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Abstract. To overcome the practical limitations of partial-order runs of
‘distributed ASMs’ (Abstract State Machines) proposed by Gurevich, we
have defined a concept of concurrent runs of multi-agent ASMs and could
show that concurrent ASMs capture a natural language-independent
axiomatic definition of concurrent algorithms, thus generalising Gure-
vich’s seminal ‘Sequential ASM Thesis’ from sequential to concurrent
algorithms. However, we remained intrigued by the fact that Blass and
Gurevich used partial-order runs of distributed ASMs to explain runs of
sequential recursive algorithms. We discovered that also the inverse sim-
ulation holds: for every distributed ASM with partial order runs, these
runs can be described by runs of a sequential recursive algorithm. This
surprising result clarifies the difference in expressivity between partial-
order and concurrent runs.

1 Introduction

In [8, Sect.2-3] the concept of sequential Abstract State Machines (seq-ASMs)
has been defined for which the ‘Sequential ASM Thesis’ [7]—to capture the
intuitive notion of sequential algorithm—could be proved from three natural
postulates, see [9]. In [8, Sect.6] the concept of sequential ASM runs is extended
by partial-order runs of a specific class of multi-agent ASMs called distributed
ASMs. However, contrary to the great variety of successful applications of se-
quential ASMs, the use of distributed ASMs with partial-order runs turned out
to be impractical to adequately model concurrent systems. It has been replaced
in [4] by a language-independent axiomatic characterization of concurrent runs,
adding a fourth postulate (on the intuitive meaning of concurrency), together
with a definition of concurrent ASMs, based upon which the Sequential ASM
Thesis and its proof could be generalized to a Concurrent ASM Thesis—to cap-
ture the proposed intuitive notion of concurrent algorithms.

In reaction to some scepticism expressed in [13], whether recursive algorithms
can be adequately defined by ASMs, partial-order runs of distributed ASMs have
been used in [1] to simulate the computations of recursive algorithms.3 For a long
time we have been intrigued by this proposal, since on the one side, a simple

3 Already the definition of recursive ASMs in [10] uses a special case of this translation
of recursive into distributed computations.
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sequential extension of ASMs suffices for the specification of recursive algorithms
(see for example [2]), on the other side partial-order runs of distributed ASMs
turned out to be impractical for modeling truly concurrent systems (see [4]).

In Sect. 3 we review Gurevich’s description of distributed ASMs with partial-
order runs and analyse the proof that the runs of recursive algorithms can be
defined as partial-order runs of distributed ASMs. The analysis reveals that the
distributed ASMs used to define recursive runs by partial-order runs are finitely
composed concurrent ASMs with non-deterministic sequential (nd-seq) compo-
nents (see the definition in Sect.3). In Sect.4 we show the surprising discovery
that also the inverse relation holds, namely: for every finitely composed concur-
rent algorithm with nd-seq components, if its concurrent runs are definable by
partial-order runs, then the algorithm can be simulated by a recursive algorithm.
This establishes the main result of this paper.

Theorem 1.1 (Main Theorem). Recursive algorithms are behaviourally equiv-
alent to finitely composed concurrent algorithms C with nd-seq components such
that all concurrent C-runs are definable by partial-order runs.4

The equivalence of runs of recursive ASMs and of partial-order runs of dis-
tributed ASMs makes it explicit in which sense concurrent ASM runs as char-
acterized in [4] are more expressive than the ‘partial-order runs of distributed
ASMs’ proposed in [8, Sect.6].

We will also show that if the concurrent runs are restricted further to partial-
order runs of a concurrent algorithm with a fixed finite number of agents and
fixed non-deterministic sequential (nd-seq) programs, one can simulate them
even by a non-deterministic sequential algorithm. An interesting example of this
special case are partial-order runs of Petri nets and more generally of Mayr’s
Process Rewrite Systems [12].

For the proofs we use an axiomatic characterization of recursive algorithms as
sequential algorithms enriched by call steps,5 such that the parent-child relation-
ship between caller and callee defines well-defined shared locations representing
input and return parameters. This characterization is reviewed in Sect.2 and is
taken from [5] where it appears as Recursion Postulate and is added to Gure-
vich’s three postulates for sequential ASMs [9] as basis for the proof of an ASM
thesis for recursive ASMs.

