
Why Programming Must Be Supported by
Modeling and How?

Egon Börger

Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it

Abstract. The development of code for software intensive systems in-
volves numerous levels of abstraction, leading from requirements to code.
Having abstract modeling concepts available as high-level programming
constructs helps to define the code and to make sure that when the sys-
tem runs with the software executed by machines, the software compo-
nents behave the expected way. We explain in this paper that neverthe-
less, there remains a gap, which cannot be closed by mere programming
methods, but which can be closed if programming is supported by an
appropriate modeling framework (a design and analysis method and a
language).

1 Introduction

In this paper we use the term programming as short hand for programming
complex systems where reliability is a concern. So we speak about the devel-
opment of code for complex software systems or for software intensive systems
where it is critical that the software components do what they are supposed
to do. Software intensive systems comprise systems where the software and the
machines which execute it are only a part of the overall system, where for the
code executing computer(s) the other parts appear as environment—technical
equipment, physical surrounding, information systems, communication devices,
external actors, humans—upon which the behavior of the software components
depends and which they affect.

It is characteristic for the (non agile)1 development of code for software (in-
tensive) systems to involve descriptions at numerous levels of abstraction, lead-
ing from requirements through high-level design to machine executable code.
For such descriptions, besides natural language (which is normally used to de-
scribe the requirements) a huge variety of dedicated languages and frameworks
is available, covering the wide spectrum from direct coding in a programming
language to pictorial (as such possibly not executable, ‘abstract’) models, con-
sisting essentially of visual (graphical) descriptions which are then transformed
into more detailed textually described models and finally executable code. Well

1 Without loss of generality we restrict our attention here to non-agile approaches
to software development. In fact, it will become clear below why coding alone, as
advocated by agile methods, cannot solve what we call the ground model problem.



known examples of such graphical language constructs can be found for ex-
ample in the OMG-languages UML, BPMN, SysML. In between one finds a
myriad of textual, logic-based, formal specification languages, but also domain-
specific languages and the interesting development of programming languages
which directly offer constructs to express frequently occurring abstract model-
ing concepts. High-level programming constructs, like data types, collections,
etc. clearly help to define the desired code and to justify that when the system
runs, with the code executed by computer(s), the software components in fact
behave the expected way. One finds them, to mention a few examples, in Java
and C#, Scala (https://www.scala-lang.org/), Kotlin (https://kotlinlang.org/),
K (http://www.theklanguage.com), etc.

However, natural language cannnot be avoided because it is the ‘mother
tongue’ in which human stakeholders communicate to ensure a common under-
standing to capture the requirements correctly and completely. In particular,
there remains a gap between requirements and code which for reasons of princi-
ple cannot be closed by mere programming constructs or model transformations.
It appears prominently at the beginning of the chain which links the understand-
ing by application domain experts (customers, users) of the system to-be-built
to the behavior of the system when it runs under the control of the software.
The question is how to relate in a controllably reliable way real-world items and
behavior (objects, events and actions) to corresponding items in a textual or
graphical description, whether directly by code or by an abstract model that is
transformed in a correctness preserving manner to code.

In this paper we explain the three main facets of this epistemological problem:

a communication problem,
an evidence problem,
an experimental validation problem.

We characterize the intrinsic properties of a language one needs to solve this
problem. First of all, such a language must be understandable by the main
parties involved, namely application domain experts (users, customers, who are
not necessarily engineers) and software developers (designers and programmers).
They need it as vehicle to intellectually grasp and transmit an adequate compre-
hension of complex systems. Second, to permit unambiguous system descriptions
which are on the one side abstract enough and on the other side accurate enough,
the language must allow the stakeholders to calibrate the degree of preci-
sion of descriptions (read: their level of abstraction) to the given problem and
its application domain. Last but not least, the language must allow the software
engineers to link descriptions at different levels of abstraction— trans-
form models—in a controllably correct and well documented way to code, using
a practical refinement method that is supported by techniques for both, experi-
mental validation and mathematical verification (whether informal, rigorous or
formal and machine supported).

In Sect. 2 we explain the special status of ground models—the ‘blueprints’
through which domain experts and software developers must reach a common
understanding of ‘what to build’ [23, p.14]—and what this status implies for



their validation as basis for the verifiability of the system, once it is built.2 In
Sect. 3 we explain how and in which sense the intended behavior, once defined by
the ground model, can be ‘preserved’ by the software engineer, in an objectively
controllable and well documented way, when building the software components
for the system. This preservation of ‘behavioral correctness’ can be obtained via
a chain of successive refinement steps, which piecemeal implement abstract mod-
eling terms by code, providing the details of the ‘how to build’, and are closely
accompanied by corresponding validation and verification steps. It is here that
high-level programming languages which offer support for frequently occuring
modeling concepts are extremly helpful. We conclude in Sect. 4 with an expla-
nation of the challenging problem to define practical, tool supportable patterns
for stepwise refinement coming with compositional verification techniques.

2 Ground Models

The development of reliable software, whose execution does—and can be ex-
plained to do—what it is supposed to do, needs a correct understanding and
formulation of the project’s real-word problem, including the context where the
code executing computer is one among multiple components which together are
expected to realize the desired overall system behavior. Such a problem descrip-
tion contains three parts:

The domain experts (customers) are responsible for the requirements,
which have to be turned into a sufficiently precise and complete descrip-
tion of the intended system behavior (‘what to build’ [23, p.14]), at the level
of abstraction and rigor of the given application domain.
Given the requirements document, the design engineers must distill a soft-
ware specification, that is a sufficiently precise abstract description of
the expected behavior of the software when executed by a computer in the
system environment.
Furthermore, the domain experts must provide a complete description of
those domain assumptions, on the structure and behavior of the sys-
tem components, on which the system designers can rely when it comes to
guarantee that the specification (and later also its implementation) behaves
as system component the way the requirements demand to solve the given
problem (correctness property). This document must make the underlying
portion of implicit application-domain knowledge explicit which the software
experts need to understand to make sure their understanding of the ground
model is correct.

