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Abstract. We apply the ASM semantics framework to define the await
construct in the context of concurrent ASMs. We link +CAL programs
to concurrent control state ASMs with turbo ASM submachines.

1 Introduction

In recent work we made use of the Abstract State Machines (ASM) method [8] to
analyze a given cluster protocol implementation. We extracted from the code a
high-level model that could be used for the analysis. We also refined the abstract
model to an executable CoreASM [11,10] model so that we could run scenarios
in the model. The imperative to keep the abstract models succinct and gras-
pable for the human eye led us to work with the await construct for multiple
agent asynchronous ASMs. In this paper we define this construct for ASMs by
a conservative extension of basic ASMs.

1.1 Problem of Blocking ASM Rules

As is well known, await Cond can be programmed in a non-parallel program-
ming context as while not Cond do skip, where Cond describes the wait
condition; see the flowchart definition of the control state ASM in Fig. 1, where
as usual the circles represent control states (called internal states for Finite State
Machines, FSMs) and the rhombs a test.

One has to be careful when using this construct in an asynchronous multi-
agent (in the sequel shortly called concurrent) ASM, given that the semantics of
each involved single-agent ASM is characterized by the synchronous parallelism
of a basic machine step, instead of the usual sequential programming paradigm
or interleaving-based action system approaches like the B method [1], where for
each step one fireable rule out of possibly multiple applicable rules is chosen
for execution. The problem is to appropriately define the scope of the blocking
effect of await, determining which part of a parallel execution is blocked where
await occurs as submachine. One can achieve this using control states, which
play the role of the internal states of FSMs; see for example Fig. 1 or the fol-
lowing control state ASM, which in case ctl state = wait and not Cond holds
produces the empty update set and remains in ctl state = wait , thus ‘blocking’



Fig. 1. Control State ASM for await Cond

the execution (under the assumption that in the given ASM no other rule is
guarded by ctl state = wait)1:

await Cond =
if ctl state = wait then

if Cond then ctl state := done

However, when the underlying computational framework is not the execu-
tion of one rule, but the synchronous parallel execution of multiple transition
rules, the explicit use of control states leads quickly to hard to grasp complex
combinations of conditions resulting from the guards of different rules where an
await Cond has to be executed. The complexity of the corresponding flowchart
diagrams can be reduced up to a certain point using the triangle visualization
1 ‘Blocking’ here means that as long as the empty update set is produced, the state

of the machine—in particular its control state—does not change.
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in Fig. 1. It represents the right half of the traditional rhomb representation for
check points in an FSM flowchart—where the right half represents the exit for
yes (when the checked condition evaluates to true) and the left half the exit
for no (when the checked condition evaluates to false). Is there a simple defini-
tion for the semantics of the await construct within the context of synchronous
parallel basic ASMs? Otherwise stated, can a definition of the semantics of the
await Cond do M machine, namely to wait until Cond becomes true and then
to proceed with executing M , be smoothly incorporated into the usual semanti-
cal definition of ASMs based on constructing update sets?

Such a definition would avoid the need for control states in the high-level
definition of await (without hindering its implementation by control states).
Above all it would preserve a main advantage of the update set construction in
defining what is an ASM step, namely to elegantly capture what is intended to
be considered as a basic machine step. This is important where one has to work
with different degrees of granularity of what constitutes a basic machine step,
usually called ‘atomic’ step to differentiate it from the typical sequence of actions
in a standard program with “;” (sequential execution). For example basic ASMs,
which consist only of rules if Cond then Updates, have been equipped in [7] with
a notation for operators to sequentialize or call submachines. It is defined within
the ASM semantics framework in such a way that the computation performed
by M seq N appears to the outside world as one atomic step, producing the
overall effect of first executing an atomic M -step and in the thus produced state
an atomic N -step; analogously for submachine execution. Machines with these
constructs are called turbo ASMs because they offer two levels of analysis, the
macro step level and the view of a macro step as a sequence of micro steps (which
may contain again some macro steps, etc.).