We assume the knowledge of [8], [9] and [4] and use without further ex-
planations standard textbook notations for ASMs, including ambient ASMs [3,
Ch.4.1].

4 We call R behaviourally equivalent to C if each r ∈ R can be simulated by a c ∈ C
and vice versa.

5 To emphasize the sequential nature of recursive algorithms we sometimes use the
term ‘sequential recursive algorithm’. See [5] for the technical reason for this naming
policy.
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2 The Recursion Postulate

We start with a characteristic example to illustrate the intuitive idea of recur-
sion which guided the formulation of the recursion postulate below.6 Take the
mergesort algorithm, which consists of a main algorithm sort and an auxiliary
algorithm merge. Every call to (a copy, we also say an instance of) sort and
every call to (an instance of) the merge algorithm could give rise to a new agent.
However, these agents only interact by passing input parameters and return val-
ues, but otherwise operate on disjoint sets of locations. In addition, a calling
agent always waits to receive return values, which implies that only one or (in
case of parallel calls) a finite number of agents are active in any state.

If one considers mutual recursion, then this becomes slightly more general,
as there is a finite family of algorithms calling (instances of) each other. Fur-
thermore, there may be several simultaneous calls. E.g. in mergesort , sort calls
two copies of itself, each sorting one half of the list of given elements. Such si-
multaneously called copies may run sequentially in one order or the other, in
parallel or even asynchronously. This give rise to non-deterministic execution of
multiple sequential algorithms.

Therefore, for a characterization of recursive algorithms and their compu-
tations we can rely on the capture of non-deterministic sequential algorithms
by non-deterministic sequential ASMs.7 Thus, to axiomatically define recursive
algorithms and their runs it suffices to add to the three postulates for nd-seq
algorithms a Call Step Postulate and a Recursive Run Postulate defined below,
which together form the Recursion Postulate.

To characterize the input/output relation between the input provided by the
caller in a call step and the output computed by the callee for this input we
use the ASM function classification from [6] to distinguish between input, output
and local (also called controlled) function symbols in the signature, the union
of pairwise disjoint sets Σin , Σout and Σloc respectively. We call any nd-seq
algorithm which comes with such a signature and also satisfies the Call Step
Postulate below an algorithm with input and output (for short: i/o-algorithm).
We can then define (sequential) recursive algorithms syntactically as collections
of i/o-algorithms.

Definition 2.1. A recursive algorithm R is a finite set of i/o-algorithms with
one distinguished main algorithm. The elements of R are called components of
R.

The independency condition for (possibly parallel) computations of different
instances of the given algorithms requires that for different calls, in particular for
different calls of the same algorithm, the state spaces of the triggered subcom-
putations are separated from each other. This encapsulation of subcomputations
can be made precise by the concept of ambient algorithms where each instance of

6 For a detailed analysis see [5].
7 The proof for the Sequential ASM Thesis is easily extended from deterministic to

non-deterministic algorithms, see [9, Sect.9.2].
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an algorithm has a unique context parameter for its functions, e.g. its executing
agent (see [3, Ch.4.1]), and is started in an initial state that only depends on its
input locations.8

Now we are ready to formulate the postulate for call steps. In Sect.3.4 we
formalize this postulate by an ASM Call(t0 ← N (t1, . . . , tn)) (see Definition
3.4 and its refinement in Sect.4).

Postulate 1 (Call Step Postulate) When an i/o-algorithm p—the caller,
viewed as parent algorithm—calls a finite number of i/o-algorithms c1, . . . , cn—
the callees, viewed as child algorithms CalledBy(p)—a call relationship (denoted
as CalledBy(p)) holds between the caller and each callee. The caller activates a
fresh instance of each callee ci so that they can start their computations. These
computations are independent of each other and the caller remains waiting—
i.e. performs no step—until every callee has terminated its computation (read:
has reached a final state). For each callee, the initial state of its computation is
determined only by the input passed by the caller; the only other interaction of
the callee with the caller is to return in its final state an output to p.

Definition 2.2. A call relationship holds for (instances of) two i/o-algorithms
Ap (parent) and Ac (child) if and only if they satisfy the following conditions
on their function classification:

ΣA
c

in ⊆ ΣA
p

so that the parent algorithm is able to update input locations
of the child algorithm. Furthermore, Ap never reads the input locations of
Ac .
ΣA

c

out ⊆ ΣA
p

so that the parent algorithm can read the output locations of
the child algorithm. Furthermore, Ap never updates output locations of Ac .
ΣA

c

loc ∩ΣA
p

= ∅ (no other common locations).

