of a computing system with a (deductive system for

a) logic and the reasoning on the so de�ned objects with proving theorems within

that system of logic. But one �nds here also software engineers who are looking

for speci�cations produced using some general design calculus which leads to

(mechanically veri�ed) transformations into executable code. Let us look at two

well-known witnesses.

Dijkstra's calculus for program design is a representative example of such a

program development method. In [10] I have given my arguments why such a

method, even if applied not to system development in the large but only to pro-

gramming in the small, limits in an unacceptable way our ability to turn math-

ematical insight into good programs. Another example is the program synthesis

approach which is based on the so{called formulae{as{types interpretation. It

advocates the construction of provably correct programs by building proofs in a

calculus for which it has been shown that the programs which are extracted from

those proofs are correct with respect to formal speci�cations in the language of

the system. Systems like NUPRL, COQ, ALF, LEGO have been implemented

to support this researchwise productive approach [50] which encounters however

great di�culties where it attempts to synthesize complex real{life programs. The

method relies on intuitionistic logic and does not work for classical logic. Fur-

thermore the proofs have to be constructed within a �xed formal system which

does not support the use of simplifying heuristics coming from concrete appli-

cation domains. Thereby the user is forced into a rigid corset in the same way

as the programmer is who has to write code in an a priori �xed programming

language and in a representation which is determined by an underlying machine

architecture. Such restrictions can hinder the free exploration of corners of the

design space which are di�cult to reach and where interesting e�cient solutions

may be waiting for being discovered.

How important it is for a general design method to separate the concerns of

speci�cation and veri�cation can be seen also from the impact this distinction

has on building veri�cation tools. Each particular speci�cation language and

tool relies upon a certain number of built-in assumptions and design decisions.

Therefore one has to be careful to use it only for applications which share those

assumptions. For example Lamport's TLA is based on a �xed notion of equiv-

alence. If the system is used for proving equivalence concerning an application

with a coarser notion of equivalence, one is forced to prove more than required;

if the application has a �ner notion of equivalence, one has to identify items

which one really wants to distinguish (see [44]). Evolving algebras can be used

in connection with any notion of equivalence.

Another illustration comes from the success obtained by tools for program

development and veri�cation which have been tailored to particular application

domains. As outstanding recent examples one can cite here D. Smith's method

for synthesis of high{performance transportation scheduling programs [77, 76]

and Clarke and Dill's machinery for the veri�cation of programs which can con-

veniently be mapped to �nite state transition systems of manageable size and

can be dealt with by automated model checking. Another remarkable example

is Russino�'s [73] functional de�nition of an important subset of VHDL|the

IEEE standard for a hardware description language; it comes together with

related procedures for deriving and verifying behavioral speci�cations of combi-

natorial and sequential devices which can be formally encoded in Boyer{Moore

Computational Logic for mechanical proof checking.

In such situations it is the precise knowledge of a well de�ned application

domain which provides the insight into how to tune the design and veri�cation|

or analysis and synthesis|principles to each other and to the given application

domain. Our experience shows that evolving algebras make it possible to take

advantage from the separation of concerns: they assure the highest degree of

exibility in adapting the means of description to the speci�c features of any

application domain and they allow one to incorporate into the proof methods all

the knowledge which is available in the application. Indeed in complex design

situations drastic simpli�cations can be obtained if one �rst circumscribes the

conceptual constituents of a speci�cation and only then starts to look for possible

means of proof. But more importantly the evolving algebra approach allows one

to use the brain where the muscles of even the strongest mechanized proof system

(\brawn methods") cannot really help any more.

This claim is supported by our experience in working with evolving alge-

bras for proving run-time properties of complex systems. For example during

our work on the correctness proofs for the compilation of Prolog and Occam

compilers [28, 17, 16], at various occasions we avoided getting stuck only be-

cause the evolving algebra framework allowed us to invent intermediate models

which had not been expected at the beginning. By introducing these intermedi-

ate speci�cation levels we could reduce the complexity of each single re�nement

step in such a way that we were enabled to formulate and prove the relevant

correctness statements. There is a trade{o� between the abstraction di�erence of

two speci�cation levels and the di�culties one encounters when trying to prove

properties which relate speci�cations at those levels. My guiding principle for

breaking complex statements into simpler ones has been to stop only where the

proofs become routine inductions and case distinctions which can be carried out

by an automatic or interactive theorem proving system. Indeed at present two

research groups at the universities of Karlsruhe and Munich are using their the-

orem proving systems KIV and ISABELLE respectively to provide a machine

veri�cation of our mathematical WAM correctness proof.

The exibility of evolving algebras has also the e�ect that their use can easily

be integrated into existing development systems|a vital feature for a practical

design method. Such an integration might easily turn out to be impossible for

a �xed formal system which could require, by its rigidity, to completely change

the entire already existing development system|a pragmatically speaking un-

realistic request.

It is still unclear to what degree complex systems can be satisfactorily let

alone completely veri�ed. The evolving algebra approach allows one to give rela-

tive correctness proofs, i.e. proofs that speci�c system parts function well under

precisely stated assumptions on a well behaving environment. Such environ-

mental parameters and their properties enter the speci�cation and the proof

as abstract interface, technically speaking as externally alterable or as oracle

functions. Since evolving algebras can be appropriately tailored to any desired

interface they permit to satisfactorily solve the design and analysis problems of

an embedded system modulo the context into which this system is embedded.6

For solutions of practical problems in our real word we cannot expect more from

a scienti�c method as Popper explains with a good picture [71]:

Die Wissenschaft baut nicht auf Felsengrund. Es ist eher ein Sumpand,

�uber dem sich die k�uhne Konstruktion ihrer Theorien erhebt; sie ist

ein Pfeilerbau, dessen Pfeiler sich von oben her in den Sumpf senken|

aber nicht bis zu einem nat�urlichen, `gegebenen' Grund. Denn nicht de-

shalb h�ort man auf, die Pfeiler tiefer hineinzutreiben, weil man auf eine

feste Schicht gestossen ist; wenn man ho�t, dass sie das Geb�aude tragen

werden, beschliesst man, sich vorl�au�g mit der Festigkeit der Pfeiler zu

begn�ugen.

6 I am far from saying that this tailoring of a model to a desired interface is trivial:

\The trickiest part is in explicitly stating the assumptions about the environment in

which each critical piece is placed."[78, p. 13] Evolving algebras allow one to make

such assumptions explicit in a direct way, without creating additional overhead which
deals only with the formalism and not with the reality to be modeled. If there are

problems in the subject matter, they are not solved by using evolving algebras; but

use of the latter avoids the introduction of additional problems.

No formalmethod can guarantee the absolute correctness and safety of computer

systems. The best one can obtain is relative correctness. Evolving algebras allow

us to push the frontier of this e�ort much beyond what is widely believed|in

particular in engineering and industrial circles|to be an inherent limitation of

mathematical methods.

5 Avoiding the Formal System Straitjacket

Instead of building upon just one particular formal system the evolving algebra

approach is an open framework into which a variety of systems can be incor-

porated. Evolving algebras assure the greatest possible freedom of language and

freedom of proof.

