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Abstract

The paper provides a mathematical yet simple model for the full programming language
Prolog, as apparently intended by the ISO draft standard proposal. The model includes
all control constructs, database operations, solution collecting predicates and error handling
facilities, typically ignored by previous theoretical treatments of the language. We add to this
the ubiquitous box-model debugger. The model directly reflects the basic intuitions underlying
the language and can be used as a primary mathematical definition of Prolog. The core of
the model has been applied for mathematical analysis of implementations, for clarification of
disputable language features and for specifying extensions of the language in various directions.
The model may provide guidance for extending the established theory of logic programming
to the extralogical features of Prolog.

Introduction

One of the original aims of mathematical semantics was to provide the programmer with a set
of mathematical models and tools, helping him to express his intuitions, and reason about them,
in a precise and secure way—very much like any other engineer. The pioneers of ‘mathematical
semantics for computer languages’ had explicitly meant real languages and their implementations.

An essential topic will be the discussion of the relation between the mathematical se-
mantics for a language and the implementation of the language. What we claim the
mathematics will have provided is the standard against which to judge an implemen-
tation. [Scott,Strachey 71, p.40]

This paper provides a mathematical model for a real language, Prolog, as apparently intended by
the draft standard proposal [WG17 92]. The model directly reflects the basic intuitions underlying
the language, providing them with a mathematically rigorous yet simple formulation.

Since we are

...concerned with bringing real theory to apply to real programming ...
[Bjoerner, Langmaack 90, p. III]

the model covers the full language, i.e. not only the Horn clause logic core, but all control con-
structs (true, fail, cut, call, metacall, once, and, or, if_-then, if_then_else, not, repeat, catch, throw),
all database operations (asserta, assertz, clause, retract, current_predicate, abolish), all solution



collecting predicates (findall, bagof, setof) and error handling features of the draft standard pro-
posal, typically ignored by previous theoretical treatments of the language. On top of this we add
the ubiquitous box-model debugger. The Prolog features we skip (syntax, operating system in-
terface, arithmetics) are not in any way problematic for our methodology—they are skipped since
they are not characteristic either of logic programming or of Prolog, and can be dealt with in a
straightforward manner [Borger 92].

The core of the model has been successfully applied already for mathematical analysis of im-
plementations, for clarification of disputable language features and for specifying extensions of the
language in various directions.

In fact, it is from the core of the present model that a mathematical reconstruction of a
generally accepted implementation method for Prolog, the Warren Abstract Machine [Warren 83,
Ait-Kaci 91], was formally derived, and proved to execute Prolog correctly—with respect to the
model—given explicit mathematical assumptions about the compiler [Borger,Rosenzweig 92a].

The core of the present specification was mapped to, and served as foundation for, specifying
extensions of Prolog and their implementation, such as

e Protos-L—Prolog enriched with polymorphic types [Beierle,Borger 92], where even the cor-
rectness proof for the implementation could be uniformly extended from the WAM;

e CLPR——constraint logic programming system [Salamone 93], where also the correctness proof
for the implementation could be uniformly extended from the WAM;

e Prolog III—Prolog with constraints, [Borger,Schmitt 91];
e Babel—Prolog enriched with functional expressions, [B6LoRo 93];

e Parlog, Concurrent Prolog—concurrent logic programming languages, [Borger,Riccobene 93,
Borger,Riccobene 92];

e object-oriented extension of Prolog [Miiller 93].

It has also provided a framework for identifying and clarifying disputable language features and
related implementation issues, such as the problem of semantics of dynamic database operations
[Borger,Demoen 91, Boérger,Rosenzweig 91b] and solution—collecting predicates [Borger,Rosenzweig 93a).

We view the model as a primary direct formalization of the basic intuitions, concepts and
operations of the language, as understood by its practitioners and implementors. This is not to
say that we would accept any particular implementation as being a definition of the language. It
is the other way round:

...unless there is a prior, generally accepted mathematical definition of a language at
hand, who is to say whether a proposed implementation is correct?[Scott 70, p. 2]

Development of a primary model releases us from any obligation of proof—it however places
us under a (much more severe) obligation to abstract into mathematical form the central common
ideas underlying current implementations and verbal descriptions. Here the challenge is that of
adequacy, rather than correctness. Thus the model has to be transparent; the central common
ideas should be recognizable by inspection, so to say.

The kind of transparence needed can be achieved only if the methodology allows modelling on
precisely the abstraction level of the language.

...the specification of requirements should be formulated from the beginning at the
highest possible level of abstraction, using all the available power of mathematics
... [Hoare 90, p.VII]



This implies that basic concepts have to be expressed directly, without encoding, taking the objects
of the language as abstract entities, such as they appear there. The methodology should thus make
abstract data types freely available, i.e. abstract domains of objects with operations. The signature
of abstract data types should contain no less, but also no more, than what is present or implicit
in the language.