These three documents constitute what I call a ground model, although some-
times the term is also used to refer only to the software specification, which is

2 To avoid a misunderstanding of the term ‘ground’ in ‘ground model’, we point out
already here that the ground models may and typically do change during the de-
velopment process, but in each development phase there is one well-defined ground
model which has to be related to its implementing code.



what will be turned into the code to-be-built. The code development can start
from these three documents; it also must start from them, if only because it
is errorprone and expensive to start coding before all the needed requirements
are correctly formulated and put into an inspectable document. But be aware
that the ground model is not only an initial model,3 as used for example in the
B-method [1]; it serves a heterogeneous group of stakeholders as the most ab-
stract complete and correct model of the system to-be-built. As a consequence,
the ground model is subject to change during the code development process; see
the caveat below which explains why the three documents can be considered as
finalized only at the end of the project, when the code is defined.

Whereas the system requirements and the domain assumptions are primar-
ily under the responsibility of the domain experts, the software specification is
shared by the two parties, standing between the application-domain-focussed
requirements with the related domain assumptions and the software which has
to be developed.

In what consists the special character of a ground model? Its con-
stituents are targeted to support a common, objectively checkable understand-
ing by humans—experts of different fields—of some desired behavior in the real
world. This has three consequences:

The descriptions must be formulated in a common language both domain and
software experts understand. This communication problem has implications
for the language in which ground models are formulated, showing a possible
gap between such a language and programming languages, the latter being
targeted to support the execution of programs by machines, see Sect. 2.1.
To ‘explain how the solution (read: the software specification) relates to
the affairs of the world it helps to handle’ [55, p. 254] presents an evidence
problem we discuss in Sect. 2.2, evidence upon which every further system
verification and validation is based. The problem arises because the real-
world part involved in a ground model justification has no precise contour,
so that mathematical reasoning does not apply.
The experimental character of ground model verification implies the model
validation problem we discuss in Sect. 2.3, which is about executability of
models.

Ground model software specifications represent blueprints of the software
component which must be developed for the system in question, for good rea-
sons called ‘golden models’ in the semiconductor industry. It is general engineer-
ing practice that the stakeholders, together, analyze a system blueprint, reason
about its features, test its appropriateness, maybe change it repeatedly, before
proceeding in common agreement to the realization of the system (and as al-
ready stated above possibly also during the development process). This is an
effort to make sure that the system to-be-developed is well understood and, via
its ground model, recognized as correct and complete. Therefore, as in classical
engineering disciplines, also in software engineering such a blueprint provides the

3 This is the reason why we changed the initially chosen name ‘primary model’ [8,
p.392] into ‘ground model’.



authoritative basis—a ‘contract’—the software experts (designers and program-
mers) can rely upon for the software development via an appropriate refinement
of model abstractions by code. In [70] it is nicely explained why ‘there does not
seem to be any compelling reason to treat the handling of models in software
engineering in a radically different way than what is done in engineering in gen-
eral’. This applies also to the use of ground models as blueprints, though at
present using software blueprints is not common practice and contradicts the
principles of agile software development. It is hard to believe that one could
design blueprints for bridges, skyscrapers or airplanes in an agile way, let alone
build the latter in this way: there are no early (certainly no day-to-day) deliv-
eries of bridges, buildings or airplanes which yield continuous changes for their
development. Maybe something agile sneeked into the Stuttgart main station
and Berlin airport projects...

To be usable as blueprint, a ground model for the code one has to develop
must have the following four properties, namely to be:

Precise at the level of abstraction and rigor of the problem and of the applica-
tion domain the model belongs to. This means that it contains no ambiguity
which could lead the software developer to miscomprehend how the domain
expert understands the model, in particular in its domain knowledge related
features (which usually are not the principal domain of expertise of a soft-
ware expert). See the discussion of the communication problem in Sect. 2.1.
Correct in the sense that the model elements reliably and adequately convey
the meaning of what in the real world they stand for. See the discussion of
the evidence problem in Sect. 2.2.
Complete in the sense that the model contains every behaviorally relevant
system feature, but no elements which belong only to the implementation.
Consistent in the sense that conflicting objectives, which may have been
present in the original requirements, are resolved in the model.

It is important to be aware that the degree of detail which is required for
a ground model depends on the given problem and problem domain. There is
no absolut notion of precision, not even for logical systems. One cannot stress
enough that what a ground model is concerned about is first of all full under-
standing of what to build, an understanding that must be shared by the
stakeholders and the experts involved. In [70, Sect.2.4] such models are called
descriptive and distinguished from prescriptive models, whose role is to guide the
implementation (by ground model refinements, as explained in Sect. 3). For ex-
ample, the ground models for an interpreter of Prolog [20], Occam [13], Java [72,
Part I] and C# [15] programs are descriptive models which explain the semantics
of their language at the level of programming. The corresponding virtual ma-
chine models for the WAM [21], the Transputer [12], the JVM [72, Part II-III]
and the .NET CLR [34] are of prescriptive character, representing a step towards
the language implementation.