Freedom of language. The freedom to choose how to represent the basic ob-

jects and operations of the system under consideration is crucial in two respects,

namely for constructing satisfactory ground models and for building hierarchies

of system levels. Related to this is the need to distinguish between concepts

(mathematical modelling) and notation (formalization) and to remain exible

enough to be able to \choose the right notation".

A special \correctness" problem arises in those cases where the original re-

quirement speci�cation is given informally. This problem is a case of the general

problem about the applicability of scienti�c methods to the real world and is rel-

evant for the design of computer systems. I will explain in the section on ground

models that using evolving algebras one can satisfactorily settle this problem

thanks to the possibility to tailor a description to the given application domain.

The methods of abstraction and of stepwise re�nement have been rightly rec-

ommended as a way to cope with complexity by building and crossing hierarchies

of system levels. The two methods are intimately connected: only a speci�cation

framework which allows one to freely choose the appropriate abstractions for

a given problem can provide the full freedom of re�ning abstract descriptions

to intended lower level implementations. How else can we freely move among

di�erent language levels in computer design? This is well illustrated by an ex-

ample suggested by Simon Read [72]: the industrial hardware design process

at present uses separate languages for speci�cation (behavioural VHDL), for

design (Register Transfer Level VHDL), for implementation (cells), for veri�ca-

tion (BDD's) and for mathematical reasoning (Boolean algebras). The example

shows that any a priori restriction of the language by a �xed formal framework

either results in restrictions of the application domain or forces you to work on

encodings which are extraneous to the problems under investigation and usually

are responsible for the well known combinatorial explosion encountered so often

when speci�cation frameworks are applied to real systems.

The freedom of language o�ered by evolving algebras assures that they can be

integrated into arbitrary contexts at arbitrary system level without encountering

any compatibility problems. Technically speaking this is based upon the choice

of the language of mathematics (i.e. classical logic) as the underlying language.

This does not represent an a priori restriction of the speci�cation language be-

cause the language of logic is as broad as a precise algorithmic language can be;

as explained above there is no more basic algorithmic device than a transition

rule system with guarded abstract function updates. The language of evolving

algebras is exible enough to deal with any practical algorithmic language of the

working computer scientist. The choice of the language of mathematics guar-

antees that in the evolving algebra framework one can adapt the formalization

of a model or a mathematical concept to the need of what has to be modelled.

There is no special notation one has to learn; no peculiar syntax is imposed on

the designer.

Freedom of proof. The evolving algebra approach o�ers the necessary freedom

for the choice of the proof techniques used to establish properties of computer

systems. This has to do with the fundamental distinction between formal and

rigorous descriptions (or proofs), and more generally between various degrees of

precision.

Traditional mathematical proofs aim at understanding by humans, at reveal-

ing structure which guides the comprehension; as a result they typically lead

to further investigations. The essential ingredient of this process is creativity

in �nding proofs; creativity is the heart of mathematical progress. Formalized

proofs provide veri�cations within a particular proof system. They belong to

what Gurevich [40] proposed to call Pedantics, a respectful and badly needed

scienti�c discipline of validating mathematical proofs. It is here that we will

�nd machine checked proofs providing all the details which are suppressed in

traditional mathematical proofs. Machine checked proofs can contribute to the

pragmatic acceptance of theorems. Progress in pedantics will provide more free-

dom for writing less formal creative proofs. The role of interactive proof checkers

is to couple in a practically fruitful manner the checking abilities of automated

theorem provers with the user's creativity in �nding proofs.

In connection with the need to develop correct programs for safety-critical ap-

plications, Pedantics has a still more important and (with respect to traditional

mathematics) new role. Professional deontology obliges the mathematician to

check the proof of any theorem he is going to use. This obligation was su�cient

until the middle of this century to guarantee for mathematical results a very high

(although not absolute) degree of reliability. The slow pace of this proof checking

process by the mathematical community, a process which involved generations,

was in equilibrium with the pace of discovery and of applications of new the-

orems. This has changed radically in the second half of this century. Statistics

show us that nowadays on average there are only 2.5 readers per publication in

mathematics. This �ts the often quoted anecdotal claim that about one third of

the published mathematical papers contain serious errors. But such statements

say more about the refereeing process than about the inherent unreliability of

mathematical proofs. Often despite errors in the proof, the theorem is correct

and the proof can be corrected; a good mathematical proof creates the right

images in the reader which allow him to �ll the details and to repair the aws.

The discipline of pedantics has to provide the laboratory conditions in which the

traditional and slow proof checking process by humans is if not replaced then at

least enhanced and speeded up by machine assisted interactive proof checking

procedures; see the interesting report [66]. This is a rationale for programs like

Beta testing. Pedantics has to create appropriate methods and criteria which an

applied computer scientists can use when they need to decide whether and to

what degree a proposed proof is reliable.

The notion of proof is not absolute. There is a hierarchy of notions of proof,

each level having its own degree of precision. There are not only classical, intu-

itionistic, constructive proofs, but also at and deeply structured ones. Mathe-

matical proofs are always to be understood within a context of concepts, meth-

ods, groups of experts, background of previously developed theories. Their role,

as analyzed by Plato who made the fundamental discovery of the underlying no-

tion of universally valid law, is to establish valid arguments. Aristotle made this

concept operational by inventing speci�c proof principles, even a proof format

which has deeply inuenced the occidental culture until it was again revolution-

ized by Frege and Hilbert. It is well known that the progress in mathematics is

intimately related to the discovery of new notions and proof principles. G�odel's

incompleteness theorem shows that this is not a historical accident but that it

is necessarily so when we codify mathematical knowledge in concrete and well

delimited formal frameworks.

The same holds for mechanical proofs. They are surely useful but also not

absolute; their reliability depends on the correctness of the environment where

they are executed and on the adequacy of the formalization. Fully formalized

proofs are certainly less convincing for humans than well checked traditional

mathematical proofs (see the discussion in [42]). It is for a reason that theo-

rem proving researchers try hard to make machine produced proofs readable to

humans.

Thus we have to accept that the notion of mathematical proof has a prag-

matic component and thereby is limited by the progress of mathematics and

pedantics.7 On the other side one can say that the mathematical rigour has

the highest degree of reliability which has been reached in occidental culture.

I do not want to enter here into the discussion whether it is good to identify

\formal" with \mathematical". We may be well advised to equate formal with

other forms of rigour, as encountered in natural or engineering sciences or in

jurisprudence. But in any case, a mathematical veri�cation method has better

chances to prove interesting theorems for real systems if it is not restricted to

a �xed deductive system but can make use of all what mathematics has to of-

7 To recognize the limitation of knowledge acquisition by mankind does not imply

\that, in the end, it is a social process that determines whether mathematicians feel

con�dent about a theorem", as has been claimed in [36, p. 271]. Here is not the place

to enter the philosophical discussion on the status of objectivity of mathematical
knowledge, a dispute which is with us since the ancient Greeks. One should keep

in mind that a rigorous foundation of science must and can be self-evident in the

Aristotelian sense, neither psychological nor social, see [1].

fer. This includes deductive systems, the discipline of Pedantics and the use of

crisp and powerful mathematical techniques for the stepwise development and

veri�cation of complex software and hardware systems. The freedom to choose

proof methods freely is a key to the success of the evolving algebra approach in

proving non{trivial run{time properties.