We shall also not attempt to reduce the intuition of actions-in-time to something else, but,
on the contrary, try to model it as faithfully as possible. All actions, which (in programming
languages) appear as basic, on the given level of abstraction, are local and come with clear pre-
conditions and effects. Their natural formalization should then be based on local modifications,
guarded by simple conditions.

These two ideas are captured by the concept of evolving algebra, put forward by [Gurevich 88,
Gurevich 91]. An evolving algebra is essentially a transition system with statics given by a (first
order) signature, and dynamics given by transition rules which transform structures. Statically it
is algebraic, and dynamically it is operational, so that modelling with evolving algebras can be
termed ‘algebraic operational semantics’. At each level of abstraction we are free to choose the
signature so as to fit tightly the concepts and the intuitions we intend to model, and the transition
rules can be chosen so to reflect explicitly the actions identified as basic. In particular, the local
character of basic actions can be reflected, without need to refer explicitly to any notion of ‘global
state’. Methodological overhead is thus almost nil: there is no encoding, no forcing of objects into a
fixed abstraction level, no forcing of dynamics into a fixed static representation. As a consequence,
upon application to real (non toy) systems, the too often experienced combinatorial explosion of
formalism and/or mathematics just does not happen.

While it is well known from algebraic specification that the set of operations chosen should
match the level of data abstraction, evolving algebras offer an additional degree of freedom, to
choose the abstraction level of basic actions. This determines which operations will be considered
as static (and represented in the signature) and which as dynamic (by being decomposed into
basic steps through transition rules). Roughly, any action which is ‘finer grained’ than what has
been chosen to be a basic step, is static—‘coarser grained’ actions are dynamic. For instance, on
the abstraction level of the model of this paper, unification is a static function, available inside a
basic step, while on WAM level [Borger,Rosenzweig 92a] unification is a dynamically represented
algorithm, involving many finer grained basic steps. In the opposite direction, the fixed—point
approach to dynamics could, from this perspective, be viewed as the limit case of an infinite
basic step. In Plotkin’s structural operational semantics [Plotkin 81] proof rules for basic actions
directly reflect the syntactic structure of the program; thus SOS looses some of its nice ‘subformula
properties’ as soon as the language imposes a notion of basic action which is not so tightly coupled
to the syntax.

The freedom of choosing action abstraction, provided by evolving algebras, allows us to match it
naturally to data abstraction. To pursue the unification example, static unification comes naturally
together with abstract (unencoded) notions of term and substitutions (representing themselves,
so to say), whereas dynamic analysis of unification, as provided by WAM, comes naturally with
representation of terms and substitutions as complex composite objects, encoded on the heap.

(Evolving) algebras are deeply rooted in traditional mathematics. Nevertheless, evolving alge-
bra descriptions can be readily understood as ‘pseudocode over abstract data’, and followed without
any formal training in logic, as we have experienced with many programmers and implementors.

The question might be raised, why, in a market full of formal systems, use yet another one?
To summarize, no other formalism we know of provides the simplicity, freedom of both data
and action abstraction and a capability of faithful modelling of involved dynamics, as offered
by evolving algebras. No methodology will, by itself, make the diffculties of analyzing complex
programs disappear; evolving algebras at least do not introduce extraneous difficulties.



Since evolving algebras are just algebras, in the usual sense of mathematics, we may use any
mathematical techniques whatsoever to prove their properties, and hence also the properties of
computational phenomena they reflect (in this case Prolog). We do not, at this point, propose
any fixed proof methodology— the role of proof systems is to single out characteristic proof
patterns (for study and/or use). Such characteristic patterns, in the case of evolving algebras,
have yet to be identified. See however [Borger,Rosenzweig 92a], where a proof pattern seems to
emerge, from an analysis of a class of complex programs, i.e. Prolog-to—-WAM compilers. See
also [Borger,Rosenzweig 93b], where more explicit proof-patterns result from the general theory
of communicating evolving algebras developed in [Glavan,Rosenzweig 93].

The preceding discourse on methodology is motivated by the ambition to provide a transparent
primary mathematical model for the full language. There would be no need for a new model, were
we interested only in a slight extension of Horn clause programmming, (by say cut, and, or), since
many models of such fragments exist in the literature, realized by different methodologies, such
as [Andrews 90, Debray,Mishra 88, de Bruin,de Vink 89, de Bruin,de Vink 90, Jones,Mycroft 84,
Kok 90, Martelli,Rossi 86, Nicholson,Foo 89, North 88, Ross,Wilkie 90]. It is not at all clear
whether or how any of these models could be extended to cover the full language. Attempts to
cover the full language are far less numerous [Arbab,Berry 87, Deransart,Ferrand 92, O’Keefe 85].
These models are however neither primary nor transparent—they consist in technically involved
reductions to some other formalism, which can hardly be understood as adequate expression of
basic intuitions. The same remark applies to modelling by code written in another programming
language, which also just shifts the semantical burden.