Differently from runs of a nd-seq algorithm, where in each state at most one
step of the nd-seq algorithm is performed, in a recursive run a sequential recursive
algorithm R can perform in one step simultaneously one step of each of finitely
many not terminated and not waiting called instances of its i/o-algorithms. This
is expressed by the Recursive Run Postulate. In this postulate we refer to Active
and not Waiting instances of components, which are defined as follows:

Definition 2.3. To be Active resp. Waiting in a state S is defined as follows:

Active(q) iff q ∈ Called and not Terminated(q)
Waiting(p) iff forsome c ∈ CalledBy(p) Active(c)
Called = {main} ∪

⋃
p CalledBy(p)

8 More precisely, one can define an instance of an algorithm A by adding a parameter
a, say for an agent executing the instance Aa = (a,A) of A. a can be used as
environment parameter for the evaluation valS (t , a) of a term t in state S with the
given environment. This yields for different agents a, a ′ different functions fa , fa′ as
interpretation of the same function symbol f , so that the run-time interpretations
of a common signature element f can be made to differ for different agents, due to
different inputs which determine their initial states.
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Called collects the instances of algorithms that are called during the run. The
subset of Called which contains all the children called by p is denoted by
CalledBy(p). Called = {main} and CalledBy(p) = ∅ are true in the initial state
S0, for each i/o-algorithm p ∈ R. In particular, in S0 the original component
main is considered to not be CalledBy(p), for any p.

Postulate 2 (Recursive Run Postulate) For a sequential recursive algo-
rithm R with main component main a recursive run is a sequence S0,S1,S2, . . .
of states9 together with a sequence C0,C1,C2, . . . of sets of instances of compo-
nents of R which satisfy the following constraints:

Recursive run constraint.

C0 is the singleton set C0 = {main}, i.e. every run starts with main,
every Ci is a finite set of instances of components of R which are Active
and not Waiting in state Si ,
every Si+1 is obtained in one R-step by performing in Si simultaneously
one step of each i/o-algorithm in Ci . Such an R-step is also called a
recursive step of R.

Bounded call tree branching. There is a fixed natural number m > 0, de-
pending only onR, which in everyR-run bounds the number of callees which
can be called by a call step.

Remark (on Call Trees). If in a recursive R-run the main algorithm calls
some i/o-algorithms, this call creates a finitely branched call tree whose nodes
are labeled by the instances of the i/o-algorithms involved, with active and not
waiting algorithms labeling the leaves and with the main (the parent) algorithm
labeling the root of the tree and becoming waiting. When the algorithm at a
leaf makes a call, this extends the tree correspondingly. When the algorithm at
a child of a node has terminated its computation, we delete the child from the
tree. The leaves of this (dynamic) call tree are labeled by the active not waiting
algorithms in the run. When the main algorithm terminates, the call tree is
reduced again to the root labeled by the initially called main algorithm.

Usually, it is expected that for recursive R-runs each called i/o-algorithm
reaches a final state, but in general it is not excluded that this is not the case.

In [5] the reader can find a definition of recursive ASMs together with a proof
that they capture (are equivalent to) recursive algorithms as characterized by
the Recursion Postulate. Here we use the postulate as a basis for the proof that
recursive algorithms are captured by ‘distributed ASMs with partial-order runs’,
as defined in [8].

9 For the sake of simplicity we take a state as union of the states of the component
instances in the run, in other words as state over the union of the individual signa-
tures.
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3 Recursive ASMs are distributed ASMs with
partial-order runs

Syntactically, a multi-agent (also called concurrent) algorithm C is defined as a
family of algorithms alg(a), each associated with (‘indexed by’) an agent a ∈
Agent that executes the algorithm in a run. Each (a, alg(a)) resp. alg(a) is called
a component resp. (component) program of C. This applies to distributed ASMs
[8] as well as to recursive or concurrent algorithms and ASMs [4],[5].

To investigate the simulation of recursive runs by partial-order runs of dis-
tributed ASMs (Sect. 3.4) we must explain what are finitely composed concurrent
(Gurevich’s ‘distributed’) algorithms (Sect.3.1) and partial-order resp. concur-
rent runs (Sect.3.2 resp.3.3).