We provide in this paper a similar application of the ASM semantics frame-
work to define the meaning of await for concurrent ASMs, in the context of the
synchronous parallelism of single-agent ASMs.

1.2 Atomicity in Control State ASMs and +CAL

When discussing this issue with Margus Veanes from Microsoft Research at the
ABZ2008 conference in London, our attention was drawn to the recently defined
language +CAL for describing concurrent algorithms. It is proposed in [21] as “an
algorithm language that is designed to replace pseudo-code” (op.cit., abstract),
the idea being that describing algorithms in the +CAL language provides two
advantages over traditional pseudo-code whose “obvious problems . . . are that it
is imprecise and . . . cannot be executed” (op.cit. p.2): a) “a user can understand
the precise meaning of an algorithm by reading its TLA+ translation”, and b)
“an algorithm written in +CAL . . . can be executed—either exhaustively by
model checking or with non-deterministic choices made randomly”(ibid.), using
the TLC model checker.

These two features advocated for +CAL are not new. ASMs have been used
successfully since the beginning of the 1990’ies as an accurate model for pseudo-
code, explicitly proposed in this function in [2,3]. A user can understand the
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precise meaning of ASMs directly, namely as a natural extension of Finite State
Machines (FSMs). Defining rigorously the operational semantics of ASMs uses
only standard algorithmic concepts and no translation to a logic language. Fur-
thermore, comprehensive classes of ASMs have been made executable, using var-
ious interpreters, the first two defined in 1990 at Quintus and at the university of
Dortmund (Germany) for experiments with models of Prolog,2 the more recent
ones built at Microsoft Research (AsmL [12]) and as open source project (Core-
ASM [10]). ASMs have also been linked to various standard and probabilistic
model checkers [25,9,22,15,16,14,17,23]. Last but not least from ASMs reliable
executable code can be compiled, for a published industrial example see [6].

What we find interesting and helpful in +CAL is (besides the link it provides
to model checking) the succinct programming notation it offers for denoting
groups of sequentially executed instructions as atomic steps in a concurrent al-
gorithm, interpreted as basic steps of the underlying algorithm. As mentioned
above, such a malleable atomicity concept allowing sequential subcomputations
and procedure calls has already been provided through the seq, iterate and
submachine concepts for turbo ASMs [7], which turn a sequence or iteration of
submachine steps into one atomic step for the main machine. However the label-
notation of +CAL, which is a variation of the control state notation for FSMs,
will be more familiar to algorithm designers and programmers than the seq no-
tation (in AsmL [12] the name step is used instead of seq) and is more concise.
We will illustrate that one can exploit the +CAL notation in particular as a
convenient textual pendant to the FSM flowchart diagram description technique
for control state ASMs which contain turbo ASM submachines. As side effect
of linking corresponding features in +CAL and in concurrent ASMs one obtains
an ASM interpretation for +CAL programs, which supports directly the intu-
itive understanding of +CAL constructs and is independent of the translation of
+CAL to the logic language TLA+.3

In Section 2 we extend the standard semantics of ASMs to concurrent ASMs
with the await construct. For the standard semantics of ASMs we refer the
reader to [8]. In Section 2 we link the corresponding constructs in +CAL and in
the class of concurrent constrol state ASMs with await.

2 Concurrent ASMs with the await Construct

A basic ASM consists of a signature, a set of initial states, a set of rule decla-
rations and a main rule. A rule is essentially a parallel composition of so-called
transition rules if Cond then Updates, where Updates is a finite set of assign-
ment statements f (e1, . . . , en) := e with expressions ei , e. In each step of the
machine all its transition rules that are applicable in the given state are exe-

2 see the historical account in [4]
3 For the sake of completeness we remark that there is a simple scheme for translating

basic ASMs to TLA+ formulae which describe the intended machine semantics. Via
such a translation one can model check ASMs using the TLC model checker of TLA+.
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cuted simultaneously (synchronous parallelism); a rule is applicable in state S if
its guard Cond evaluates in S to true.