Our model, when restricted to pure Prolog, is easily linked to the established body of logic
programming theory, cf. Prolog Tree Theorem below. Our approach may in fact provide guidance
for extending the theory of Horrn—clause logic to the real programming language. By providing a
mathematical model for the latter, we hope to help reduce the

... mismatch between theory and practice . .. that much of the theory of logic program-
ming only applies to pure subsets of Prolog, whereas the extra—logical facilities of the
language appear essential for it to be practical [Lloyd 89]

This paper synthesizes, streamlines and considerably extends the work reported in preliminary
papers [Borger 90a, Borger 90b, Borger 92, Borger,Rosenzweig 91a].

The paper is organized as follows. Section 1 introduces what is used of the underlying framework

of evolving algebras. Section 2 develops the core part of the model, dealing with SLD-resolution
fragment of Prolog. The model is based on the widespread intuitive picture of Prolog trees, which
is close to its proof theoretical background. Unlike SLD—tree, however, the Prolog trees are finite
and grow incrementally, governed by four rules. Section 3 defines all control constructs of the
draft standard proposal; the tree model allows simple dynamics, given by one rule per construct.
Section 4 defines all the constructs for inspection and modification of the dynamic Prolog database
(program) of the draft standard proposal. Section 5 defines the solution collecting predicates, and
Section 6 the error handling facilities. The techniques developed for these sections give us a
mathematical definition of the box-model debugger for free, as given in section 7. An Appendix
lists for reference the full signature (except for syntactic functions, which are taken for granted)
and all rules defining the model.
Acknowledgements. We thank two anonymous referees for helpful suggestions and criticism.
Special thanks to Yuri Gurevich, for permanent discussion of the whole evolving algebra approach
and of several early versions of this paper. Last not least, our thanks go to Informatikzentrum
Schloss Dagstuhl, which has provided a splendid environment for our work on the final revision of
the paper.



1 Evolving algebras

The Prolog model constructed in this paper is an evolving algebra, which is a notion introduced
by [Gurevich 91]. Since this notion is a mathematically rigorous form of fundamental operational
intuitions of computing, the paper can be followed without any particular theoretical prerequisites.
The reader who is not interested in foundational issues, might read our rules as ‘pseudocode over
abstract data’. However, remarkably little is needed for full rigour—the definitions listed in this
section suffice.

The abstract data come as elements of sets (domains, universes). The operations allowed on
universes will be represented by partial functions.

We shall allow the setup to evolve in time, by executing function updates of form

f(tla"'atn)::t

whose execution is to be understood as changing (or defining, if there was none) the value of
function f at given arguments. The 0-ary functions will then be something like variable quantities
of ancient mathematics or variables of programming, which explains why we are reluctant to call
them constants.

The precise way our ‘abstract machines’ (evolving algebras) may evolve in time will be deter-
mined by a finite set of transition rules of form

if R? then R!

where R? (condition or guard) is a boolean, the truth of which triggers simultaneous execution
of all updates in the finite set of updates R!. Simultaneous execution helps us avoid fussing and
coding to, say, interchange two values. Since functions may be partial, equality in the guards is to
be interpreted in the sense of ‘partial algebras’ [Wirsing 90], as implying that both arguments are
defined (see also [Glavan,Rosenzweig 93]).

More precisely,

Definition. An evolving algebra is given by a finite set of transition rules.

The signature of a rule, or that of an evolving algebra, can always be reconstructed, as the set
of function symbols occurring there.

Definition. Let A be an evolving algebra. A static algebra of A is any algebra of £(A), i.e. a
pair (U,I) where U is a set and [ is an interpretation of ¥(A) with partial functions over U.

In applications an evolving algebra usually comes together with a set of integrity constraints,
i.e. extralogical axioms and/or rules of inference, specifying the intended domains. We tacitly
understand the notion of interpretation as validating any integrity constraints imposed.

Our rules will always be constructed so that the guards imply consistency of updates, cf.
[Glavan,Rosenzweig 93] for discussion. While the effect of executing a rule in a static algebra is
intuitively clear, it is given precisely by

Definition. The effect of updates R! = {f;(5;) :=t; | i = 1,...,n}, consistent in an algebra
(U, I), is to transform it to (U, Ir), where

Im(N) = {I(f)(gj’) otherwise

where ¢/ is any tuple of values in U of f’s arity, and = denotes syntactical identity.