3.1 Finitely composed concurrent algorithms

For recursive algorithms various restrictions on the syntactical definition of
multi-agent algorithms have to be made most of which appear also for distributed
ASMs in [8, Sect.6].

First of all, although the components alg(a) of concurrent algorithms are
not necessarily sequential algorithms, to simulate specific concurrent algorithms
by recursive ones, which are defined as families of nd-seq algorithms, we must
restrict our attention to concurrent algorithms with sequential (though possibly
non-deterministic) components.10

Second, for distributed ASMs it is stipulated in [8, p.31] that the agents are
equipped with instances of programs which are taken from ‘a finite indexed set of
single-agent programs’. This leads to what we call finitely composed concurrent
algorithms or ASMs C where the components can only be copies (read: instances)
of finitely many different nd-seq algorithms or ASMs, which we will call the
program base of C.

Third, for distributed ASMs it is stipulated in [8, 6.2, p.31] that in initial
states there are only finitely many agents, each equipped with a program. We re-
flect this by the (simplifying but equivalent) condition that the runs of a finitely
composed concurrent algorithm or ASM must be started by executing a distin-
guished main component.

Fourth, for distributed ASMs it is stipulated in [8, p.32] that ‘An agent a can
make a move at S by firing Prog(a) ... and change S accordingly. As part of the
move, a may create new agents’, which then may contribute by their moves to
the run in which they were created. For this purpose we use the new function.

We summarize these constraints for distributed ASMs by the notion of finitely
composed concurrent algorithms (read: concurrent ASMs).

Definition 3.1. A concurrent algorithm C is finitely composed iff (i)-(iii) hold:

10 In fact it is shown in [5] that permitting the unbounded forall and choose constructs
results in algorithms far more powerful than the recursive ones.



A Characterization of Distributed ASMs with Partial-order Runs 7

(i) There exists a finite set B of nd-seq algorithms such that each C-program is
of form amb a in r for some program r ∈ B—call B the program base of C.

(ii) There exists a distinguished agent a0 which is the only one Active in any
initial state. Formally this means that in every initial state of a C-run,
Agent = {a0} holds. We denote by main the component in B of which
a0 executes an instance. For partial-order runs of C defined below this im-
plies that they start with a minimal move which consists in executing the
program asm(a0) = amb a0 in main.

(iii) Each program in B may contain rules of form let a = new (Agent) in r .
Together with (ii) this implies that every agent, except the distinguished a0,
before making a move in a run must have been created in the run.

C is called finite iff Agent is finite.

3.2 Partial-order runs

In [8] Gurevich defined (for distributed algorithms) the notion of partial-order
run by a partial order on the set of single moves of the agents which execute the
component algorithms. For a nd-seq algorithm A, to make one move means to
perform one step in a state S .

Definition 3.2. Let C = {(a, alg(a))}a∈Agent be a concurrent algorithm, in
which each alg(a) is an nd-seq algorithm. A partial-order run for C is defined by
a set M of moves of instances of the algorithms alg(a) (a ∈ Agent), a function
ag : M → Agent assigning to each move the agent performing the move, a
partial order ≤ on M , and an initial segment function σ such that the following
conditions are satisfied:

finite history. For each move m ∈ M its history {m ′ | m ′ ≤ m} is finite.
sequentiality of agents. The moves of each agent are ordered, i.e. for any two

moves m and m ′ of one agent ag(m) = ag(m ′) we either have m ≤ m ′ or
m ′ ≤ m.

coherence. For each finite initial segment M ′ ⊆ M (i.e. such that for m ∈
M ′ and m ′ ≤ m we also have m ′ ∈ M ′) there exists a state σ(M ′) over
the combined signatures of the algorithms (a, alg(a)) such that for each
maximum element m ∈ M ′ the state σ(M ′) is the result of applying m to
σ(M ′ − {m}).

3.3 Concurrent runs

In a concurrent run as defined in [4], multiple agents with different clocks may
contribute by their single moves to define the successor state of a state. Therefore,
when a successor state Si+1 of a state Si is obtained by applying to Si multiple
update sets Ua with agents a in a finite set Agenti ⊆ Agent , each Ua is required
to have been computed by a ∈ Agenti in a preceding state Sj , i.e. with j ≤ i . It
is possible that j < i holds so that for different agents different alg(a)-execution
speeds (and purely local subruns to compute Ua) can be taken into account.