In more detail, the result of an M -step in state S can be defined in two parts.
First one collects the set U of all updates which will be performed by any of the
rules if Cond then Updates that are applicable in the given state S ; by update
we understand a pair (l , v) of a location l and its to be assigned value v , read:
the value the expression exp of an assignment f (e1, . . . , en) := e evaluates to
in S . The reader may think of a location as an array variable (f , val), where
val consists of a sequence of parameter values to which the expressions ei in the
left side f (e1, . . . , en) of the assignment evaluate in S . Then, if U is consistent,
the next (so-called internal) state S + U resulting from the M -step in state S is
defined as the state that satisfies the following two properties:

for every location (f , val) that is not element of the update set U , its value,
written in standard mathematical notation as f (val), coincides with its value
in S (no change outside U ),
each location (f , val) with update ((f , val), v) ∈ U gets as value f (val) = v
(which may be its previous value in S , but usually will be a new value).

In case U is inconsistent no next state is defined for S , so that the M -
computation terminates abruptly in an error state because M can make no step
in S . For use below we also mention that in case the next internal state S + U
is defined, the next step of M takes place in the state S + U + E resulting
from S +U by the environmental updates of (some of) the monitored or shared
locations as described by an update set E .

The reader who is interested in technical details can find a precise (also
a formal) definition of this concept in the AsmBook [8, Sect.2.4]. In particular,
there is a recursive definition which assigns to each of the basic ASM constructs4

P its update set U such that yield(P ,S , I ,U ) holds (read: executing transition
rule P in state S with the interpretation I of the free variables of P yields the
update set U ), for each state S and each variable interpretation I . We extend
this definition here by defining yield(await Cond ,S , I ,U ). The guiding principle
of the definition we are going to explain is the following:

(the agent which executes) an ASM M becomes blocked when at least one
of its rules, which is called for execution and will be applied simultaneously
with all other applicable rules in the given state S , is an await Cond whose
Cond evaluates in S to false,
(the agent which executes) M is unblocked when (by actions of other execut-
ing agents which constitute the concurrent environment where M is running)
a state S ′ is reached where for each await Cond rule of M that is called
for execution in S ′, Cond evaluates to true.
In the sequential programming or interleaving-based action systems context

there is at each moment at most one applicable rule to consider and thus at most
one await Cond called for execution. In the ASM computation model, where at
each moment each agent fires simultaneously all the rules that are applicable, it
4 skip, par, if then else, let, choose, forall, seq and machine call
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seems natural to block the computation at the level of agents, so that possibly
multiple await Cond machines have to be considered simultaneously. Variations
of the definition below are possible. We leave it to further experimentation to
evaluate which definition fits best practical needs, if we do not want to abandon
the advantage of the synchronous parallelism of basic ASMs (whose benefit is to
force the designer to avoid sequentiality wherever possible).

The technical idea is to add to the machine signature a location phase with
values running or wait ,5 which can be used to prevent the application of the
internal state change function S + U in case Cond of an await Cond called for
execution does not evaluate to true in S . In this case we define await Cond to
yield the phase update (phase,wait) and use the presence of this update in U
to block the state change function S + U from being applied. This leads to the
following definition:

yield(await Cond ,S , I ,U ) =
∅ if Cond is true in S // proceed
{(phase,wait)} else //change phase to wait

We now adapt the definition of the next internal state function S + U to
the case that U may contain a phase update. The intuitive understanding of an
await Cond statement is that the executing agent starts to wait, continuously
testing Cond without performing any state change, until Cond becomes true
(through actions of some other agents in the environment). In other words,
a machine M continues to compute its update set, but upon encountering an
await Cond with false Cond ition it does not trigger a state change. We therefore
define as follows (assuming yields(M ,S , I ,U )):