The assumption of consistency ensures that Ig; is well defined.

We have now laid down precisely the way in which transition rules transform first order struc-
tures. Evolving algebras can then be understood as transition systems (directed graphs) whose
states (nodes) are first order structures, and the transition relation (set of arrows) is given by
applicable rules.

Definition. A4 —% Ay whenever A E R? (‘R is applicable in A’).

The rules are to be thought of as containing only closed, variable—free terms. We shall nev-
ertheless display rules containing variables, but only as an abbreviational device which enhances
readability, and is otherwise eliminable. Say,

if ...a=<X,Y>...
then ... X...Y ...

abbreviates
if ...ispair(a)...
then ...fst(a)...snd(a)...,

sparing us the need to write explicitly the recognizers and the selectors.

In applications of evolving algebras (including the present one) one usually encounters a hete-
rogenous signature with several universes, which may in general grow and shrink in time—update
forms are provided to extend a universe:

extend A by ty,...,t, with updates endextend

where updates may (and should) depend on t;’s, setting the values of some functions on newly
created elements ¢; of A.

[Gurevich 91] has however shown how to reduce such setups to the above basic model of a ho-
mogenous signature (with one universe) and function updates only (see also [Glavan,Rosenzweig 93]).

As Prolog is a sequential language, our rules are organized in such a way that at every moment
at most one rule is applicable.

The forms obviously reducible to the above basic syntax, which we shall freely use as abbre-
viations, are where and if then else. We shall assume that we have the standard mathematical
universes of booleans, integers, lists of whatever etc (as well as the standard operations on them)
at our disposal without further mention. We use usual notations, in particular Prolog notation for
lists.

An evolving algebra, as given above, determines the dynamics of a very large transition system.
We are usually (in particular here) only interested in states reachable from some designated initial
states, which may be, orthogonally, specified in various ways. We can use an informal mathematical
description, like in model theory; we can devise special intitializing evolving algebra rules which,
starting form a canonical ‘empty’ state, produce the initial states we need; we may use any formal
methods, such as those of algebraic specification.

2 Prolog tree

In this section we lay down the signature and the rules for the pure Prolog core of our model, and
prove its correctness wrt SLD resolution.



2.1 Signature

A Prolog computation can be seen as systematic search of a space of possible solutions to an initially
given query. The set of computation states is often viewed as carrying a tree structure, with the
initial state at the root, and son relation representing alternative (single) resolution steps. We then
represent Prolog computation states in a set NODE with its two distinguished elements root and
currnode, with the latter representing the (dynamically) current state. Each element of NODE has
to carry all information relevant—at the desired abstraction level—for the computation state it
represents. This information consists in the sequence of goals still to be executed, the substitution
computed so far, and possibly the sequence of alternative states still to be tried, as we will explain
below.
The tree structure over the universe NODE is realized by a function

father : NODE — {root} — NODE

such that from each node there is a unique father path towards root. We do not assume the tree
algebra
(NODE; root, currnode; father)

to be platonically given as a static, possibly infinite, object representing the whole search space;
we rather create it dynamically as the computation proceeds, out of the initial state (determined
by given program and query) as the value of currnode, fathered by the empty root.

When at a given node n the selected literal (activator) act is called for execution, for each
possible immediate resolvent state a son of n will be created, to control the alternative computation
thread. Each son is determined by a corresponding candidate clause of the program, i.e. one of
those clauses whose head might unify with act (given, of course, that the predication is defined by
clauses at all, i.e. is user defined). All such candidate sons are attached to n as a list cands(n),
in the order reflecting the ordering of corresponding candidate clauses in the program. We require
of course the cands-lists to be consistent with father, i.e. whenever Son is among cands(Father),
then father(Son) = Father.

This action of augmenting the tree with cands(n) takes place at most once, when n gets first
visited. We distinguish this situation using a O-ary function mode, which at that moment has the
value Call. The mode then turns to Select, and a step of resolution is attempted, i.e. the first
unifying son from cands(n) gets visited (becomes the value of currnode), again in Call mode. The
selected son is simultaneously deleted ;from the cands(n) list. If control ever returns to n, (by
backtracking, cf. below), it will be in Select mode, and the next candidate son will be selected, if
any.

If none, that is if in Select mode cands(n) = [ ], all attempts at resolution from the state
represented by n will have failed, and n will be abandoned by returning control to its father. This
action is usually called backtracking. The father function then may be seen as representing the
structure of Prolog’s backtracking behaviour.

The resolution step, applied to a unifying son from the cands list, is executed in terms of the
goal sequence attached to each node: the body of candidate son’s clause is pushed to what is left
when the activator is removed - the continuation, and the whole goal sequence gets updated by
the mgu. The goal sequence thus takes the form of a calling stack.