Note that completeness at the ground model level means that the model
contains all elements which are relevant to guarantee the intended behavior,
including descriptions of what in [70, Sect.2.4] is called primary functionality



together with the supporting system infrastructure (as far as relevant for the
correct realization of the primary functionality), avoiding however to introduce
details which are relevant only for the implementation.

Note that for epistemological reasons, the correctness and completeness prop-
erties cannot be established by purely linguistic, system-internal means, since
they relate precise conceptual features to non-verbal phenomena in the real
world, as further investigated in Sect. 2.2. In contrast, when a description is
precise, its consistency, a logical, system-internal property, can be checked by
rigorous, scientific (for software models typically by mathematical) means.

2.1 Communication Problem

Why are ground model descriptions usually not directly programmed, but must
come prior to programming?

Remember that a ground model, as blueprint of the code one has to de-
velop, must be understandable for the two parties involved, for the software
developers and for the experts of the corresponding application domain. This is
a communication problem which is not taken seriously enough in current soft-
ware engineering practice, although a thorough analysis of major accidents with
software-intensive systems showed that ‘The extra communication step between
the engineer [read: the domain expert] and the software developer is the source
of the most serious problems with software today’ [51, Sect. 2.5]. The communi-
cation problem becomes only stronger where the domain experts are not familiar
with mathematical notations, experts of their field but not used (neither willing
to learn) to express their knowledge or reasoning in any formal logic, program-
ming or mathematical language.

To overcome the communication problem, the language in which ground mod-
els are formulated must have the capability to calibrate the degree of precision
of descriptions to the given (any) application domain, so that a direct relation
can be established between the real-world items and the linguistic counterparts
which represent those items in the model. This is what Leibniz called ‘proportio
quaedam inter characteres (‘symbols’) et res (‘things’)’ and considered to be the
basis of truth: ‘Et haec proportio sive relatio est fundamentum veritatis’ [50].
A ground model must allow one ‘to represent the concepts of the application
domain at an adequate level of abstraction such that the specialities of the ap-
plications are directly represented and not covered by awkward implementation
concepts’ [24, Sect. 4]. To establish such a direct association of items in the world
with linguistic expressions, the language must allow the modeler to express di-
rectly, without extraneous encoding, the following:

every kind of real-world objects with their attributes and relations, which
together constitute arbitrary system ‘states’,
arbitrary actions to change the set of objects or some of their properties or
relations, actions which constitute arbitrary ‘state changes’.

In other words, contrary to a widely held view in the Formal Methods com-
munity, the ground model language must be a clearly defined and generally



understood portion of natural language, as used in rigorous scientific and engi-
neering disciplines, made up from precise and simple but general enough basic
constructs to unambiguously represent arbitrary real-world facts (states of af-
fairs) and state changing events. Formalized logic or programming languages are
just too specific for the purpose and understood only by a rather restricted group
of stakeholders, though formal languages contribute in an excellent way to do
the work in appropriately circumscribed domains (see the role of domain-specific
languages discussed below).

2.2 Evidence Problem for Ground Models

The fact that a ground model must establish a relation between the real-world
problem and the design of the code which has to be developed brings us to the
evidence problem for ground models, mentioned in the introduction.4 The real-
world counterpart of a ground model does not exist as an object of study, to a
wide extent it resides only in the heads of the domain experts. As a consequence,
there is no way to ‘prove’ by whatever mathematical means the appropriateness
of the association of real-world objects and relations with model elements. But
model inspection can help to provide evidence of the needed adequate cor-
respondence between on the one side ground model elements and events, and
on the other side what happens in the part of the world the model expresses.
Such a review of the blueprint must be performed in cooperation between the
application-domain and the software experts, whereby the two parties can check
in particular the correctness and completeness of the software specification, from
where the code development has to start.

Model inspection is similar to code inspection, as commonly used in cur-
rent software development practice, but a) it involves not only programmers,
but also domain and software design experts, b) it happens at a higher level
of abstraction than that of executable code, c) it compares model elements to
items and phenomena in the real world, and d) it uses domain-specific knowl-
edge and reasoning, which only in very special cases will be formally defined. To
cite an example, such model inspections were critical for the development of the
ground model (an Abstract State Machine [22], ASM) for the railway process
model component of FALKO, a railway timetable validation and construction
system [18], which has been coded in C++. The feasability of model inspection
has been tested during the Dagstuhl Seminar ‘Practical Methods for Code Doc-
umentation and Inspection’ [16], where the ground model [17] and the source
code (see [53]) for the (rather simple, industrial) Production Cell case study [52]
have successfully passed an inspection session.

The epistemological role of ground model inspection, to solve the evidence
problem, shows once more why the language to formulate ground models must
provide means to

4 In earlier publications we have called this a verification method problem, but since
the word ‘verification’ carries a connotation of mathematical justification method,
we move here to the more appropriate term ‘evidence’.



express objects, states of affairs and events in the real world directly.

The appropriateness check, of the link the inspection has to investigate between
the model and the world, is strongly supported by coding-free expressability,
which in turn necessitates linguistic support of descriptions at whatever ab-
straction level. Even high-level programming languages do not suffice for that,
despite of the impressive progress modern programming languages made to offer
the programmers abstract concepts as commonly used in the language of math-
ematics, in particular logic and set theory. The reason is that each programming
language is necessarily bound to a specific abstraction level, which is determined
by the basic data structures, types and operations it offers.