8 Egon Börger, Klaus-Dieter Schewe

This can be considered as resulting from a separation of a step of an nd-seq
algorithm alg(a) into a read step—which reads location values in a state Sj—
followed by a write step which applies the update set Ua computed on the basis
of the values read in Sj to a later state Si (i ≥ j ). We say that a contributes to
updating the state Si to its successor state Si+1, and that a move starts in Sj and
contributes to updating Si (i.e. it finishes in Si+1). This is formally expressed
by the following definition of concurrent ASMs and their runs.

Definition 3.3. Let C be a concurrent algorithm of component algorithms
pgm(a) (read: ASM rules) with associated agents a ∈ Agent . A concurrent run of
C is defined as a sequence S0,S1, . . . of states together with a sequence A0,A1, . . .
of finite subsets of Agent , such that S0 is an initial state and each Si+1 is obtained
from Si by applying to it the updates computed by the agents in Ai , where each
a ∈ Ai computes its update set Ua on the basis of the location values (including
the input and shared locations) read in some preceding state Sj (i.e. with j ≤ i)
depending on a.

Remark. In this definition we deliberately permit the set of Agents to be infinite
or dynamic and potentially infinite, growing or shrinking in a run. In Definition
3.2 above, the set of Agents is fixed by the set M of moves.

3.4 Simulation of recursive by partial-order runs

We are now ready to specify recursive algorithms by distributed ASMs, following
the thought proposed in [1]. For the sake of precision and simplicity we formulate
the construction in terms of ASMs; due to the characterization theorems in [5]
and[4] this implies no loss of generality.

Theorem 3.1. Every recursive ASM R can be simulated by a finitely composed
concurrent ASM CR with nd-seq ASM components for which every concurrent
run of CR is definable by a partial-order run.

Proof. Let R be a recursive ASM given with distinguished program main. We
define a finitely composed concurrent ASM CR with program base {r∗ | r ∈ R},
where r∗ is defined as

r∗ = if Active(r) and not Waiting(r) then r .

In doing so, for each call rule r = t0 ← N (t1, . . . , tn) in R we use for its trans-
lation the following ASM Call(t0 ← N (t1, . . . , tn)), which rigorously defines the
behavioral interpretation of the call rule r (for details see [5]):

Definition 3.4. Call(t0 ← N (t1, . . . , tn)) =
let N (x1, . . . , xn) = q // declaration of N
let v1 = t1, . . . , vn = tn // input evaluation valS (ti , self) by caller
let t0 = f (t ′1, . . . , t

′
k )

let v ′1 = t ′1, . . . , v
′
k = t ′k

let c = new (Agent)
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pgm(c) := amb c in q // equip callee with its program instance
Insert(c,CalledBy(self))
Initialize(qc , v1/x1, . . . , vn/xn , f (v ′1, . . . , v

′
k )/xo)

CalledBy(c) := ∅

Note that the call is a call-by-value and that (f , (v ′1, . . . , v
′
k )) denotes the

output location whose value the caller expects to be updated by the callee with
the return value.

By definition, r∗ can only contribute a non-empty update set to form a state
Si+1 in a concurrent run, if r is Active and not Waiting ; this reflects that by the
recursive run postulate, in every step of a recursive run of R only Active and
not Waiting rules are executed.

The definition of r∗ obviously guarantees that CR simulates R step by step:
in each run step the same Active and not Waiting rules r respectively r∗ and
their agents are selected for their simultaneous execution and their rules perform
the same state change.

Note that by definition 3.4 of Call(i/o-rule), each agent operates in its own
state space so that the view of an agent’s step as read-step followed by a write-
step is equivalent to the atomic view of this step. Note also that in a concurrent
run of CR the Agent set is dynamic, in fact it grows with each execution of a call
rule, together with the number of instances of R-components executed during a
recursive run of R.

It remains to define every concurrent run (S0,A0), (S1,A1), . . . of CR by a
partial-order run. For this we define an order on the set M of moves made during
a concurrent run, showing that it satisfies the constraints on finite history and
the sequentiality of agents, and then relate each state Si of the run to the state
computed by the set Mi of moves performed to compute Si (from S0), showing
that Mi is a finite initial segment of M and that the associated state σ(Mi)
equals Si and satisfies the coherence condition.