What remains for this section is to complete a precise description of the signature (statics)
and transition rules (dynamics). We assume the universes of Prolog literals (predications), goals
(sequences of literals), terms and clauses

LIT, TERM, GOAL= TERM®, CLAUSE



We will use (and consider as part of Prolog tree algebras) all the usual list operations for which
we adopt standard notation—allowing ourselves the freedom to confuse a list of literals with their
iterated conjunction (clause body), suppressing the obvious translation.

Notice that GOAL is not defined as LIT*—we allow arbitrary terms just in order to incorporate
the metacall facility of Prolog, described in Section 3.

The information relevant for determining a computation state will be associated to nodes by
appropriate (in general partial) functions on the universe NODE.

For each state we have to know the sequence of literals still to be called. Whereas in the
definition of the SLD—tree [Lloyd 87, Apt 90] this sequence is depicted as flat, it seems closer to
procedural intuition to keep it split into clause (procedure) bodies, preserving the structure of
‘procedure calling stack’. In fact, some Prolog constructs—such as cut, catch, throw, findall ...—
do rely on that structure, by referring explicitly to (some) calling point, and/or by performing
special action upon completion of a call. Splitting of goal into a sequence of bodies, on the level of
data representation, is coupled, in dynamics, to decomposing of a resolution step to call and select
actions, and thus enables uniform handling of user—defined predicates and built—in ‘extralogical’
constructs.

Among the control constructs the cut certainly stands out, being—for better or for worse—a
characteristic feature of Prolog. We therefore provide a special data structure for execution of
cut, decorating every goal (clause body) with appropriate cutpoint, i.e. backtracking state (node)
current when the clause was called. Hence a universe

DECGOAL = GOAL x NODE.

For some other constructs, much more special and far less central to Prolog, we rely on the
obvious programmer’s solution of putting special marks on the calling stack just before pushing
the procedure (clause) body, indicating the special action to be taken and the calling node it refers
to.

The logical integrity of data structures might have been better preserved by avoiding the
marks—a mathematically minded reader might prefer to define, by induction, the notion of calling
node: the node a mark would point to if it were there. But beware of the cut!

Thus a function

decylseq : NODE — (DECGOAL+ MARK)*

associating a sequence of (decorated) goals, interspersed with some marks, to each node. As far as
pure Prolog is concerned, both cutpoints and marks can be disregarded, and decglseq could simply
be a GOAL, see Prolog Tree Theorem below.

The substitution current at a state is represented by a function

s : NODE — SUBST
where SUBST is a universe of substitutions, coming together with the function
mgu : TERM x TERM — SUBST U {nil}

where mgu is an abstract unification function associating to two terms either their most general
unifier, or the answer that there is none. Application of substitution 6 to a term ¢, and its
composition with another substitution p will be denoted by the usual postfix notation, t6, @p.
Renaming of variables in a term ¢, at the current renaming level vi € N, will be denoted by ¢
(and accompanied by an update vi : = vi + 1, to ensure freshness of subsequent renamings).
The above mentioned switching of modes will be represented by a distinguished element mode €
{Call, Select} indicating the action to be taken at currnode: creating the resolvent states, or



selecting among them. To be able to speak about termination we will use a distinguished element
stop € {0, Success, Failure}, to indicate respectively running of the system, halting with success
and final failure. In a similar manner we shall handle error conditions by a distinguished element
error, taking values in a set of error messages.

We shall keep the above mentioned notion of candidate clause (for executing a literal) abstract
(regarding it as implementation defined), assuming only the following integrity constraints: every
candidate clause for a given literal

e has the proper predicate (symbol), i.e. the same predicate as the literal (correctness); and

e every clause whose head unifies with the given literal is candidate clause for this literal
(completeness).

One might think of considering any clause occurrence whose head is formed with the given predi-
cate, or the clause occurrences selected by an indexing scheme, or just all occurences of unifying
clauses, like in SLD resolution.

In order to allow for dynamic code and related operations, we have to speak explicitly about
different occurrences of clauses in a program. We hence introduce an abstract universe CODE of
clause occurrences (or pointers), coming with functions

clause : CODE — CLAUSE
cdl : NODE — CODE

where cll(n) is the candidate clause occurrence (‘clauseline’) corresponding to a candidate son n
of a computation state, and clause(p) is the clause ‘pointed at’ by p. Note that we do not assume
any ordering on CODE. We instead assume an abstract function

procdef : LIT x PROGRAM — CODE* + {nil},

of which we assume to yield the (properly ordered) list of the candidate clause occurrences for the
given literal in the given program (the meaning of nil in codomain of procdef will come forward
in the section on database operations). The current program is represented by a distinguished
element db of PROGRAM (the database). Note that existence of procdef is all that we assume,
for now, of the abstract universe PROGRAM .