Furthermore, modern (in particular object-oriented) programming languages,
but also widely used OMG languages like UML, SysML, BPMN and other mod-
eling languages, tend to put from the very beginning much attention on classes,
their operations and structure, types, libraries, etc. which are of less importance
for (and often hindering in the first phase of) system modeling (see [49] for
a discussion). A similar observation has been made during the recent discus-
sion whether coding is the new literacy, namely that ‘programming as it exists
now forces us to model, but it does so in an unnatural way’ [39]. Also through
analysing accidents of software intensive systems the need became clear that
we must become ‘able to grasp ... problems directly, without the intermediate
muck of code’ [71], to achieve an appropriate intellectual understanding of the
system, given that ‘Nearly all the serious accidents in which software has been
involved in the past twenty years can be traced to requirements flaws, not coding
errors.’ [51, Sect. 2.5].

2.3 Validation Problem

The experimental character of ground model inspection brings us to the vali-
dation problem for ground models, which concerns models in general, including
ground model refinements (see Sect. 3). A practically useful inspection proce-
dure needs analysis support by repeatable experiments, aiming to falsify, in the
Popperian sense [58], expected model behaviour, so that in case the model can
be debugged before building the system. This is customary in traditional engi-
neering disciplines. To make such an experimental validation possible for soft-
ware models, these software models should be executable, conceptually or
by machines (or be easily transformable into a machine executable version), so
that runtime verification and testing become available at the application-domain
level of abstraction. Model executability supports ‘rapid prototyping of systems
as part of the interative specification of requirements‘, as advocated in [23, p.15]

To support ground model inspection often the very concept of run of a model
suffices, e.g. to check scenario behavior (confirming its correctness or revealing
a conceptual mistake). A characteristic recent example for this is the process
algebra model developed in [33] for the widely used Ad hoc On-Demand Distance
Vector routing protocol AODV [56]. The model allowed their authors to exhibit



some conceptual misbehavior in well-known implementations of the protocol,
e.g. concerning the fundamental loop freedom and route correctness.

However, if the runs can be performed mechanically, by machines and not
only intellectually, that increases the debugging potential considerably. We used
both techniques with advantage for analyzing the Java and JVM ground mod-
els in [72], mathematically investigating runs of the ASM models and comparing
them with the corresponding AsmGofer [68] runs of the refined executable model
versions and with runs of Sun’s code (see [72, Ch.A]. All the bugs we discov-
ered in this process were reported to and corrected by Sun. Another interesting
example is the above mentioned development of the ground model ASM for the
railway process model component of the FALKO system [18]. In this project,
where the requirements came as a set of scenarios, no mathematical verification
was possible, but the scenarios could be checked to validate the ‘correctness’ of
the ground model. In fact, we validated it through AsmWorkbench [26] execu-
tions which confirmed the expectations of the scenarios. This was BEFORE we
started to compile the ground model ASM to C++ code [69] (which has worked
for years in the Vienna transportation system and never failed!).

This request for executability of software models is contrary to the still widely
held view that software specifications should not be executable. The main reason
which is usually given for this is that executability would imply a limitation of
the expressiveness of the specification language [46]. Instead, declarative spec-
ifications are advocated,5 using logic—axiom systems (algebraic approach) or
equational theories (denotational approach)—to define the requirements, in an
attempt to make specifications ‘completely independent of any idea of computa-
tion’ [40, p.89], ‘ideally ... predicates on solutions’ [24, Introduction]. In partic-
ular, using descriptions where abstract assignment statements f (s1, . . . , sn) := t
occur (as is typical for ASM models [22]) were declared by highly respected col-
leagues to belong to implementations (see the discussion in [9]). But the question
is not whether descriptions are declarative or operational, but at which level of
abstraction they are formulated, as becomes clear also when one looks at B [1] or
Event-B [2] or TLA+ [48] models (which formally are logical formulae but mimic
the operational character of the described actions (assignments) by the x/x ′ no-
tation). Different degrees of detailing serve the multiple roles of abstraction,
such as providing an accurate and checkable overall system understanding, or
isolating the hard parts of a system, or communicating and documenting design
ideas, etc., depending on the role of every model, namely to serve a particular
purpose, as emphasized in [73].

5 In [35], which contains a detailed evaluation of the pro and contra for executable
specifications, it is rightly pointed out that ‘non-executable’ and ‘declarative’ are re-
ally different terms, as illustrated by the programming interpretation of Horn clauses
in logic programming languages. Note also that since Horn clauses are a reduction
class of first-order logic [14, Ch.5.1], their computational interpretation is Turing
complete so that using them implies no limitation of expressivity, at least in princi-
ple.



After all, model executability offers high-level debugging which allows one to
detect conceptual problems low-level code inspection easily misses. For a nice
(and surprising) illustrating example see [36] (or [19, 3.2]). Model executability
also helps to save on the enormous cost of late code-level testing or runtime
verification. Model executability also supports exploratory software development
processes.

3 Refinement Method

A critical question is how to transform a ground model in a correctness preserving
way to code. There are at least three different ways to do this.