6 Appropriate Ground Models

Ground models8 play a crucial role in attempts to face the general problem of

applicability of mathematical concepts and methods to the physical world. In

this section I illustrate the notion of ground models in relation to computer

science and explain the extraordinary potential of the evolving algebra approach

to build satisfactory ground models.

The fundamental question is about the relation between our mind and the in-

exact real{world phenomena. How can we relate our theoretical scienti�c models

to the reality of our world? Typically what is given is a system S of problems in

the real world for which I want to �nd a scienti�c solution. In computer science

the solutions we are looking for are algorithms (in the general sense of the term,

including interpreters for programming languages, protocols, architectures, etc.).

6.1 The foundational problem.

In the realm of our models we have mathematical methods to solve precisely

de�ned classes of problems. The given system S itself is not a formal one but

incorporates our intuitions about the basic objects and the basic operations

which are the constituents of the given problem. What we have to relate to

them in our mathematical models are de�nitions of concepts and of functions.

We orient ourselves in the real world by the expertise in the application area

to which S belongs. In the world of scienti�c methods we have instead formal

manipulations of models, say sequences S0 ! : : : ! Sn of models Si where

typically the �nal element of such a chain is an executable version of the proposed

problem solution and where|at least ideally|the transformations!which lead

from Si to Si+1 are provably correct. Aristotle pointed out that such a chain of

provably correct stepwise re�ned speci�cations has to start somewhere and has

to be �nite. The whole speci�cation chain will remain an intellectual exercise if

we do not \know" that S0 is \correct".

How can one establish the correctness of such a �rst model S0 in a speci-

�cation chain? The question is how we can relate the non{formal system S to

the formal model S0. By de�nition there is no provable relation between the

mathematical object S0 and the loosely given informal system S. Therefore the

only thing we can hope for is a pragmatic foundation: we have to grasp the

8 In [9, 27] I had called them primary models. This was to stress that these models
are not unique but are naturally thought of as those models from which others

are derived by formal transformations. Ground models in this sense should not be

confused with the notion of ground models as it is used in logic programming.

correctness of S0 with respect to S by inspection. To say it in computer science

terms: we have to understand the semantics of S through the model S0.
9 Or to

say it from the software engineering perspective (see [48, p. 346]): \a speci�ca-

tion must be validated against the intuitive understanding". In order to make

such a pragmatic foundation safe, the ground model S0 (which formalizes the

basic intuitions, concepts and operations of S) has to satisfy a certain number

of requirements.

Before describing these requirements I want to stress once more that this

correctness problem is part of the general problem how to relate rigorous sci-

enti�c methods to the real world. Since building satisfactory ground models is

the working computer scientist's daily bread the correctness problem cannot be

solved once and for all for the whole body of the current basic concepts of the

discipline. The computer scientist has to solve an instance of this problem each

time he has to implement a system which satis�es a given requirement speci�ca-

tion. In classical engineering disciplines, the experience accumulated through one

hundred years of work has produced a body of \right" modelling concepts and

methods which in general permit the satisfactory resolution of the issue of �nd-

ing good ground models. There is no such well established body of engineering

knowledge in computer science yet. Remember that as we know from statistics,

80% of the errors in system programming do occur at the level of requirement

speci�cations, i.e. at the place where we have to relate the given system S to a

ground model S0 for it.

6.2 Properties of ground models.

There are at least three requirements which must be satis�ed by ground models

in order to serve as safe basis for a speci�cation chain which provides a correct

implementation of a given application system S. Namely ground models must

be precise, abstract and must have a rigorous foundation.

Precision. A ground model must be precise in order to become subject to

mathematical analysis at all. In connection with the distinction to be made

between rigorous and formal (see above) it has to be required that despite of its

precision, a ground model has to be exible, simple, concise and falsi�able.

The exibility requirement wants to make sure that ground models are

adaptable to the characteristics of di�erent application domains. Flexibility has

also to permit ground models to meet the important software engineering prin-

ciple which asks the models to be easily modi�able and in particular extendable.

Extensibility is necessary for ground models to serve as prototypes and also to

become reusable in the design process.

9 This is the typical situation of a standardization e�ort for a programming language:

S is what the standardization wants to abstract from the existing descriptions and

implementations of the language. Once the standard is de�ned| ideally by a ground

model|it should be possible to understand the behaviour of a proposed implemen-
tation through that model. For Prolog I have developed an evolving algebra ground

model, see [7, 12, 27]; it de�nes the semantics of the ISO Prolog standard. An IEEE

VHDL'93 Standard evolving algebra ground model appears in [21].

The condition of simplicity and conciseness wants to make sure that

ground models are understandable by the user. This is crucial from the soft-

ware engineering point of view (see [48, p. 346]): \To be useful in industrial

practice, speci�cations must be comprehensible". I am not saying that say air-

craft speci�cations should be comprehensible by the future passenger or by the

Airline executive who buys them; they must be comprehensible to the engineer

who understands the application. 10

The user typically is not a computer science specialist but an expert in the

given application area. He is the one who has to check by inspection that the

ground model S0 faithfully reects the application system S of problems formal-

ized by S0. That is why the model S0 must be as close as possible to the reality it

is going to formalize, i.e. its elementary objects and functions must represent di-

rectly, without encoding, the basic concepts and operations which appear in the

application system S. \A signi�cant engineering project begins with a speci�ca-

tion describing as directly as possible11 the observable properties and behaviour

of the desired product"[53, p. 4]. This formalization task \... is not simple: it

requires a careful choice of those aspects of the real world to be described in the

formal language and an understanding of both the detailed practical problems

of the application and of the formal language. Errors would likely be introduced

during this process ..."[59, p. 41]. Therefore the ground model must reect the

user's domain expert knowledge, it must capture the domain intrinsics and go

hand in hand with the requirements capture in the software cycle (see [5]).

The ground model represents the precise interface where the discussion be-

tween the user and the designer of the system has to take place and where the

contract between the customer and the implementor is formulated. All the fur-

thermore re�ned models Si(i > 0) belong to the world of the designer, not to

the world of the client. The ground model S0 has to express what the system

10 From my work for the ISO Prolog standardization I can cite an interesting example

which might serve as illustration here. In the ISO Prolog standardization working
group (ISO/IEC JTC1 SC22 WG17) it has been discussed for years whether the se-

mantics of the language should be de�ned by executable strati�ed control-free Prolog

code proposed for this purpose by Deransart [37]. The alleged advantage was that
whenever a question comes up about what the standard requires, it can be answered

in a de�nite way by running the program which de�nes the standard. But one has

to be conscious about the di�erence between explaining and executing a program.
What if we have di�culties in understanding the program? Then running the code

to decide a question is like querying an oracle and just believing the answer and

behaving accordingly, even if the answer is cryptic. As a matter of fact Deransart's

program is a rather large one (of \about 500 clauses" [37, p. 30]) which has two

crucial problems: a) it is written in a sublanguage of Prolog whose semantics and

therefore implementation depends upon subtle problems having to do with the non

classical treatment of negation in Prolog (see [7, section 4] for a detailed discussion

of this problem); b) \it is not very easy to understand by anyone unfamiliar with

their (viz. the authors') methods and notations"[60, p. 1]|a reason why it had to be
accompanied by an extra \Explanation of the Formal De�nition" [60]. This con�rms

the need of a comprehensible ground model for a standardization e�ort.
11 My italics.

is supposed to do, the re�ned models Si(i > 0) de�ne how this behaviour is

achieved. Clearly the what has to precede the how. The practical software engi-

neering importance of the simplicity and the comprehensibility of the language

for ground models comes out clearly also from statistical evidence: two thirds

of the development time is spent for communication between user and designer

and one quarter of the failures of software projects are due to communication

problems between user and designer.