If phase = running in S and U contains no update (phase,wait), it means
that no await Cond statement is called to be executed in state S . In this
case the definition of S+U is taken unchanged from basic ASMs as described
above and phase = running remains unchanged.
If phase = running in S and the update (phase,wait) is an element of U ,
then some await Cond statement has been called to be executed in state S
and its wait Cond ition is false. In this case we set S+U = S+{(phase,wait)}.
This means that the execution of any await Cond statement in P whose
Cond is false in the given state S blocks the (agent who is executing the)
machine P as part of which such a statement is executed. Whatever other
updates—except for the phase location—the machine P may compute in U
to change the current state, they will not be realized (yet) and the internal
state remains unchanged (except for the phase update).
If in state S phase = wait holds and the update (phase,wait) is element
of U , we set the next internal state S + U as undefined (blocking effect
without internal state change). This definition reflects that all the await

5 phase could be used to take also other values of interest in the concurrency context,
besides running and wait for example ready , suspended , resumed , etc., but here we
restrict our attention to the two values running and wait .
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Cond statements that are called for execution in a state S have to succeed
simultaneously, i.e. to find their Cond to be true, to let the execution of P
proceed (see the next case). In the special case of a sequential program
without parallelism, in each moment at most one await Cond statement is
called for execution so that in this case our definition for ASMs corresponds
to the usual programming interpretation of await Cond .
If phase = wait holds in S and U contains no phase update (phase,wait), it
means that each await Cond statement that may be called to be executed
in state S has its cond evaluated to true. In this case the next internal
state is defined as S + U + {(phase, running)}, i.e. the internal state S +
U as defined for basic ASMs with additionally phase updated to running .
Otherwise stated when all the waiting conditions are satisfied, the machine
continues to run updating its state via the computed set U of updates.

The first and fourth case of this definition imply the conservativity of the
resulting semantics with respect to the semantics of basic ASMs: if in a state
with phase = running no await Cond statement is called, then the machine
behaves as a basic ASM; if in a state with phase = wait only await Cond
statements with true waiting Cond ition are called, then the machine switches to
phase = running and behaves as a basic ASM.

One can now define await Cond M as parallel composition of await Cond
and M . Only when Cond evaluates to true will await Cond yield no phase
update (phase,wait) so that the updates produced by M are taken into account
for the state change obtained by one M -step.

await Cond M =
await Cond
M

Remark. The reason why we let a machine M in a state S with phase = wait
recompute its update set is twofold. Assume that await Cond is one of the rules
in the then branch M1 of M = if guard then M1 else M2, but not in the else
branch. Assume in state S guard is true, phase = running and Cond is false, so
that executing await Cond as part of executing M1 triggers the blocking effect.
Now assume that, due to updates made by the environment of M , in the next
state guard changes to false. Then await Cond is not called for execution any
more, so that the blocking effect has vanished. Symmetrically an await Cond
that has not been called for execution in S may be called for execution in the next
state S ′, due to a change of a guard governing await Cond ; if in S ′ Cond ition
is false, a new reason for blocking M appears that was not present in state S .
Clearly such effects cannot happen in a sequential execution model because there,
a program counter which points to an await Cond statement will point there
until the statement proceeds because Cond became true.

The above definition represents one possibility to incorporate waiting into
the ASM framework. We are aware of the fact that its combination with the
definition of turbo ASMs may produce undesired effects, due to the different
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scoping disciplines of the two constructs.6 Other definitions of await Cond M
with different scoping effect and combined with non-atomic sequentialization
concepts should be tried out.

3 Linking Concurrent ASMs and +CAL Programs

The reader has seen in the previous section that in the ASM framework a basic
step of a machine M is simply a step of M , which computes in the given state with
given variable interpretation the set U of updates such that yield(M ,S , I ,U )
and applies it to produce the next state S + U . Once an update set U has been
used to build S + U , there remains no trace in S + U about which subsets
of Updates, via which M -rule if Cond then Updates that is executable in the
given state, have contributed to form this state. Thus each step of an ASM is
considered as atomic and the grain of atomicity is determined by the choice made
for the level of abstraction (the guards and the abstract updates) at which the
given algorithm is described by M . Typically precise links between corresponding
ASMs at different levels of abstraction are established by the ASM refinement
concept defined in [5].