One way is to proceed right away to programming in an appropriate program-
ming language, using the ground model as the specification of the code func-
tionality. Justifying the correctness of the implementation is supported by
code inspection which should check and document the design-intent-relation
between high-level ground model and implementing code features.
If the specification language supports modeling for change, this helps to
identify and to perform the needed changes in the ground model and the
corresponding code when new requirements appear. The price to pay is to
keep the ground model and the code in sync, the gain is that the design-
intent-relation is kept, linking ground model objects and actions to code data
and code segments. This results in less maintenance cost.
For this approach, high-level languages which offer explicit expressions or
instructions for abstract modeling concepts simplify the programming and
justification task enormously. A strong support, as advocated by Language
Oriented Programming [74,28] and supported by the Meta Programming
System [54], comes also from domain-specific languages (DSLs) whose con-
structs directly reflect specific application domain concepts. This holds also
if the DSL is directly implemented in a high-level programming language, see
some characteristic examples in [44,3,45]. Methodologically speaking, plugins
in CoreASM [25], which have to be programmed in Java, provide an analo-
gous support for domain-specific extensions of executable ASM models.
A second way is to write a compiler for a class of ground models that includes
those one has to expect in the given application domain. For two examples
see [5,18]. Justifying the correctness of model implementations consists in
showing that the compiler correctly translates ground model items (objects,
events, actions) to code. This compiler correctness needs to be shown only
once, by verification experts, so that the correctness problem for the code
which implements a concrete ground model is reduced to the ground model
correctness problem—a fruitful application of the divide-and-conquer prin-
ciple.
A third way is to use stepwise model refinement to turn the descriptive
ground model into a prescriptive implementation model (in the sense de-
fined in [70]), leading to code. This approach helps to reduce the gap be-
tween the ground model and the level of detail needed for the target code. To



TEST
CASES

domains
transition system

stepwise
refinement
reflecting
design

dynamic functions
external functions

decisions

manual

mechanized

PROVER

adding assumptionsadding definitions

SIMULATOR

using data from
application domain

Verification

Application Domain Knowledge

Ground Model

Informal Requirements

Code

Validation

+

guarantee preservation of the design intent, each refinement step has to be
checked to be correct; the verification should be documented to be control-
lable. Executability of refined models supports their experimental validation
by simulations.
The refinements (and their justification) are the job of the software engineer,
including the special case where a refinement step reveals the necessity to
correct or complete the ground model in cooperation with the domain ex-
perts. The application-domain expert has to rely upon the professionality of
the implementor who understands all the details of the language used for
model refinements and code. The practicality of this approach depends on
the refinement concept. The figure above6 illustrates the structure of such a
software development process.
It is a common experience (and pointed out also in [70]) that inconsisten-
cies and conflicts between different design proposals often are only detected
in fine-grained models. Their resolution has to backtrack in the refinement
chain, possibly coming back to the ground model. For this reason, the com-
pleteness and correctness of the ground model are guaranteed only once the
final code is ready; the process of building the ground model and its refine-
ments is by no means linear. But to support the maintenance and evolution
of software efficiently, it is important that all models involved by the code
are fully documented, each one reflecting corresponding design decisions, and
are kept in sync.

6 c© 2003 Springer-Verlag Berlin Heidelberg, reprinted with permission, copied
from [22].



4 Conclusion: Refinement Patterns

This is not the place to evaluate which modeling methods support building satis-
factory ground models. But we want to formulate a challenging problem, hoping
that it may attract somebody. It concerns mainly, but not only, the Abstract
State Machines method [22] which has been used with success to build ground
models, and their refinements, for various real-life systems, industrial standards
and semantics of programming languages (for surveys see [22, Ch.9], [19, p.4]
and [11], respectively).

A characteristic feature of the ASM method is its refinement notion [10],
which has been developed originally for a modular definition of the semantics
of Prolog (see [6,7,8]). ASM refinements allow one to refine not only data, but
also operations (rules) and more generally entire segments of computation. This
feature offers the designer ways to describe design ideas directly in terms of
ASM refinement steps, but it also makes the notion considerably more general
and harder to implement than the various refinement concepts in other state-
based specification methods, e.g. B [1], Event-B [2], TLA+ [48] and Z [27] (among
others). These methods come with carefully restricted refinement definitions so
that the refinements are supported by the corresponding proof tools.

There is an unavoidable trade-off between generality of the refinement notion
and the degree to which it can be supported by theorem provers. Gerhard Schell-
horn has thoroughly investigated the ASM refinement notion in [59,60,62,61,63]
and has implemented it in the KIV [47] theorem prover. The original goal was to
machine check, using KIV [64,65], the WAM correctness proof in [21]; this proof
proceeds via a hierarchy of a dozen proven-to-be-correct ASM refinement steps,
starting with a ground model ASM [20] for the ISO standard of Prolog and end-
ing with a complete model of the WAM. In the sequel, KIV verification has been
applied to various other ASM models using the ASM refinement mechanism.
Two major examples are the electronic purse case study Mondex [42] and the
flash file system verification [66]. The Mondex example illustrates the practical
feasibility of the ASM refinement approach for code verification: the refinement
from the transaction to the protocol level [67] deals with the original Mondex
case study, but the authors could also add a refinement to the security level (with
crypto primitives) [43,41] and a refinement from there to Java code [38]. It is
interesting to note that for the verification of the flash file system the refinement
theory had to be developed further to handle not only functional correctness,
but also crash safety, down to the level of code (see [30,57]). In particular [31],
which further refines the high-level models in [32], illustrates the crucial role of
finding appropriate intermediate models to verify that low-level features, like
recovery from unexpected power cuts, are guaranteed.

The ASM refinement notion has been implemented also in PVS [29] where it
has been used for compiler correctness proofs, starting with ASM ground models
for source and target languages [37,75].

Here is the challenge: is it possible to distill practically useful refinement
patterns which come with corresponding compositional and tool supported proof
patterns, using the general ASM refinement concept? I addressed this question



to colleagues in the theorem proving community when in [4] we realized that the
Java2JVM compilation correctness theorem, as stated and proved for stepwise
refined ASM models of Java/JVM in [72], could have been proved by instruction-
wise refinement steps where each new instruction is accompanied by a modular
proof extension. This supports modeling for change and software product lines
in a rather strong way. Can such a modular (in logical terms ‘conservative’)
proof extension which corresponds to an ASM refinement step be supported by
current theorem provers and to what extent?