Each successor state Si+1 in a concurrent run of CR is the result of applying to
Si the write steps of finitely many moves of agents in Ai . This defines the function
ag , which associates agents with moves, and the finite set Mi of all moves finished
in a state belonging to the initial run segment [S0, . . . ,Si ]. Let M = ∪iMi . The
partial order ≤ on M is defined by m < m ′ iff move m contributes to update
some state Si (read: finishes in Si) and move m ′ starts reading in a later state
Sj with i + 1 ≤ j . Thus, by definition, Mi is an initial segment of M .

To prove the finite history condition, consider any m ′ ∈ M and let Sj be
the state in which it is started. There are only finitely many earlier states
S0, . . . ,Sj−1, and in each of them only finitely many moves m can be finished,
contributing to update Sj−1 or an earlier state.

The condition on the sequentiality of the agents follows directly from the
definition of the order relation ≤ and from the fact that in a concurrent run, for
every move m = (readm ,writem) executed by an agent, this agent performs no
other move between the readm -step and the corresponding writem -step in the
run.
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This leaves us to define the function σ for finite initial segments M ′ ⊆ M and
to show the coherence property. We define σ(M ′) as result of the application of
the moves in M ′ in any total order extending the partial order ≤. For the initial
state S0 we have σ(∅) = S0. This implies the definability claim Si = σ(Mi).

The definition of σ is consistent for the following reason. Whenever two moves
m 6= m ′ are incomparable, then either they both start in the same state or say
m starts earlier than m ′. But m ′ also starts earlier than m finishes. This is only
possible for agents ag(m) = a and ag(m ′) = a ′ whose programs pgm(a), pgm(a ′)
are not in an ancestor relationship in the call tree. Therefore these programs have
disjoint signatures, so that the moves m and m ′ could be applied in any order
with the same resulting state change.

To prove the coherence property let M ′ be a finite initial segment, and let
M ′′ = M ′ \M ′

max, where M ′
max is the set of all maximal elements of M ′. Then

σ(M ′) is the result of applying simultaneously all moves m ∈ M ′
max to σ(M ′′),

and the order in which the maximum moves are applied is irrelevant. This implies
in particular the desired coherence property. 2

The key argument in the proof exploits the Recursion Postulate whereby
for recursive runs of R, the runs of different agents are initiated by calls and
concern different state spaces with pairwise disjoint signatures, due to the func-
tion parameterization by agents, unless pgm(a ′) is a child (or a descendant) of
pgm(a), in which case the relationship between the signatures is defined by the
call relationship. Independent moves can be guaranteed in full generality only
for algorithms with disjoint signatures.

4 Distributed ASMs with partial-order runs are recursive
ASMs

While Theorem 3.1 is not surprising, we will now show its less obvious inverse.

Theorem 4.1. For each finitely composed concurrent ASM C with program base
{ri | i ∈ I } of nd-seq ASMs such that all its concurrent runs are definable
by partial-order runs, one can construct a recursive ASM RC such that each
concurrent run of C can be simulated by a recursive run of RC.11

Proof. Let a concurrent C-run (S0,A0), (S1,A1), . . . be given. If it is definable by
a partial-order run (M ,≤, ag , pgm, σ), the transition from Si = σ(Mi) to Si+1 is
performed in one concurrent step by parallel independent moves m ∈ Mi+1 \Mi ,
where Mi is the set of moves which contributed to transform S0 into Si . Let
m ∈ Mi+1 \Mi be a move performed by an agent a = ag(m) with rule pgm(a) =
amb a in r , an instance of a rule r in the program base of C. To execute the

11 One obtains even the behavioral equivalence via an inverse simulation of every recur-
sive RC-run by a concurrent C-run if the delegates of C-agents, called in the recursive
run to perform the step of their caller in the concurrent run, act in an ‘eager’ way.
See the remark at the end of the proof.
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concurrent step by means of steps of a recursive ASM RC , we simulate each
of its moves m by letting agent a act in the RC-run as caller of a named rule
outr ← OneStepr (inr ). The callee agent c acts as delegate for one step of a: it
executes amb a ∈ r and makes its program immediately Terminated .