The ASM literature is full of examples which exploit the atomicity of the sin-
gle steps of an ASM and their hierarchical refinements. A simple example men-
tioned in the introduction is the class of turbo ASMs, which is defined from basic
ASMs by allowing also the sequential composition M = M1 seq M2 or iteration
M = iterate M1 of machines and the (possibly recursive) call M (a1, . . . , an) of
submachines for given argument values ai . In these cases the result of executing
in state S a sequential or iterative step or a submachine call is defined by com-
puting the comprehensive update set, produced by the execution of all applicable
rules of M , and applying it to define the next state. The definition provides a
big-step semantics of turbo ASMs, which has been characterized in [13] by a
tree-like relation between a turbo ASM macro step and the micro steps it hides
(see [8, 4.1]).

Another way to describe the partitioning of an ASM-computation into atomic
steps has been introduced in [3] by generalizing Finite State Machines (FSMs)
to control state ASMs. In a control state ASM M every rule has the following
form:

Fsm(i , cond , rule, j ) =
if ctl state = i then

if cond then
rule
ctl state := j

Such rules are visualized in Fig. 2, which uses the classical graphical FSM
notation and provides for it a well-defined textual pendant for control state
6 Consider for example M seq await Cond or await Cond seq M , where M contains

no await, applied in a state where Cond evaluates to false. The update (phase,wait)
of await Cond will be overwritten by executing M even if Cond remains false.
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ASMs with a rigorously defined semantics. We denote by dgm(i , cond , rule, j )
the diagram representing Fsm(i , cond , rule, j ). We skip cond when it is identi-
cal to true. In control state ASMs each single step is controlled by the unique
current control state value and a guard. Every M -step leads from the uniquely
determined current ctl state value, say i , to its next value jk (out of {j1, . . . , jn},
depending on which one of the guards condk is true in the given state7)—the
way FSMs change their internal states depending on the input they read. Other-
wise stated the control state pair (i , jk ) specifies the desired grain of atomicity,
namely any rulek constituting a single machine step. This is essentially what is
used in +CAL to indicate atomicity, except for the notational difference that the
control states are written as labels and the fact that +CAL is based upon the
sequential programming paradigm (see the details below).

n

cond 1

cond nrule

1rule

i

j

jn

1

if ctl state = i then
if cond1 then

rule1

ctl state := j1
· · ·

if condn then
rulen

ctl state := jn

Fig. 2. Flowchart for control state ASMs

However, each rulek may be a complex ASM, for example another control-
state ASM whose execution may consists of multiple, possibly sequential or it-
erated substeps.8 If their execution has to be considered as one step of the main
machine M where rulek appears, namely the step determined by going from
control state i to control state jk , a notation is needed to distinguish the control
states within rulek from those which define the boundary of the computation
segment that is considered as atomic.

There are various ways to make such a distinction. The M seq N operator
can be interpreted as composing control state ASMs with unique start and end
control state, namely by identifying endM = startN . Suppressing the visualiza-
tion of this intermediate control state, as indicated in Fig. 3, provides a way
to render also graphically that the entire machine execution leading from con-
trol state start = startM to control state end = endN is considered as atomic.

7 If two guards condk , condl have a non empty intersection, in case ctl statek 6=
ctl statel an inconsistent update set U is produced so that by definition S + U
is undefined. If instead a non-deterministic interpretation of FSM rules is intended,
this non-determinism can be expressed using the ASM choose construct.