This concludes the definition of the signature of Prolog tree algebras. Minor additions, per-
taining only to some special constructs, will be presented in corresponding sections.

Notationally, we usually suppress the parameter currnode by writing simply

father = father(currnode)
cands = cands(currnode)
s = s(currnode)
decglseq = decglseq(currnode)
fst_.cand = fst(cands).

Components of a decorated goal sequence will be accessed as

goal = fst(fst(decglseq))
cutpt = snd(fst(decglseq))
act = fst(goal)
cont = [(rest(goal), cutpt) | rest(decglseq) ]



with act standing for the selected literal (activator), and cont for continuation.
We shall also abbreviate

attach t{,...,t, with = extend NODE by t,,...,t, with
updates father(t;) : = currnode
cands 1= [t1,...,tn]
updates
endextend

2.2 Rules for Core Prolog

Now to dynamics. We assume the following initialization of Prolog tree algebras: root is
supposed to be the nil element—on which no function is defined—and father of currnode; the
latter has a one element list [ ( query, root )] as decorated goal sequence, and empty substitution;
the mode is Call, stop has value 0; db has the given program as value. The list cands of resolvent
states is not (yet) defined at currnode.

We now define the four basic rules by which the system attempts, given a pure Prolog program,
to reach a state stopping with Success (due to first successful execution of the query) or with
final Failure (by backtracking all the way to root). We introduce the following abbreviation for
backtracking to father:

backtrack = if father = root
then stop := Failure
else currnode := father
mode := Select

In case of final Failure no transition rule will be applicable, which is a natural notion of ‘terminating
state’. All transition rules will thus be tacitly assumed to stand under the guard

OK = stop =0 & error =0,

where error is a O—ary function representing the error condition, cf. Section 6.
The following query success rule—for successful halt—will then lead to successful termina-
tion when all goals have been executed:

if decglseq =[]
then stop : = Success

The answer substitution is, of course, represented by the value of s restricted to the variables of
the initial query.

The stop rule may be easily modified to allow for the habit of top—level Prolog interpreters to ask
the user whether he wants alternative solutions: introduce a 0—ary function more_solutions_wanted

with an additional rule
if more_solutions_wanted

&stop = Success
then backtrack
stop :=0
Since we don’t set its value, more_solutions_wanted would be an external function in the sense of
[Gurevich 91].
The following goal success rule describes success of a clause body, when the system continues
to execute the rest of its goal sequence.

if goal =[]
then proceed

10



For pure Prolog we are describing in this section, proceed can be understood just as

proceed = decglseq : = rest(decglseq),

i.e. popping the calling stack. In view of some constructs which, precisely at this moment of
completing a call, have to take some special action—indicated by a mark immediately following
the procedure body—full meaning of proceed is given as

proceed = if rest(decglseq) =[] or snd(decglseq) ¢ MARK
then decglseq := rest(decglseq)
else special_action(snd(decglseq), currnode)

Goal success and query success rules exclude each other; in fact goal = [] may only be true when
goal is defined, due to usage of equality in partial algebras. Likewise, the existence of act, assumed
in rules to follow, excludes the guards of both success rules.

As explained above, an attempt at resolution step is split into calling the activator (to create
new candidate nodes for alternative resolvents of currnode), to be followed by selecting one of
them. We will correspondingly have two rules. The following call rule, invoked by having a user
defined activator in Call mode, will create as many sons of currnode as there are candidate clauses
in the procedure definition of its activator, to each of which the corresponding clause(line) will be

associated.
if is_user_defined(act)

& mode = Call
then
attach t,,...,t,with
Cll(tz) = C;

mode := Select
where [c1, ..., ¢, ] = procdef (act, db)

where is_user_defined is a boolean function recognizing those literals whose predicate symbols are
user defined (as opposed to built-in constructs). Note that goals and substitutions, attached to
candidate sons, are at this point undefined, and that the value of currnode does not change. Note
that, in case of dynamic database, this rule commits to the so—called logical view (see Section 4).

The following selection rule attempts to select a candidate resolvent state (selecting thereby
the associated clause occurrence). If there is none, the system backtracks.