Acknowledgement. We thank the following colleagues for a critical reading
of various drafts of the paper: Heinz Dobler, Alexander Raschke, Klaus-Dieter
Schewe.

To appear in: M. Broy, K. Havelund, R. Kumar, B. Steffen (eds): Towards a
Unified View of Modeling and Programming (Proc. Isola 18), Springer LNCS

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, Cambridge, 1996.
2. J.-R. Abrial. Modeling in Event-B. Cambridge University Press, 2010.
3. C. Artho, K. Havelund, R. Kumar, and Y. Yamagata. Domain-specific languages

with scala. In S. C. M. Butle and and F. Zaidi, editors, Proc. 17th International
Conference on Formal Engineering Methods, volume 9407 of LNCS, pages 1–16.
Springer, 2015.

4. D. Batory and E. Börger. Modularizing theorems for software product lines: The
Jbook case study. J. Universal Computer Science, 14(12):2059–2082, 2008.

5. G. Berry. Formally unifying modeling and design for embedded systems - a per-
sonal view. In T. Margaria and B. Steffen, editors, Leveraging Applications of
Formal Methods, Verification and Validation: Discussion, Dissemination, Appli-
cations. ISoLA 2016, volume 9953 of Lecture Notes in Computer Science, pages
134–149, Cham, 2016. Springer.

6. E. Börger. A logical operational semantics for full Prolog. Part I: Selection core
and control. In E. Börger, H. Kleine Büning, M. M. Richter, and W. Schönfeld,
editors, CSL’89. 3rd Workshop on Computer Science Logic, volume 440 of Lecture
Notes in Computer Science, pages 36–64. Springer-Verlag, 1990.

7. E. Börger. A logical operational semantics of full Prolog. Part II: Built-in predicates
for database manipulation. In B. Rovan, editor, Mathematical Foundations of
Computer Science, volume 452 of Lecture Notes in Computer Science, pages 1–14.
Springer-Verlag, 1990.

8. E. Börger. Logic programming: The Evolving Algebra approach. In B. Pehrson
and I. Simon, editors, IFIP 13th World Computer Congress, volume I: Technol-
ogy/Foundations, pages 391–395, Elsevier, Amsterdam, 1994.

9. E. Börger. Review of E. W. Dijkstra and C. S. Scholten Predicate Calculus and
Program Semantics (Springer-Verlag 1989). Science of Computer Programming,
23:1–11, 1994.

10. E. Börger. The ASM refinement method. Formal Aspects of Computing, 15:237–
257, 2003.

11. E. Börger. The Abstract State Machines method for modular design and analysis
of programming languages. J. Logic and Computation, 2014.



12. E. Börger and I. Durdanović. Correctness of compiling Occam to Transputer code.
Computer Journal, 39(1):52–92, 1996.

13. E. Börger, I. Durdanović, and D. Rosenzweig. Occam: Specification and compiler
correctness. Part I: Simple mathematical interpreters. In U. Montanari and E. R.
Olderog, editors, Proc. PROCOMET’94 (IFIP Working Conf. on Programming
Concepts, Methods and Calculi), pages 489–508. North-Holland, 1994.

14. E. Börger, E.Grädel, and Y.Gurevich. The Classical Decision Problem. Perspec-
tives in Mathematical Logic. Springer-Verlag, 1997. Second printing in ”Universi-
text”, Springer-Verlag 2001.

15. E. Börger, G. Fruja, V. Gervasi, and R. Stärk. A high-level modular definition of
the semantics of C#. Theoretical Computer Science, 336(2–3):235–284, 2005.

16. E. Börger, P. Joannou, and D. L. Parnas. Practical Methods for Code Documen-
tation and Inspection, volume 178. Dagstuhl Seminar No. 9720, Schloss Dagstuhl,
Int. Conf. and Research Center for Computer Science, May 1997.

17. E. Börger and L. Mearelli. Integrating ASMs into the software development life
cycle. J. Universal Computer Science, 3(5):603–665, 1997.

18. E. Börger, P. Päppinghaus, and J. Schmid. Report on a practical application of
ASMs in software design. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele,
editors, Abstract State Machines: Theory and Applications, volume 1912 of Lecture
Notes in Computer Science, pages 361–366. Springer-Verlag, 2000.

19. E. Börger and A. Raschke. Modeling Companion for Software Practitioners.
Springer, 2018. For Corrigenda and lecture material on themes treated in the
book see http://modelingbook.informatik.uni-ulm.de.

20. E. Börger and D. Rosenzweig. A mathematical definition of full Prolog. Science
of Computer Programming, 24:249–286, 1995.

21. E. Börger and D. Rosenzweig. The WAM – definition and compiler correctness.
In C. Beierle and L. Plümer, editors, Logic Programming: Formal Methods and
Practical Applications, volume 11 of Studies in Computer Science and Artificial
Intelligence, chapter 2, pages 20–90. North-Holland, 1995.

22. E. Börger and R. F. Stärk. Abstract State Machines. A Method for High-Level
System Design and Analysis. Springer, 2003.

23. F. P. Brooks. No silver bullet: Essence and accidents of software engineering,.
Computer, 20(4):10–19, 1987.

24. M. Broy, K. Havelund, and R. Kumar. Towards a unified view of modeling and
programming. In T. Margaria and B. Steffen, editors, 7th International Symposium
On Leveraging Applications of Formal Methods, Verification and Validation-Part
II. (ISoLA 2016), volume 9952 of Lecture Notes in Computer Science, pages 238–
260, Cham, 2016. Springer.