The ground model S0 must satisfy the Popperian criterion of being falsi�-

able. This means that a) the ground model must assure the possibility to make

statements about the design that are either veri�able or falsi�able and that b)

the user must have the possibility to test the appropriateness of the model by

experiments with reproducible results, using S0 or executable prototypes12. In

[54] these consequences of the Popperian falsi�ability criterion are postulated as

quality standard for any veri�cation method.

The falsi�ability request for ground models does not contradict but com-

plements the role of the use of formal methods during the|ideally provably

correct|development of the re�ned formal models Si(i > 0). Thus it is natural

that in the GEC Alsthom project of software development for speed{ and switch-

ing control of the French railways, the entire design is based upon Abrial's formal

method B, but nevertheless also functional tests are done. Fernando Mejia who

directs this formal development project indicates two reasons which illustrate my

analysis (see [38, p. 77]): \First, programmers do occasionally make mistakes in

proofs." As explained above the discipline of pedantics creates the laboratory

conditions which have to enhance or to replace the traditional form of the math-

ematical proof checking process. \Secondly, formal methods can guarantee only

that software meets its speci�cation, not that it can handle the surprises of the

real world\. This expresses the fundamental distinction between the pragmatic

scienti�c foundation of ground models and the mathematical justi�cation of re-

�ned models.

Abstractness. Ground models must be abstract. They have to reect the in-

trinsic functionalities which are constituents of what appears in the non{formal

problem formulation and therefore will be needed for an algorithmic solution

of S, but they should not contain any irrelevant representation or optimization

features. The latter will have to be considered only in the speci�cation chain

which leads from the ground model to an implementation. Being abstract has

to go together with being complete. Completeness means that the semantically

relevant parameters of S must be present in S0 although they might appear

there only as interface relating to a possibly abstract environment.

Ground models with the right abstractions satisfy the postulates in [54, p.

36] for a mature engineering discipline, namely that one is \able to make explicit

formal statements about the correctness requirements for a new design that are

independent of the design itself", that one can \discriminate between require-

ments and implementations", that one can predict the essential characteristics

12 Simple and easily implementable ground models are also important for simulation

purposes; they allow one to test performance criteria at an early development stage.

of a product before it is built and that one is \able to build an abstraction of

the behaviour : : : which is susceptible to formal analysis". The last mentioned

postulate is in accordance with the view explained below that practical (in par-

ticular ground) models better support the process-oriented understanding of a

dynamic system.

Rigorous foundation.The necessity of the third requirement for ground mod-

els, namely to have a rigorous foundation, is obvious. But note that this require-

ment does not only satisfy an academic intellectual desire. It also corresponds

to a practical need when it comes to build reliable tools which help for design

and transformation of ground models in connection with prototyping. In [54, p.

36] a sound formal framework for capturing prototypes is even considered as the

�rst quality standard for any veri�cation method.

Also through this requirement one can see how fundamental the notion of

evolving algebra is: the foundation of evolving algebras [41] is in �rst order logic,

the most general and simplest basis occidental culture knows for mathematics.

Paraphrasing a famous slogan I am tempted to comment this by saying that

Simplicity is our business.

7 Support of Abstract Operational Views

Evolving algebra speci�cations directly support the process-oriented understand-

ing of the behaviour of dynamic systems and they allow one to build operational

models at arbitrarily high or low levels of abstractions. If for given dynamic

features one looks for mathematical descriptions which are simple and concise,

easy to understand and manipulate (whether by humans or by machines), one is

well advised to try to express dynamic changes directly by dynamic concepts. As

explained above, the notion of evolving algebra incorporates directly the most

basic dynamic concept we know in computer science, namely destructive assign-

ment, and it does it in the most abstract form one can conceive. By supporting

such abstract operational views evolving algebras allow one to deal in an explicit

and transparent way with non{trivial run{time properties.

For example the analysis of the dynamic properties of Prolog database oper-

ations in [15, 26] is based upon a simple but precise model of the backtracking

behaviour of Prolog for user{de�ned predicates which abstracts away from ir-

relevant features by working with abstract interfaces for terms, goals, clauses,

procedure de�nitions, substitution and uni�cation. Whereas the analysis in [15]

is at the user's level of observation, the model in [26] covers the behaviour of

pseudo{compiled Prolog code which reects all the features of the database re-

lated WAM instructions. In our evolving algebra speci�cation of the Warren

Abstract Machine [28] we develop various abstract models for di�erent WAM

layers (predicate structure, clause structure, term structure, etc.) in order to

state and prove the intended correctness theorem for compilation of Prolog pro-

grams. These models make a mathematical (implementation independent) study

of WAM-related execution or implementation issues possible. Also the evolving

algebra de�nition of Prolog [27] yields several modules around the simple Prolog

nutshell for user-de�ned predicates, each for a di�erent group of built-in predi-

cates. These modules provide the mathematical basis to extend abstract analysis

from Horn clauses to real Prolog programs which contain built-in predicates for-

malized in those modules.

The claims about abstract operational speci�cations will surprise those who

share the widely believed view that operational and abstract are conicting prop-

erties of formal methods, that they exclude each other. For a long time it has

been a common place in theoretical computer science that in comparison to the

equational or axiomatic approaches, the operational approach to semantics is sci-

enti�cally not so respectable. It is considered to be of lower level of abstraction

which may be good for producing implementations but not for de�ning succinct

high{level descriptions of desired functionalities of a system. It is supposed to

deal with dirty control features or e�ciency considerations which belong to code

execution but should be hidden from the system designer.

Only Plotkin's structural operational semantics SOS [70] is sometimes con-

sidered as an acceptable style of de�ning the meaning of programs. In that

approach, the program constructs guide the formulation of axioms and rules

which de�ne the meaning of programs and serve for proof schemes. Indeed SOS

has been useful. The formal de�nition of Standard ML makes crucial use of

Kahn's Natural Semantics [58]|a version of structural operational semantics.

The semantic rules are used to answer questions about the meaning of program

constructs. Theorems justify particular design decisions and are typically proved

by induction on the programs, see [61, 62].

In the communities of functional and logic programming and of arti�cial in-

telligence it is still rather common to identify abstract with equational or declara-

tive as opposed to operational. Surprisingly enough not only among theoreticians

but even among researchers in system design and analysis one encounters such

an attitude. For example to my surprise this view was held by a distinguished

VHDL specialist in a panel discussion on the use of formal methods at the 1994

European Design Automation Conference in Grenoble. Also some advocates of

\pure" programming styles have contributed to discrediting operational (imper-

ative) methods as \impure" by banning \side e�ects".

I explain in the rest of this section why I believe it to be misleading to look

at operational concepts as being in conict with the method of abstraction.