In the other case an attempt to resolve with fst_cand is made. If the renamed head of the
selected clause does not unify with the activator, the corresponding son is erased from the list of
candidates. Otherwise the selected clause is activated: the corresponding son becomes the value
of currnode in Call mode and gets erased from its father’s cands list. This is represented by the
update

go_fst_.cand = currnode := fst_cand
cands : = rest(cands)
mode : = Call

Remember that these updates, when called within a rule, have to be executed simultaneously.
The decorated goal sequence is defined by executing the resolution step—replacing the activator
by clause body (decorated with appropriate cutpoint) and applying the unifying substitution to
both s and (new) decglseq. The current value of father gets stored as cutpt, since this is the value
father should resume were cut to be executed within that body, cf. cut rule below. Note also the
updating of the (just used) value of variable renaming index vi. This whole attempt at resolving
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with fst_cand is expressed by the update

resolve = if 6§ = nil
then cands : = rest(cands)
else go_fst_cand
decglseq(fst_cand) : = new_decglseq
s(fst_cand) : = s 6
vii=wvi+1
where Hd :— Bdy = clause(cll(fst_cand))
0 = mgu(act, Hd")
new_decglseq = [ (Bdy', father) | cont] 8

With these abbreviations the select rule takes the form

if is_user_defined(act)
& mode = Select

thenif cands =[]

then backtrack

else resolve

This concludes the list of rules for our model of pure Prolog. Obviously, our model is deter-
ministic: at most one rule is applicable in any given situation, i.e. the guards are, under our
conventions, pairwise exclusive. This is only a natural reflection of Prolog (unlike SLD resolution)
being a deterministic language.

2.3 Prolog Tree Theorem

It is easy to relate this model, as far as pure Prolog is concerned, to the established body of logic
programming theory: the model can be viewed as an incremental construction of (a part of) the
SLD-tree.

The dynamic notion of computation tree naturally classifies the nodes: a node n is

e visited if cands(n) is defined, i.e. if it is, or has already been, the value of currnode;
e active if it is currnode or on the father path from currnode to root;
e abandoned if it is visited but not active, i.e. has been backtracked from;

There will in general be other nodes, created as candidates but never visited, which play no role
in the computation.

By extracting the goal components of decorated goals and by flattening the lists we obtain the
goals of SLD-resolution, i.e. by reading

[(G1,cutpty),...,(Gn,cutpt,)] as flatten([G1,...,Gn])

we obtain a correspondence for which the following is true (given a pure Prolog program, i.e. one
not containing cut):

Lemma 1. Given a pure Prolog program and a query, every visited node of the Prolog tree
corresponds to a node of the SLD-tree (with the same substitution).

Proof by induction over time of (number of rule executions preceeding) the first visit. Induction
step follows immediately from selection rule together with the definitions of SLD-tree [Lloyd 87]
and candidate clause.
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Lemma 2. Given a pure Prolog program and a query, every abandoned node of the Prolog tree
corresponds to a failed node of the SLD-tree.

Proof by induction over time of abandonement. A node can namely be abandoned (in pure Prolog)
only if, in Select mode, either

a) it has never had any unifying sons, or

b) all of its unifying sons are already abandoned,
cf. selection rule. Noting that the first node to be abandoned gets abandoned by a), induction
step follows by comparing the definitions.

The lemmata yield immediately the following theorem, which may be taken as expressing
correctness of Prolog trees wrt SLD resolution:

Prolog Tree Theorem. Given a pure Prolog program and a query,

(i) if the Prolog tree succeeds, i.e. reaches a state with stop = Success, then SLD resolution
succeeds with the same substitution;

(i) if the Prolog tree fails, i.e. reaches a state with stop = Failure, then SLD resolution
(finitely) fails.

Counterexamples to completeness, i.e. examples of Prolog following an infinite path in presence
of a (finite) successful one, are well known and the reader may simulate them on our Prolog trees.
The converse of (i) is thus not true, while the converse of (ii) obviously is.

3 Control constructs and predicates

Here we define, by rules, control constructs of Prolog—in fact all such constructs listed in the draft
standard proposal [WG17 92]. The first part will treat those constructs which, upon failure, cannot
be resatisfied (so—called ‘deterministic’ constructs in Prolog jargon, what is not to be confused
with the usual notion, under which all constructs of Prolog are deterministic). Resatisfiable
(‘nondeterministic’) constructs, which will be dealt with in the second part, are characterized by a
necessity to create alternative candidate nodes. For ‘deterministic’ constructs we shall then create
no new nodes at all—they will be executed ‘in place’.

Goal true succeeds, fail triggers backtracking, while s = ¢ attempts to unify the terms. This
is precisely expressed by the rules

if act = true if act = (s =t)
then succeed thenif 6§ = nil
then backtrack
else decglseq : = contf
s:=s6
if act = fail where 6 = mgu(s,t)
then backtrack

where succeed stands for decglseq := cont.