25. The CoreASM Project. http://www.coreasm.org and https://github.com/

coreasm/, since 2005.

26. G. Del Castillo. The ASM Workbench. A Tool Environment for Computer-Aided
Analysis and Validation of Abstract State Machine Models. PhD thesis, Universität
Paderborn, Germany, 2001. Published in HNI-Verlagsschriftenreihe, Vol. 83.

27. J. Derrick and E. A. Boiten. Refinement in Z and Object-Z. Springer, 2001.

28. S. Dmitriev. Language oriented programming: The next programming paradigm.
onBoard Electronic Monthly Magazine, April 2010. http://www.onboard.

jetbrains.com/articles/04/10/lop/index.html.

29. A. Dold. A formal representation of Abstract State Machines using PVS. Verifix
Technical Report Ulm/6.2, Universität Ulm, Germany, July 1998.

http://modelingbook.informatik.uni-ulm.de
http://www.coreasm.org
https://github.com/coreasm/
https://github.com/coreasm/
http://www.onboard.jetbrains.com/articles/04/10/lop/index.html
http://www.onboard.jetbrains.com/articles/04/10/lop/index.html


30. G. Ernst and J. Pf˙ Modular, crash-safe refinement for asms with submachines.
Science of Computer Programming, 131:3 – 21, 2016. Abstract State Machines,
Alloy, B, TLA, VDM and Z (ABZ 2014).

31. G. Ernst, J. Pfähler, G. Schellhorn, and W. Reif. Inside a verified flash file system:
Transactions and garbage collection. In A. Gurfinkel and S. A. Seshia, editors,
Verified Software: Theories, Tools, and Experiments, pages 73–93, Cham, 2016.
Springer International Publishing.

32. G. Ernst, G. Schellhorn, D. Haneberg, J. Pfähler, and W. Reif. Verification of a
Virtual Filesystem Switch. In Proc. of Verified Software: Theories, Tools, Experi-
ments (VSTTE), volume 8164 of LNCS, pages 242–261. Springer, 2013.

33. A. Fehnker, R. van Glabbeek, P. Hoefner, A. McIver, M. Portmann, and W. L.
Tan. A process algebra for wireless mesh networks used for modelling, verifying
and analysing AODV. Technical Report 5513, NICTA, Brisbane (Australia), 2013.

34. N. G. Fruja. Type Safety of C# and .NET CLR. PhD thesis, ETH Zürich, 2006.
35. N. E. Fuchs. Specifications are (preferably) executable. Software Engineering

Journal, 1992.
36. V. Gervasi and E. Riccobene. From English to ASM: On the process of

deriving a formal specification from a natural language one. In Integra-
tion of Tools for Rigorous Software Construction and Analysis, volume 3(9)
of Dagstuhl Report, pages 85–90, 2014. Dagstuhl Seminar 13372 organized
by Uwe Glässer, Stefan Hallerstede, Michael Leuschel, Elvinia Riccobene,
08.–13.9.2013. DOI: 10.4230/DagRep.3.9.74, URN: urn:nbn:de:0030-drops-43584,
URL: http://drops.dagstuhl.de/opus/volltexte/2014/4358/.

37. W. Goerigk, A. Dold, T. Gaul, G. Goos, A. Heberle, F. W. von Henke, U. Hoffmann,
H. Langmaack, H. Pfeifer, H. Ruess, and W. Zimmermann. Compiler correctness
and implementation verification: The Verifix approach. In P. Fritzson, editor,
Int. Conf. on Compiler Construction, Proc. Poster Session of CC’96, Linköping,
Sweden, 1996. IDA Technical Report LiTH-IDA-R-96-12.

38. H. Grandy, M. Bischof, G. Schellhorn, W. Reif, and K. Stenzel. Verification of
Mondex Electronic Purses with KIV: From a Security Protocol to Verified Code.
In FM 2008: 15th Int. Symposium on Formal Methods. Springer LNCS 5014, 2008.

39. C. Granger. Coding is not the new literacy. http://www.chris-granger.

com/2015/01/26/coding-is-not-the-new-literacy/, January 2015. Consulted
01/12/2017.

40. J. A. Hall. Taking Z seriously. In ZUM’97, volume 1212 of Lecture Notes in
Computer Science, pages 89–91. Springer-Verlag, 1997.

41. D. Haneberg, H. Grandy, W. Reif, and G. Schellhorn. Verifying smart card ap-
plications: An ASM approach. In Proc. Conference on Integrated Formal Methods
(iFM 2007), volume 4591 of LNCS. Springer, 2007.

42. D. Haneberg, N. Moebius, W. Reif, G. Schellhorn, and K. Stenzel. Mondex: Engi-
neering a provable secure electronic purse. International Journal of Software and
Informatics, 5(1):159–184, 2011. http://www.ijsi.org.

43. D. Haneberg, G. Schellhorn, H. Grandy, and W. Reif. Verification of Mondex elec-
tronic purses with KIV: from transactions to a security protocol. Formal Aspects
of Computing, 20(1):41–59, 2008.

44. K. Havelund. Data automata in scala. In M. Leucker and J. Wang, editors,
Proc. 8th International Symposium on Theoretical Aspects of Software Engineering
(TASE), pages 1–9. IEEE Computer Society Press, 2014.