8 Replacing Fsm(i , rule, j ) by Fsm(i ,M , j ) with a new control state ASM M is a
frequent ASM refinement step, called procedural in [5].
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This corresponds to the distinction made in the +CAL language: it is based
upon sequential control (denoted by the semicolon) the way we are used from
programming languages, but specific sequences of such sequential steps can be
aggregated using labels, namely by defining as (atomic) step each “control path
that starts at a label, ends at a label, and passes through no other labels” (op.cit.,
p.19). +CAL programs appear to be equivalent to control state ASMs with turbo
submachines; the labels play the role of the control states and the turbo sub-
machines the role of sequentially executed nonatomic +CAL code between two
labels. This is explained by further details in Sect. 3.1 and illustrated in Sect. 3.2
by writing the major example from [21] as a turbo control state ASM.

Fig. 3. Sequential composition of control state ASMs

3.1 Control State ASM Interpretation of +CAL Programs

+CAL is proposed as an algorithm language to describe multiprocess algorithms.
The chosen concurrency model is interleaving:

A multiprocess algorithm is executed by repeatedly choosing an arbitrary
process and executing one step of that process, if that step’s execution
is possible. [20, p.26]

This can be formalized verbatim by an ASM-scheme MultiProcess for
multi-agent ASMs, parameterized by a given set Proc of constituting processes.
The execution behavior of each single process is defined by the semantics of
basic (sometimes misleadingly also called sequential) ASMs. The ASM choose
construct expresses choosing, for executing one step, an arbitrary process out of
the set CanExec(Proc) of those P ∈ Proc which can execute their next step:9

MultiProcess(Proc) =
choose P ∈ CanExec(Proc)

P

9 There are various ways to deal with the constraint “if that step’s execution is pos-
sible”. Using the ASM choose operator has the effect that in case CanExec(P) is
empty, nothing happens (more precisely: an empty update set is produced whose ap-
plication does not change the current state). If one wants this case to be interpreted
as explicitly blocking the scheduler, it suffices to add the await CanExec(P) 6= ∅
machine. The predicate CanExec(P) is defined inductively.
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Therefore for the rest of this section we focus on describing the behavior
of single +CAL programs by ASMs, so that MultiProcess becomes an inter-
preter scheme for +CAL programs. The program behavior is determined by the
execution of the statements that form the program body (called algorithm body
in +CAL), so that we can concentrate our attention on the operational descrip-
tion of +CAL statements and disregard here the declarations as belonging to the
signature definition.

We apply the FSM flowchart notation to associate to each +CAL program
body P a diagram dgm(P) representing a control state ASM asm(P) which
defines the behavior of P (so that no translation of P to TLA+ is needed to define
the semantics of P). Each label in P is interpreted as what we call a concurrent
control state. The other control states in dgm(P) are called sequential control
states because they serve to describe the sequentiality of micro-steps (denoted
in P by the semicolon), the constituents of sequences which are considered as an
atomic step. They are the control states that are hidden by applying the seq,
while and submachine call operators. Since the construction of dgm(P) uses only
standard techniques we limit ourselves here to show the graphical representation
for each type of +CAL statements. Out of these components and adding rules
for the evaluation of expressions one can build a +CAL interpreter ASM, using
the technique developed in [24] to construct an ASM interpreter for Java and
JVM programs. We leave out the print statement and the assert statement; the
latter is of interest only when model checking a +CAL program.

As basic statements a +CAL program can contain assignment statements
or the empty statement skip. Program composition is done via the structured
programming constructs sequencing (denoted by the semicolon), if then else,
while together with await (named when) statements (a concurrent pendant of
if statements), two forms of choice statements (nondeterminism), statements to
call or return from subprograms. Since statements can be labeled, also Goto l
statements are included in the language, which clearly correspond to simple
updates of ctl state resp. arrows in the graphical representation.