Abstract versus operational. Let me start by recalling that when the attrac-

tive and fruitful concept of denotational semantics was discovered, its pioneers

explicitly aimed at providing mathematical models and tools to deal in a precise

and safe way with real languages and systems. In [75, p. 40] we read:

An essential topic will be the discussion of the relation between the

mathematical semantics for a language and the implementation of the

language. What we claim the mathematics will have provided is the

standard against which to judge an implementation.

Only later it has been claimed that for de�ning the semantics of a program one

should forget the notion of state and the notion of individual computation step.

Both notions have been relegated to the world of implementations as not abstract

enough. Also in the stateless process algebra we can observe the high price paid

for abstracting from states; for example, the proposed general re�nement theory

does not capture many re�nements that are crucial for the analysis of complex

real systems which do refer to state constituents; see e.g. the re�nements in the

evolving-algebra-based correctness proofs in [27, 17, 16, 55, 43, 22].

Purely functional (equational) de�nitions of the semantics of programs have

been advocated which are global and do not refer to single computation steps. By

now it is acknowledged by many [63, p. 626] that such semantics has problems in

coping with data abstraction mechanisms in programming languages (descrip-

tive inadequacy) and with reactive programs. The notions of state and single

computation step, which such pure approaches want to avoid, need not to reect

irrelevant details of execution but serve as the basis for the important principle

of locality discussed above. The vast literature on models of logic programming

languages o�ers an interesting illustration of the di�erence between \local" and

\global" speci�cations. Compare the evolving algebra de�nition of the full pro-

gramming language Prolog in [27] with various equational, or abstract algebraic,

or axiomatic, or \pure" logic speci�cations for the sublanguage of de�nite Horn

clauses extended by some control elements (see [65] and more references in the

introduction to [27]).

In a sense �xed point based descriptions of programming languages reintro-

duce both the 1{step computation and the state notion; but they do this in

an implicit and technically more involved way. Single computation steps reap-

pear in the form of successive approximations to the �xed points for the given

equations. The relevant state components reappear in the form of continuations.

Again an example is provided by some denotational de�nitions of the seman-

tics of Prolog programs in the literature. For each abstract domain which ap-

pears in the evolving algebra de�nition of the core of Prolog for user{de�ned

predicates [27], the denotational descriptions in [57, 34, 35] introduce a contin-

uation: for terms, goals, (occurrences of) clauses, programs, substitutions, etc.

The di�culty is that the denotational Prolog models have to deal with these

continuations explicitly|as constituents of the global \object" which encodes

the \state"|via complicated and numerous equations which describe the e�ect

of the Prolog computation. In the evolving algebra description of Prolog [27],

the corresponding elements of abstract domains appear without any encoding;

no overhead is needed for their representation, they occur directly in the four

simple rules which de�ne the complete Prolog machine for user{de�ned predi-

cates. These abstract elements are subject to further re�nement at the moment

when their implementation becomes the issue, e.g. in the WAM [28].

Models versus Syntax. It is true that in the theoretical computer science com-

munity serious attempts are made to overcome the practical problems of purely

denotational approaches to semantics.13 The development of Action Semantics

13 I do not want to throw doubt on the many achievements which have been obtained in

the area of denotational semantics. The development of denotational semantics has

brought us a good understanding of types and higher{order functions (in particular

[64] is an example. In general, during the last years there seems to be a trend in

theoretical computer science to make semantics more operational. The interest

in full abstraction and observational equivalences is a related phenomenon.

It is my belief that people put too much emphasis on syntax. In Plotkin's

Structural Operational Semantics, the proof rules for actions are directly derived

from the syntactical structure of the programs. Such semantics is compositional

which allows one to establish many useful properties, but there is a price. Not

all programming constructs lend themselves to such treatment which limits the

applicability of the method. Similar restrictions apply to abstract interpretations

of run{time investigations. In this connection compare the following:

1. According to Hoare, it should be the case that \all the properties of a program

and all the consequences of executing it can, in principle, be found out from the

text of the program itself by means of purely deductive reasoning" [51, p. 576].

2. Von Henke, one of the fathers of the successful PVS system [66], points out

that most tools which have been developed up to now \in dealing primarily with

syntactic and structural aspects of software : : : fail to address major issues of

software quality having to do with semantic aspects of software" [48, p.345].

The evolving algebra approach allows one to model and analyze the run{

time program behaviour at the desired level of abstraction. What is considered

as one step in a computation depends on the level of abstraction at which we

want to build the computation model. Evolving algebras overcome the presumed

insu�cient abstractness of operational semantics by allowing one to have as 1{

step computation an arbitrary (intendedly �nite) number of conditional updates

of functions of arbitrary level of abstraction. The use of guarded function updates

for local transformations of structures provides a tool to build precise yet simple,

abstract yet operational models for complex real-life systems which support the

intuitive process-oriented understanding of the system. It gives the notions of

state and state transformation a mathematical status which allows one to use

powerful mathematical techniques for characterizing the dynamic behaviour of

complex real systems.

Evolving algebras utilize all the traditional means for the description of static

features. For example the initial states from which evolving algebra computa-

tions start can be often described adequately by algebraic (purely equational

or axiomatic) speci�cations. Evolving algebras take advantage of abstract data

types. The explicit dynamic behaviour is de�ned on top of all that.

The evolving algebra approach to program design and analysis is semantical.

It allows one to study in precise and abstract mathematical terms the e�ect of

of recursive and polymorphic types) for functional programming, especially for the

�{calculus which plays the role of the underlying canonical computation model. I

am discussing only whether these results gave as much to practical applications as
the pioneers intended. Who does still remember the goal stated in [74, p. 2] that

the mathematical de�nition of a language should enable one to determine whether

a proposed implementation is correct? I certainly do not deny that in particular
contexts denotational de�nitions can be both elegant and useful. I have mentioned

already Russino�'s work on VHDL [73] as an example. Another instructive example

is Bj�orner's application domain model for the Chinese railway computing system [4].

programs; it permits one to concentrate on those behavioral features for which

the program has been or is to be developed. There is no limitation imposed by,

say, viewing programs as logical formulae or viewing programming as carrying

out proofs (or normalizations of proofs) within a �xed deductive system. However

a proof theoretical analysis is also possible14.

8 Scalability

I have often heard the statement that formal methods had their chance and

failed. It cannot be denied indeed that several traditional formal methods are

not scalable. They work well for small examples, often invented to illustrate the

method. But when it comes to real{life large systems many of them face the well

known combinatorial explosion or simply fail. Developing techniques for crossing

abstraction levels [52] represents one of the challenging goals of current computer

science research and is of vital importance for the development of reliable safety

critical systems (see the title Developing abstraction for coping with complexity

of a section on safety in the IFIP 1994 World Computer Congress, op.cit.). The

use of evolving algebras allows one to cope with the complexity of real systems

by building hierarchies of system levels.