45. K. Havelund and R. Joshi. Modeling and monitoring of hierarchical state machines
in scala. In Proc. 9th International Workshop on Software Engineering for Resilient
Systems (SERENE 2017), Springer LNCS, Geneva (CH), September 2017.

http://www.chris-granger.com/2015/01/26/coding-is-not-the-new-literacy/
http://www.chris-granger.com/2015/01/26/coding-is-not-the-new-literacy/
http://www.ijsi.org


46. I. J. Hayes and C. B. Jones. Specifications are not (necessarily) executable. Soft-
ware Engineering Journal, 4(6):330–33, November 1989.

47. The KIV System. http://www.informatik.uni-augsburg.de/lehrstuehle/swt/
se/kiv/.

48. L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, 2002. Available at http://lamport.org.

49. L. Lamport and L. C. Paulson. Should your specification language be typed? ACM
Transactions on Programming Languages and Systems, 21(3):502–526, May 1999.

50. G. W. Leibniz. Dialogus de connexione inter res et verba. G. W. Leibniz:
Philosophische Schriften, August 1677. Edited by Leibniz-Forschungsstelle der
Universität Münster, Vol.4 A, n.8. Akademie Verlag 1999.

51. N. G. Leveson. Engineering a Safer World: Systems Thinking Applied to Safety.
Engineering Systems. MIT Press, 2012.

52. C. Lewerentz and T. Lindner. Formal Development of Reactive Systems. Case
Study “Production Cell”, volume 891 of Lecture Notes in Computer Science.
Springer, 1995.

53. L. Mearelli. Refining an ASM specification of the production cell to C++ code.
J. Universal Computer Science, 3(5):666–688, 1997.

54. Meta Programming System. https://www.jetbrains.com/mps/.
55. P. Naur. Programming as theory building. Microprocessing and Microprogram-

ming, 15, 1985.
56. C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance vector

(AODV) routing. Technical Report RFC 3561, Copyright (C) The Internet Society,
Network Working Group, July 2003. http://tools.ietf.org/html/rfc3561.

57. J. Pfähler, G. Ernst, S. Bodenmüller, G. Schellhorn, and W. Reif. Modular verifi-
cation of order-preserving write-back caches. In N. Polikarpova and S. Schneider,
editors, Integrated Formal Methods, pages 375–390, Cham, 2017. Springer Interna-
tional Publishing.

58. K. Popper. Logik der Forschung. Springer, 1935.
59. G. Schellhorn. Verification of ASM refinements using generalized forward simula-

tion. J. Universal Computer Science, 7(11):952–979, 2001.
60. G. Schellhorn. ASM refinement and generalizations of forward simulation in data

refinement: A comparison. Theoretical Computer Science, 336(2-3):403–436, 2005.
61. G. Schellhorn. ASM refinement preserving invariants. J. UCS, 14(12):1929–1948,

2008.
62. G. Schellhorn. Completeness of ASM refinement. Electr. Notes Theor. Comput.

Sci., 214:25–49, 2008.
63. G. Schellhorn. Completeness of fair ASM refinement. Sci. Comput. Program.,

76(9):756–773, 2011.
64. G. Schellhorn and W. Ahrendt. Reasoning about Abstract State Machines: The

WAM case study. J. Universal Computer Science, 3(4):377–413, 1997.
65. G. Schellhorn and W. Ahrendt. The WAM case study: Verifying compiler cor-

rectness for Prolog with KIV. In W. Bibel and P. Schmitt, editors, Automated
Deduction – A Basis for Applications, volume III: Applications, pages 165–194.
Kluwer Academic Publishers, 1998.

66. G. Schellhorn, G. Ernst, J. Pfähler, D. Haneberg, and W. Reif. Development of a
verified flash file system. In Proc. of Alloy, ASM, B, TLA, VDM, and Z (ABZ),
volume 8477 of LNCS, pages 9–24. Springer, 2014.

67. G. Schellhorn, H. Grandy, D. Haneberg, N. Moebius, and W. Reif. A Systematic
Verification Approach for Mondex Electronic Purses Using ASMs. In J.-R. Abrial

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/
http://lamport.org
https://www.jetbrains.com/mps/
http://tools.ietf.org/html/rfc3561


and U. Glässer, editors, Rigorous Methods for Software Construction and Analysis
(Börger Festschrift), volume 5115 of LNCS, pages 93–110. Springer, 2009.

68. J. Schmid. Executing ASM specifications with AsmGofer. Web pages at https:

//tydo.eu/AsmGofer.
69. J. Schmid. Compiling Abstract State Machines to C++. J. Universal Computer

Science, 7(11):1069–1088, 2001.
70. B. Selic. Programming ⊂ Modeling ⊂ Engineering. In T. Margaria and B. Steffen,

editors, Leveraging Applications of Formal Methods, Verification and Validation:
Discussion, Dissemination, Applications, volume 9952 of Lecture Notes in Com-
puter Science, pages 11–26, Cham, 2016. Springer.

71. J. Somers. The coming software apocalypse. The Atlantic, September 26 2017.
Email newsletter, consulted on November 11, 2017.

72. R. F. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine: Defi-
nition, Verification, Validation. Springer-Verlag, 2001.

73. B. Thalheim and I. Nissen, editors. Wissenschaft und Kunst der Modellierung:
Kieler Zugang zur Definition, Nutzung und Zukunft, volume 64 of Philosophische
Analyse / Philosophical Analysis. De Gruyter, 2015.

74. M. P. Ward. Language oriented programing. Software - Concepts and Tools,
15(4):147–161, 1994.

75. W. Zimmerman and T. Gaul. On the construction of correct compiler back-ends:
An ASM approach. J. Universal Computer Science, 3(5):504–567, 1997.

https://tydo.eu/AsmGofer
https://tydo.eu/AsmGofer