For the structured programming constructs the associated diagram dgm(stm)
defining the normal control flow consists of the traditional flowchart representa-
tion of FSMs, as illustrated in Fig. 3 and Fig. 4. One could drop writing “yes”
and “no” on the two exits if the layout convention is adopted that the “yes”
exit is on the upper or hight half of the rhomb and the “no” exit on the lower
or left half, as is usually the case. In Fig. 4 we explicitly indicate for each dia-
gram its control state for begin (called start) and end (called done), where each
dgm(stm) has its own begin and end control state, so that start and done are
considered as implicitly indexed per stm to guarantee a unique name. Most of
these control states will be sequential control states in the diagram of the entire
program that is composed from the subdiagrams of the single statements. These
sequential control states can therefore be replaced by the turbo ASM operator
seq as done in Fig. 3, which makes the atomicity of the sequence explicit.

await statements are written when Cond ; in +CAL. The semantical defini-
tion of asm(await Cond) has been given within the ASM framework in Sect. 2,
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Fig. 4. Control State ASM for Structured Programming Concepts

extending the sequential programming definition in Fig. 1. For the visualization
we define dgm(when Cond ; ) by the triangle shown in that figure.

Basic statements stm are represented by the traditional FSM graph of Fig. 2,
in Sect. 3 denoted by dgm(start , asm(stm), done). The statement skip; “does
nothing” and thus has the behavior of the homonymous ASM asm(skip ; ) =
skip, which in every state yields an empty update set. An assignment state-
ment in +CAL is a finite sequence stm = lhs1 := exp1 || . . . || lhsn := expn of
assignments, executed by “first evaluating the right-hand sides of all its assign-
ments, and then performing those assignments from left to right”. This behavior
is that of the following ASM, where the expression evaluation is performed in
parallel for all expressions in the current state, whereafter the assignment of the
computed values is done in sequence.10

10 It seems that this treatment of assignment statements is related to the semantics of
nested EXCEPTs in TLA+ and thus permits a simple compilation.
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asm(lhs1 := exp1 || . . . || lhsn := expn ; ) =
forall 1 ≤ i ≤ n let xi = expi

lhs1 := x1 seq . . . seq lhsn := xn

The behavior of statements Goto l ; is to “end the execution of the current
step and causes control to go to the statement labeled l” [20, p.25], where-
for such statements are required to be followed (in the place where they oc-
cur in the program) by a labeled statement. Thus the behavior is defined by
asm(Goto l ; ) = (ctl state := l) and dgm(Goto l ; ) as an arrow leading to
control state l from the position of the Goto l ;, which is a control state in case
the statement is labeled.

The two constructs expressing a non determinstic choice can be defined as
shown in Fig. 5.

Fig. 5. Control State ASMs for Choice Statements
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The first type of non deterministic statement either M1 or M2 or . . . or
Mn ; chooses an executable statement among finitely many statements Mi . It
is defined to be executable if and only if one of Mi is executable. This means
that the execution of the statement has a blocking character, namely to wait
as long as none of the substatements is executable. Similarly the second type of
non deterministic statement, written with id ∈ S do M ;, is meant to choose
an element in a set S if there is one and to execute M for it. The statement is
considered as not executable (blocking) if the set to choose from is empty.

Since the ASM choose construct is defined as non blocking, but yields an
empty update set in case no choice is possible, we make use of the await con-
struct to let choose have an effect only when there is something to choose from.
We write CanExec for the executability predicate.

asm(either M1 or M2 or . . . or Mn ; ) =
await forsome 1 ≤ j ≤ n CanExec(Mj )
choose i ∈ {j | CanExec(Mj ) and 1 ≤ j ≤ n}

asm(Mi)

asm(with id ∈ S do M ; ) =
await S 6= ∅
choose id ∈ S

asm(M (id))

The remaining +CAL statements deal with procedure call and return in
a standard stack machine like manner. Define frame as quadruple consisting
of a control state, the values of the procedure’s arguments respectively of its
local variables and the procedure name. We denote the frame stack by a lo-
cation stack and the current frame by a quadruple of four locations ctl state,
args (which is a sequence, of any finite length, of variables standing for the pa-
rameters), locals (which is a sequence, of any finite length, of local variables)
and proc (which denotes the currently executed procedure). For a call state-
ment P(expr1, . . . , exprn);, “executing this call assigns the current values of the
expressions expri to the corresponding parameters parami , initializes the proce-
dure’s local variables, and puts control at the beginning of the procedure body”,
which “must begin with a labeled statement” [20, p.27]. As preparation for the
return statement one has also to record the current frame on the frame stack .
We denote the sequence of local variables of P by locVars(P) and their ini-
tial values by initVal . For the sake of brevity, for sequences locs of locations
and vals of values we write locs := vals for the simultaneous componentwise
assignment of the values to the corresponding locations, to be precise for the
machine asm(locs1 := vals1 || . . . || locsn := valsn ; ) defined above where
locs = (locs1, . . . , locsn) and vals = (vals1, . . . , valsn). Let startP denote the
label of the first statement of P .