I have mentioned already several real-world case studies through which I

wanted to test whether they support the preceding claim. One is the mathemat-

ical de�nition [27] of the semantics of the real programming language Prolog

which went into the ISO standard (see [12]) and has been re�ned by a hierarchy

of intermediate models to a de�nition|coming with a correctness proof|of its

implementation on the Warren Abstract Machine. Another example is the re-

cently �nished project of a formal de�nition of Occam at the level of the user

[17] which has been re�ned through a hierarchy of intermediate models to the

Transputer level [16], again coming with a mathematical correctness proof for

the compilation of Occam programs into Transputer code. A recent example is

the reverse engineering project [13] where evolving algebras have been used for a

mathematical speci�cation (leading to only four pages of abstract parallel code)

of the VLSI implemented microprocessor which controls the successful dedicated

massively parallel architecture APE100.

The experience gained in those projects gives me the conviction that the

evolving algebra method scales up to complex systems. I believe that it can play

a particular role in hardware/software co-design. Through the freedom of ab-

straction together with the information hiding and interface mechanism evolving

algebras can serve as tool to develop and analyze a design without committing

to a particular technology for realizing the design; by the exibility to formally

represent all the system parts as evolving algebras one can postpone to a late

design stage the decision about which parts to realize in hardware and which

ones in software. I am seriously interested in �nding a challenging industrial size

problem where these convictions could be proved.

14 Indeed there are attempts to analyze evolving algebras as systems of rewrite rules

or a form of Horn clause programs.

9 Easy Learning

It is easy for the practitioner to learn to use evolving algebras in his daily design

and analysis work. Evolving algebras use only standard mathematical notation;

one can work with them using any knowledge or technique from existing prac-

tice and avoiding the straitjacket of any particular formal system. As a conse-

quence the use of special application domain knowledge or design expertise is

supported and provides the possibility to decompose complex systems by famil-

iar techniques into simpler subsystems in such a way that this decomposition is

formalized in a rigorously controllable manner.

During the last years I have experienced with numerous programmers, im-

plementors and hardware designers that evolving algebra models|i.e. abstract

assembler-like code| can be understood by the working computer scientist with-

out any formal training in theory. It needs not more than a day or two of expla-

nation, through simple examples, to convey to a hardware or software engineer

the idea and a precise de�nition of evolving algebras in such a way that he can

start to produce his own well de�ned evolving algebra models. Look at the two

evolving algebra models for DLX. It is true that this RISC architecture is simple

by itself, but nevertheless the example illustrates I hope how one can formalize

or construct a real system following a natural path of explanation and using

standard mathematical notation in such a way that the resulting evolving alge-

bra model becomes simple and transparent and easy to read, to understand and

to manipulate.

This refutes, for the evolving algebra approach, an objection which is often

put forward against large scale industrial use of formal methods. It is said that

the average programmer has not enough mathematical skill to be able to apply

a formal method which needs a PhD to be understood. I cannot judge whether

this claim is true, but for sure no PhD is needed to understand and to correctly

use evolving algebra models; just experience with algorithmic (programming)

phenomena is su�cient. If \mathematical abilities" are needed for the system de-

velopment process, this is due to the fact that the development of any algorithm

aimed at solving a given problem constitutes among others also a mathematical

(combinatorial) achievement and includes a formalization (representation) task.

The question therefore is not whether \mathematics" is needed or not, but how

the intrinsically mathematical part of the programming activity is supported by

a method, be it \formal" or not. This is expressed also by Wing [78, p. 10]:

\Programs, however, are formal objects, susceptible to formal manipulation : : :

Thus, programmers cannot escape from formal methods. The question is whether

they work with informal requirements and formal programs, or whether they use

additional formalism to assist them during requirements speci�cation."

Evolving algebras support the system development activity ideally because

they give a chance also to the non-theoretically drilled programmer to express

the system features appropriately at the desired level of abstraction. This feature

can also be put to use for writing informative manuals. As a side e�ect of a

stepwise re�ned system development (ideally coming with proofs which relate

the di�erent levels) one gets a systematic documentation of the system for free.

Thus the use of evolving algebras can not only make the system design process

more reliable, but it can also speed up the whole process and thereby make it

less expensive. This is good news which however has still to be understood by

industrial circles.

The ease with which the working computer scientist can build simple and

clean evolving algebra models is one of the reasons why evolving algebra models

can be delivered, not only promised or built \in principle"; this holds even un-

der industrial constraints.15 I would be very much surprised indeed should this

potential of the evolving algebra method not inuence the fate of Industrial{

strength Formal speci�cation Techniques16.

10 Conclusions

I have illustrated some important features of the evolving algebra method to de-

sign and analysis of complex computer systems. I have shown that this method

satis�es the conditions which are widely required for a \mature engineering dis-

cipline" ([54, p. 36]). After having �nished this text I became acquainted with

[31]; I must confess that the evolving algebra method seems to be an orthodox

one: it obeys all the Ten Commandments of [31]. I hope to have revealed its

practicality for the working computer scientist and also its potential to become

a viable mathematical method especially under industrial constraints.

At this point the reader might wonder what are the limitations of the evolving

algebra approach. In principal they seem to coincide with the limitations of

the human capabilities of mathematical formalization and structuring. I do not

advocate the reformulation in terms of evolving algebras of all the successful

techniques which have been developed by the use of other approaches, especially

not for the description and analysis of static phenomena. I want to suggest

however that wherever dynamic behaviour is at stake, evolving algebras will be

helpful and are there at their best.

Important future achievements will be a) to marry the concept of evolving

algebra with control theory and b) to develop the \Pedantics" and the tool side

of the approach. I hope that some readers will feel challenged to contribute to

this work.

Acknowledgment. I am grateful to the following colleagues for stimulating

conversations on the subject, for valuable criticism and last but not least for

helpful comments on previous versions of this paper: Dines Bj�orner, Jonathan

Bowen, Uwe Gl�asser, Yuri Gurevich, Nils Klarlund, Leslie Lamport, Jim Lipton,

Erich Marschner, Peter Mosses, Alan Mycroft, Peter P�appinghaus, Lutz Pl�umer,

15 For example the four simple rules which constitute my evolving algebra model in [7,

8, 27] for the Prolog kernel for user{de�ned predicates have been implemented in two

leading Prolog companies, one in the US and one in Europe. Such implementations

can be used as running prototypes for industrial experiments with new developments.
16 WIFT is the acronym for the Workshop on Industrial{Strength Formal Speci�ca-

tion Techniques which is sponsored by the IEEE Technical Committee on Software

Engineering.

Simon Read, David Russino�, Britta Schinzel, Peter Schmitt, Kirsten Winter.

A few paragraphs in this paper are direct quotations from [19]. Thanks to Franz

Rammig for the occasion o�ered to discuss some of the ideas presented here to

the panel on Formal Semantics: Practical Need or Academic Pleasure? at the

annualEuropean Design Automation Conference with EURO{VHDL in Grenoble

(19.{23.9.1994). Last but not least my thanks go to BRICS at the University

of Aarhus for the invitation to an intensive and pleasant summer month which

allowed me also to �nish this paper.

References

1. D. Barnocchi. L"Evidenza" nell'assiomatica aristotelica. Proteus, II,5 (1971), pp.

133{144.

2. Ch. Beierle and E. B�orger. A WAM extension for type-constraint logic program-

ming: Speci�cation and correctness proof. Research report IWBS 200, IBM Ger-
many Science Center, Heidelberg, December 1991.