To achieve this, we refine the Call machine defined in Definition 3.4 such
that upon calling outr ← OneStepr (inr ), the delegate c created by the call
becomes Active so that it can make a step to execute amb c in OneStepr .
It suffices to add to the component Initialize the update Terminated(amb
c in q) := false, which makes c Active. OneStepr is defined to perform amb
caller(c) in r and to terminate immediately (by setting Terminated to true). For
ease of exposition we add to Definition 3.4 also the update caller(c) :=self , to
distinguish agents in the concurrent run—the callers of OneStepr -machines—
from the delegates each of which simulates one step of its caller and immediately
terminates its life cycle.

It remains to determine the input and output for calling OneStepr . For
the input we exploit the existence of a bounded exploration witness Wr for r .
All updates produced in a single step are determined by the values of Wr in
the state, in which the call is launched. So Wr defines the input terms of the
called rule OneStepr , combined in inr . Analogously, a single step of r provides
updates to finitely many locations that are determined by terms appearing in
the rule, which defines outr .

We summarize the explanations by the following definition:

RC = {outr ← OneStepr (inr ) | r ∈ program base of C}
OneStepr =

amb caller(self) in r // the delegate executes the step of its caller
Terminated(pgm(self)) := true // ... and immediates stops

Note that by the refined Definition 3.4, outr ← OneStepr (inr ) triggers the
execution of the delegate program amb c in OneStepr . Let a = caller(c). By
definition, amb c in OneStepr triggers amb c in amb a in r . Furthermore,
since the innermost ambient binding counts, this machine is equivalent to the
simulated machine amb a in r , as was to be shown.

Thus the recursive RC-run which simulates (S0,A0), (S1,A1), . . . starts by
Definition 3.1 in S0 with program amb a0 in inmain ← OneStepmain(outmain).
For the sake of notational simplicity we disregard the auxiliary locations of RC .
Let

Ai = {ai1 , . . . , aik } ⊆ Agent for some ij and k depending on i
where forall 1 ≤ j ≤ k

aij = ag(mij ) ∈ Mi+1 \Mi and pgm(aij ) = amb aij in rij

We use the same agents aij for Ai in the RC-run, but with program outrij ←
OneSteprij (inrij

). Their step in the recursive run leads to a state S ′i where all
callers aij are Waiting and the newly created delegates cij are Active and not
Waiting . So we can choose them for the set A′i of agents which perform the next
RC step, whereby
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all rules rij are performed simultaneously (as in the given concurrent run
step), in the ambient of caller(cij ) = aij thus leading as desired to the state
Si+1,
the delegates make their program Terminated , whereby their callers aij be-
come again not Waiting and thereby ready to take part in the next step of
the concurrent run. We assume for this that whenever in the C-run (not in
the RC run) a new agent a is created, it is made not Waiting (by initializing
CalledBy(a) := ∅).

2

Remark. Consider anRC-run where each recursive step of the concurrent caller
agents in Ai , which call each some OneStep program, alternates with a recursive
step of all—the just called—delegates whose program is not yet Terminated .
Then this run is equivalent to a corresponding concurrent C-run.

Note that Theorem 4.1 heavily depends on the prerequisite that C only has
partial-order runs.12 With general concurrent runs as defined in [4] the construc-
tion would not be possible.

4.1 Partial Order Runs of Petri Nets

The semantics of Petri nets actually defines a rather special case of partial-order
runs, namely runs one can describe even by a nd-seq ASM, as we show in this
section.

A Petri net comes with a finite number of transition rules, each of which
can be described by a nd-seq ASM (see [6, p.297]). The special character of
the computational Petri net model is due to the fact that during the runs, only
exactly these rules are used. In other words there is a fixed association of each
rule with an executing agent; there is no rule instantiation with new agents which
could be created during a run. Therefore the states are the global markings of
the net. The functions σ(I ) associated with the po-runs of the net yield for every
finite initial segment I as value the global marking obtained by firing the rules
in I .

For this particular kind of concurrent ASMs with partial-order runs one can
define the concurrent runs by nd-seq ASMs, as we are going to show in this
section.