asm(P(exp1, . . . , expn)) =
PushFrame(P , (exp1, . . . , expn)

where
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PushFrame(P , exps) =
stack := stack .[ctl state, args, locals, proc] // push current frame
proc := P
args := exps // pass the call parameters
locals := initVal(locVars(P)) // initialize the local variables
ctl state := startP // start execution of the procedure body

A return statement consists in the inverse machine PopFrame. If ctl is the
point of a call statement in the given program, let next(ctl) denote the point
immediately following the call statement.

asm(return) =
let stack = stack ′.[ctl , prevArgs, prevLocs, callingProc] in

ctl state := next(ctl) // go to next stm after the call stm
args := prevArgs // reassign previous values to args
locals := prevLocs // reassign previous values to locals
proc := callingProc
stack := stack ′ // pop frame stack

3.2 Fast Mutex Example

Fig. 6 illustrates the diagram notation explained in Sect. 3.1 for +CAL programs.
The +CAL program for the fast mutual exclusion algorithm from [19] is given

in [21]. Fig. 6 does not show the declaration part, which is given in the signature
definition. We write Ncs and Cs for the submachines defining the non critical
resp. critical section, which in +CAL are denoted by an atomic skip instruction
describing—via the underlying stuttering mechanism of TLA—a nonatomic pro-
gram. Given the structural simplicity of this program, which says nothing about
the combinatorial complexity of the runs the program produces, there is only
one sequential subprogram. It corresponds to two simultaneous updates, so that
the sequentialization can be avoided and really no turbo ASM is needed because
there are no control states which do not correspond to +CAL labels. This case
is a frequent one when modeling systems at an abstract level, as the experi-
ence with ASMs shows. In general, the synchronous parallelism of ASMs drives
the model designer to avoid sequentialization as much as possible and to think
instead about orthogonal components which constitute atomic steps.

Comparing the two representations the reader will notice that even the lay-
outs can be made to be in strict correspondence, so that each of the labeled
lines in the textual description corresponds to a line starting a new control state
subdiagram. This is in line with the following well-known fact we quote from [18,
p.72]:

The visual structure of go to statements is like that of flowcharts, except
reduced to one dimension in our source languages.

We can confirm from our own work the experience reported in [21] that the
notation works well for programs one can write on a couple of pages, making
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Fig. 6. Control state ASM for the Fast Mutual Exclusion +CAL Program

judicious use of procedures where possible to cut down the size of each single
program one has to analyze. Such programs seem to be the main target for
+CAL code and model checkable TLA+ translations for concurrent algorithms
with combinatorially involved behaviour. For larger programs flowcharts present
some small advantage over the representation of programs as strings, however,
as Knuth continues op.cit.:

. . . we rapidly loose our ability to understand larger and larger flowcharts;
some intermediate levels of abstraction are necessary.

The needed abstractions can be provided in control state ASMs by using sep-
arately defined complex submachines, which in the flowcharts appear as simple
rectangles to be executed when passing from one to the next control state. This
follows an advice formulated by Knuth op.cit. as one of the conclusions of his
discussion of structured programming with go to statements:
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. . . we should give meaningful names for the larger constructs in our pro-
gram that correspond to meaningul levels of abstraction, and we should
define those levels of abstraction in one place, and merely use their names
(instead of including the detailed code) when they are used to build larger
concepts.
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