3. Ch. Beierle, E. B�orger, I. D- urd-anovi�c U. Gl�asser, and E. Riccobene. An evolving
algebra solution to the steam-boiler control speci�cation problem. Seminar on

Methods for Speci�cation and Semantics (Dagstuhl, June 1995), Report, 1995.

4. D. Bj�orner. A Formal Model of the Railway Application Domain System.

UNU/IIST PRaCoSy Document no. SP/5/3, January 7, 1994, pages 1{19.

5. D. Bj�orner. Domain Analysis, a Prerequisite for Requirements Capture. UNU/IIST

Document, 1995.

6. A. Blass and Y. Gurevich. Evolving Algebras and Linear Time Hierarchy. In

B. Pehrson and I. Simon, editors, Proc. of the IFIP 13th World Computer Congress

1994, Vol. I, pp. 383{390. Elsevier, 1994.

7. E. B�orger. A logical operational semantics for full Prolog. Part I: Selection core

and control. CSL'89. Springer LNCS 440, 1990, 36{64.

8. E. B�orger. A logical operational semantics for full Prolog. Part II: Built-in pred-

icates for database manipulations. MFCS'90. Mathematical Foundations of Com-

puter Science (B. Rovan, Ed.). Springer LNCS 452, 1990, 1{14.

9. E. B�orger. Logic Programming: The Evolving Algebra Approach. In B. Pehrson
and I. Simon (Eds.) IFIP 13th World Computer Congress 1994, Volume I: Tech-

nology and Foundations, Elsevier, Amsterdam, 391{395.

10. E. B�orger. Review of: E.W. Dijkstra & C.S. Scholten: Predicate Calculus and

Program Semantics. Springer-Verlag, 1989. Science of Computer Programming 23

(1994) 1{11 and The Journal of Symbolic Logic 59 (1994) 673{678

11. E. B�orger. Annotated bibliography on evolving algebras. In E. B�orger, editor,

Speci�cation and Validation Methods. Oxford University Press, 1995.

12. E. B�orger and K. D�assler. Prolog: DIN papers for discussion. ISO/IEC JTCI SC22

WG17 Prolog standardization document no. 58, NPl, Middlesex, 1990, pp. 92{114.

13. E. B�orger and G. Del Castillo. A formal method for provably correct composition

of a real-life processor out of basic components (The APE100 reverse engineering
project). In Proc. of the First IEEE International Conference on Engineering of

Complex Computer Systems (ICECCS'95). See also BRICS NS-95-4, pp. 195{222,

University of Aarhus, 1995.

14. E. B�orger, G. Del Castillo, P. Glavan and D. Rosenzweig. Towards a mathematical

speci�cation of the APE100 architecture: The APESE model. In B. Pehrson and

I. Simon, editors, Proc. of the IFIP 13th World Computer Congress 1994, Vol. I,

pp. 396{401. Elsevier, 1994.

15. E. B�orger and B. Demoen. A framework to specify database update views for

Prolog. In M. J. Maluszynski, editor, PLILP'91. LNCS 528, 1991, 147{158.

16. E. B�orger and I. D- urd-anovi�c. Correctness of compiling Occam to Transputer code.

BRICS NS-95-4, pp. 153{194 , University of Aarhus, 1995.

17. E. B�orger, I. D- urd-anovi�c, and D. Rosenzweig. Occam: Speci�cation and compiler

correctness. Part I: The primary model. In E.-R. Olderog, editor, Proc. of PRO-

COMET'94 (IFIP Working Conference on Programming Concepts, Methods and

Calculi), pages 489{508. North-Holland, 1994.

18. E. B�orger and U.Gl�asser. A formal speci�cation of the PVM architecture. In B.

Pehrson and I. Simon (Eds.) IFIP 13th World Computer Congress 1994, Volume

I: Technology and Foundations, Elsevier, Amsterdam, 402{409.
19. E. B�orger and U.Gl�asser. Modelling and analysis of distributed and reactive sys-

tems using evolving algebras. BRICS NS{95{4, pp. 128{153, University of Aarhus.

20. E. B�orger, U. Gl�asser and W. Mueller, The Semantics of Behavioral VHDL'93
Descriptions. In: EURO-DAC'94 European Design Automation Conference with

EURO-VHDL'94. Proc. IEEE CS Press, Los Alamitos/CA, 1994, 500-505.

21. E. B�orger, U. Gl�asser and W. Mueller. Formal de�nition of an abstract VHDL'93

simulator by EA{machines. In C. Delgado Kloos and Peter T. Breuer, editors,
Semantics of VHDL. Kluwer, 1995.

22. E. B�orger, Y. Gurevich and D. Rosenzweig. The bakery algorithm: Yet another

speci�cation and veri�cation. In E. B�orger, editor, Speci�cation and Validation
Methods. Oxford University Press, 1995.

23. E. B�orger, F.J. Lopez-Fraguas and M. Rodrigues-Artalejo. A Model for Mathe-

matical Analysis of Functional Logic Programs and their Implementations. in: B.
Pehrson and I. Simon (Eds.) IFIP 13th World Computer Congress 1994, Vol. I,

pp. 410-415, 1994, Elsevier. See the full version Towards a Mathematical Speci�-

cation of Narrowing Machines, Report DIA 94/5, Dep. Inform�atica y Autom�atica,
Universidad Complutense, Madrid, March 1994, pp.30.

24. E. B�orger and S. Mazzanti. A correctness proof for pipelining in RISC architec-

tures. Manuscript, 1995.
25. E. B�orger and E. Riccobene. A Formal Speci�cation of Parlog. In: Semantics of

Programming Languages and Model Theory (M. Droste, Y. Gurevich, Eds.), Gor-

don and Breach, 1993, pp.1-42.
26. E. B�orger and D. Rosenzweig. An analysis of Prolog database views and their

uniform implementation. Prolog. Paris Papers{2. ISO/IEC JTC1 SC22 WG17

Prolog Standardization Report no.80, July 1991, pp. 87-130.
27. E. B�orger and D. Rosenzweig. A mathematical de�nition of full Prolog. Science

of Computer Programming, 1995.

28. E. B�orger and D. Rosenzweig. The WAM { de�nition and compiler correctness.
In L. C. Beierle and L. Pl�umer, editors, Logic Programming: Formal Methods and

Practical Applications. Elsevier Science B.V./North{Holland, 1995.

29. E. B�orger and R. Salamone. CLAM speci�cation for provably correct compilation
of CLP(R) programs. In E. B�orger, editor, Speci�cation and Validation Methods.

Oxford University Press, 1995.

30. E. B�orger and P. Schmitt. A formal operational semantics for languages of type
Prolog III. Springer LNCS 533, 1991, 67{79.

31. F.P. Bowen and M.G. Hinchey. Ten Commandments of Formal Methods. IEEE

Computer 28(4):56{63, April 1995.

32. F.P. Bowen and M.G. Hinchey. Seven More Myths of Formal Methods. IEEE Soft-

ware 12(4):34{41, July 1995.

33. F. P. Brooks, No Silver Bullet|Essence and Accidents of Software Engineering.

IEEE Computer 20, 1987, 10{19.

34. S.K. Debray and P. Mishra, Denotational and Operational Semantics for Prolog.

In: Journal of Logic Programming 5, 1988, 61{91

35. A. de Bruin and E. P. de Vink, Continuation semantics for Prolog with cut. In:

Theory and practice of software engineering, Springer LNCS 351, 1989, 178{192.