Theorem 4.2. For each finite concurrent ASM C = {(ai , ri) | 1 ≤ i ≤ n} with
nd-seq ASMs ri such that all its concurrent runs are definable by partial-order
runs one can construct a nd-seq ASM MC such that the concurrent runs of C
and the runs of MC are equivalent.
12 The other prerequisites in Theorem 4.1 appear to be rather natural. Unbounded

runs can only result, if in a single step arbitrarily many new agents are created. Also,
infinitely many different rules associated with the agents are only possible, if new
agents are created and added during a concurrent run. Though this is captured in
the general theory of concurrency in [4], it was not intended in Gurevich’s definition
of partial-order runs.
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Corollary 4.1. Partial-order Petri net runs can be simulated by runs of a non-
deterministic sequential ASM.13

Proof. We relate the states Si of a given concurrent run of C to the states σ(Mi)
associated with initial segments Mi of a given corresponding partial order run
(M ,≤, ag , pgm, σ), where each step leading from Si to Si+1 consists of pairwise
incomparable moves in Mi+1 \Mi . We call such a sequence S0,S1, . . . of states
a linearised run of C. For i > 0 the initial segments Mi are non empty.

The linearized runs of C can be characterized as runs of a nd-seq ASM MC :
in each step this machine chooses one of finitely many non-empty subsets of rules
in C to execute them in parallel. Formally:

MC = choose AllRulesOf(I1) | · · · | AllRulesOf(In)

where

AllRulesOf({i1, . . . , ik}) =

ri1
. . .

rik
{I1, . . . , In} = {I ′ 6= ∅ | I ′ ⊆ I } // the non-empty subsets of I

n = 2|I | − 1

To complete the proof it suffices to show the following lemma. 2

Lemma 4.1. The linearised runs of C are exactly the runs of MC.

Proof. To show that each run S0,S1, . . . ofMC is a linearised run of C we proceed
by induction to construct the partial-order run (M ,≤) with its finite initial
segments Mi . For the initial state S0 = σ(∅) there is nothing to show, so let Si+1

result from Si by applying an update set produced by AllRulesOf(J ) for some
non-empty J ⊆ I . By induction we have Si = σ(Mi) for some initial segment of
a partial-order run (M ,≤). As AllRulesOf(J ) is a parallel composition, Si+1

results from applying the union of update sets ∆ij ∈ ∆rij
for j = 1, . . . , |J | to

Si . Each ∆ij defines a move mij of some ag(mij ) = aij , move which finishes in
state Si . We now have two cases:

(i) The moves mij with j ∈ J are pairwise independent, i.e. their application in
any order produces the same new state. Then (M ,≤) can be extended with
these moves such that Mi+1 = Mi ∪{mij | j ∈ J} becomes an initial segment
and Si+1 = σ(Mi) holds.

(ii) If the moves mij with j ∈ J are not pairwise independent, the union of the
corresponding update sets is inconsistent, hence the run terminates in state
Si .

13 We thank Wolf Zimmermann for pointing out that the argument applies more gen-
erally to Mayr’s Process Rewrite Systems [12]. They have been used in [11] to verify
protocols for services which may rise exceptions.
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To show the converse we proceed analogously. If we have Si = σ(Mi) for all
i ≥ 1, then Si+1 results from Si by applying in parallel all moves in Mi+1 −Mi .
Applying a move m means to apply an update set produced by some rule rj ∈ C
(namely the rule pgm(ag(m))) in state Si , and applying several update sets in
parallel means to apply their union ∆, which then must be consistent. So we
have Si+1 = Si +∆ with ∆ =

⋃
j∈J ∆ij for some J , where each ∆ij is an update

set produced by rij , i.e. ∆ is an update set produced by AllRulesOf(J ), which
implies that the linearised run S0,S1, . . . is a run of MC . 2

For the corollary it suffices to note that each Petri net transition can be
described by a nd-seq ASM (see [6, p.297]). The functions σ(I ) associated with
the po-runs yield the global marking obtained by firing the rules in I .

5 Conclusions

While Gurevich’s Sequential ASM Thesis [9] provides an elegant and satisfactory
mathematical definition of the notion of sequential algorithm plus a proof that
sequential algorithms are captured by sequential ASMs, this theory does not
capture recursive algorithms. It lacks an appropriate call concept. In fact, in an
attempt to solve this problem Blass and Gurevich in [1] invoked the notion of
partial-order runs of ‘distributed ASMs’, which has been proposed in [8] as a
concurrency concept for ASMs. We showed in this paper that these ‘distributed
ASMs’ are finitely composed ASMs whose partial-order runs characterize (are
equivalent to) recursive runs. Thus, partial-order runs of distributed ASMs do
not capture the concept of concurrent algorithms (but see [4]).
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