36. R. DeMillo, R. Lipton and A. Perlis, A social process and proofs of theorems and

programs. In: Comm. ACM 22 (5), 271{280, 1979.

37. P. Deransart and G. Ferrand, An operational formal de�nition of Prolog.INRIA

RR 763. See Proc. 4th. Symposium on Logic Programming, San Francisco 1987,

162|172 and New Generation Computing, 10.2, 1992, 121{171.
38. W.W. Gibbs, Software's Chronic Crisis, Scienti�c American, Sept 1994, 72{81.

39. Y. Gurevich. Logic and the challenge of computer science. In E. B�orger, editor,

Current Trends in Theoretical Computer Science, pp. 1{57. CS Press, 1988.
40. Y. Gurevich. Logic Activities in Europe. in: ACM SIGACT NEWS, 1994.

41. Yuri Gurevich. Evolving Algebra 1993: Lipari Guide. In E. B�orger, editor, Speci-

�cation and Validation Methods. Oxford University Press, 1995.

42. Yuri Gurevich. Platonism, Constructivism, and Computer Proofs vs. Proofs by
Hand. In Bulletin of the EATCS, October 1995.

43. Y. Gurevich and J. Huggins. The semantics of the C programming language.

Springer LNCS 702, 1993, 274{308 and LNCS 832, 1994, 334{336.
44. Y. Gurevich and J. Huggins. Equivalence is in the eye of the beholder. CSE TR

240-95, University of Michigan at Ann Arbor.

45. Y. Gurevich, J. Huggins and R. Mani. The Generalized Railroad Crossing Prob-
lem: An Evolving Algebra Based Solution. CSE-TR-230-95, University of Michigan.

46. Y. Gurevich and R. Mani. Group Membership Protocol: Speci�cation and Veri�ca-

tion. In E. B�orger, editor, Speci�cation and ValidationMethods. Oxford University
Press, 1995.

47. D. Harel, Biting the Silver Bullet. IEEE Computer 25, 1992, 8|20.

48. F.W. von Henke, Putting Software Technology to Work, In: K. Duncan and K.
Krueger (Eds.) IFIP 13th World Computer Congress 1994, Vol. III, pp.345-350,

1994, Elsevier, Amsterdam.

49. J. Hennessy and D.A. Patterson. Computer Architecture: a Quantitative Approach.
Morgan Kaufman Publisher, 1990.

50. H. Herbelin. Types for Proofs and Programs. Note on the ESPRIT Basic Research

Action 6453 in: Bulletin of the EATCS vol.54, 1994, 105{116.
51. C.A.R. Hoare. An axiomatic basis for computer programming. In: Comm. ACM

12, pp. 576{580 and 583, 1969.

52. C.A.R. Hoare, ProCoS Working Group Meeting, Gentofte/DK 18.-20.1.1994.
53. C.A.R. Hoare, Mathematical Models for Computing Science. Manuscript, August

1994, 65 pp.

54. G.J. Holzmann, The Theory and Practice of a Formal Method: NewCoRe, in: B.
Pehrson and I. Simon (Eds.), Proc. of the IFIP 13th World Computer Congress

1994, Vol.I, pp. 35{44, Elsevier, Amsterdam.

55. J. Huggins. Kermit: Speci�cation and veri�cation. In E. B�orger, editor, Speci�ca-
tion and Validation Methods. Oxford University Press, 1995.

56. IEEE Standard VHDL Language Reference Manual|IEEE Std 1076{1993, The

Institute of Electrical and Electronics Engineering. New York, NY, USA, 1994.

57. N.D. Jones and A. Mycroft, Stepwise development of operational and denotational

semantics for Prolog. In: Proc. Int. Symp. on Logic Programming 2/84, Atlantic

City, IEEE, 289{298

58. G. Kahn, Natural Semantics, INRIA Rapport de Recherche No. 601, F�evrier 1987.

59. B. Littlewood, L. Strigini, The Risks of Software, in: Scienti�c American. Novem-

ber 1992, p.38-43.

60. A. J. Mans�eld, An Explanation of the Formal De�nition of Prolog. NPL Report

DITC 149/89, Teddington, 1989, p. 1{9.

61. R. Milner and M. Tofte, and R. Harper. The de�nition of Standard ML. Cambridge,

Mass.: MIT Press, 1990.

62. R. Milner, M. Tofte, Commentary on Standard ML. MIT Press, 1990.

63. Peter D. Mosses. Denotational Semantics. In: Jan van Leeuwen (Ed.), Handbook

of TCS. Elsevier 1990.
64. Peter D. Mosses. Action Semantics. Cambridge University Press, 1992.

65. N.North, A denotational de�nition of Prolog. NPL, Teddington, TR DITC 106/88.

66. S. Owre, J. Rushby, N. Shankar and F. von Henke, Formal Veri�cation for Fault-
tolerant Architectures: Prolegomena to the Design of PVS. In: IEEE Transactions

on Software Engineering, vol. 21, no. 2, February 1995, pp.107{125.

67. D. L. Parnas. Information distribution aspects of design methodology. In C. V.
Freiman, editor, Proc. of IFIP Congress 1971, Volume 1: Foundations and Systems,

pp. 339{344. North-Holland, 1972.

68. D. L. Parnas, Software Aspects of Strategic Defense Systems. In: Comm. ACM, 28
(12), 1985, 1.326{1.335.

69. D. L. Parnas, Education for Computer Professionals. In: IEEE Computer 23, 1990,

17|22.

70. G. Plotkin, A structural approach to operational semantics, Internal Report, CS

Department, Aarhus University, DAIMI FN-19

71. K. Popper, Logik der Forschung.1935.

72. S. Read, e-mail 25 Oct 1994, Compass Design Automation, Columbia/MD.

73. D. M. Russino�, Speci�cation and veri�cation of gate-level VHDL models of syn-

chronous and asynchronous circuits. In: Speci�cation and Validation Methods, Ed.
E. B�orger, Oxford University Press, 1995, pp. 411{459.

74. D. Scott, Outline of a Mathematical Theory of Computation, PRG-2, November

1970, Oxford Univ. Comp. Lab., Progr. Res. Group, pp.1{24
75. D. Scott, C. Strachey, Toward a Mathematical Semantics for Computer Languages.

Proc. 21st Symp. Computers and Automata, Polyt.Inst. of Brooklyn, 1971, 19{46.

76. D.R. Smith, Classi�cation Approach to Design, TR KES.U.93.4, Kestrel Institute,
Palo Alto, CA, November 1993, pp.24

77. D.R. Smith and E.A. Parra, Transformational Approach to Transportation

Scheduling, in: Proc of the Eighth Knowledge-Based Software Engineering Con-
ference, IEEE Computer Society Press, September 1993, 60{68.

78. J. M. Wing, A Speci�er's Introduction to Formal Methods. In: IEEE Computer,
23 (9), 1990, 8{24.

79. M. Wirsing. Handbook of Algebraic Speci�cations. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science B, pages 675{788, Elsevier, 1990.
80. N. Wirth. Algorithms & Data Structures. Prentice-Hall, 1975.

This article was processed using the LaTEX macro package with LLNCS style