The cut is usually explained by the metaphor of cutting away a part of the tree, which would,
in our framework, amount to recursively resetting the cands lists to [ ] all the way from currnode
to cutpt. We shall instead, even more simply, bypass the tree section becoming redundant, by
updating father to cutpt:

if act =!
then father : = cutpt
succeed
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The syntax, allowing arbitrary terms to occur in goals, also allows us to have, in clause bodies,
uninstantiated variables in place of literals. Were such a variable, at run time, instantiated to a
callable literal, the 4—rules—Prolog of the previous section would execute it without complaining.
This is the metacall facility of Prolog, also called ‘textual substitution’. In spite of its apparent
innocuousness, metacall provides Prolog with reflective capabilities—with it it is easy to write an
interpreter for Prolog in a few lines of Prolog. A metacall automatically inherits the cutpoint of
its surrounding body—metacalling a cut would cut off, among other things, all alternative clauses
for the calling predicate. This property is usually called transparence (of metacall) for the cut.
There is also a call/1 predicate, explicitly invoking its argument as the activator. The only

difference between call and metacall consists in the former creating its own scope for the cut—call
is not transparent.

if act = call(G)

then decglseq : = [([G], father) | cont]

Call could have been equivalently described, relying on metacall, by the clause
call(X) :— X.

It might be a useful excercise to work out the details of call(!), and to see in which sense it is
equivalent to true (although some systems have it differently—cf. discussion in [Borger 90a, p.55]).

In the Appendix we give the simple rule for the predicate once, usually explained as ‘calling its
only argument, without resatisfiability’. The rule is equivalent to definition of once by the single
clause

once(X) :— X, .

Note that definition by Prolog clauses here doesn’t presuppose Prolog—other than as interpreted
by our rules. It is in the presence of rules that such definition acquires the status of a precise
mathematical definition.

The notion of transparence for the cut is probably understood once it becomes clear that, in
this clause, a call would have been equivalent to the metacall.

In the sequel we shall rely on an abstract syntax, using and, if_then, or, if then_else in
order to avoid fussing with syntactical problems.

The call and(G1,G2) is usually explained as ‘calling G, G in sequence, succeeding when they
both succeed’, with the proviso that it is transparent for the cut.

if act = and(G1,G>2)
then decglseq:= [([G1,G2], cutpt) | cont]

The call if-then(I,T) is also executed by executing its arguments in a sequence, but with a very
different treatment of cutpoints. Once the first argument succeeds, the call is committed to
success of T—if T subsequently fails, the whole call will fail. This behaviour is usually explained
as ‘executing a local cut.” Further, if_then is transparent only for cuts in the second argument.

if act = if-then(I,T)
then decglseq:=[([I,!], father), ([T ], cutpt) | cont]

Note that this is not equivalent to and(and(I,!),T). Note also that, if the guard I fails, the whole
call fails—very much unlike the meaning of a conditional in other languages for programming or
reasoning.

Note that the preceding rules—as well as goal success—never mention mode. It is however
easy to see (by induction) that these rules can only be invoked in Call mode—current decglseq is
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namely changed only by rules which preserve the mode, or by Select rule, which switches it to
Call.

The ‘nondeterministic’, i.e. resatisfiable, control constructs, create (a fixed number of) alter-
native sons, and will thus have to rely on switching of modes. Since the selection of alternatives
will not depend on unification, the sons can be fully decorated already in Call mode—hence a
simplified selection rule will suffice.

if is_bip(act)

& mode = Select
thenif cands = [ ]
then backtrack
else go_fst_cand

We assume here that the Boolean is_bip function recognizes exactly those literals whose predicate
symbols denote those built-in constructs which don’t have a dedicated Select rule (like database
operations and solution collecting predicates, cf. below).

Given such a uniform selection method, each (‘nondeterministic’ built-in) construct will be
defined by its calling rule.

The relation of or to if-then_else is similar to that of and to if-then.

if act = or(G1,Gs)
& mode = Clall
then
attach t;,t; with
decglseq(t;) 1= [([G;], cutpt) | cont]
s(t;):=s
mode : = Select

if act = if-then_else(I,T, E)
& mode = Clall
then
attach ¢y, ¢, with
decglseq(ty) : = [([I], currnode), ([!], father), ([T ], cutpt) | cont]
decglseq(t2) : = [([ E], cutpt) | cont]
s(ty):=s
mode : = Select

Note that if-then_else(I,T, E) is not equivalent to or(if-then(I,T), E), in spite of graphical resem-
blance of rules (and usual Prolog syntax)—consider just if-then_else(true, fail, true). The Prolog
if-then_else is much closer to if-then_else than the Prolog if-then is to if-then.
In the Appendix we give also the rules for not/1, repeat/0, which are usually defined by the
clauses
not(X) :— call(X),!, fail.
not(X).

repeat : — repeat.
repeat.

Although the first clause for not(X) is usually written with a metacall, it is wrong (if not(X)
should succeed when X fails)—consider not(and(!, fail)).
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The control constructs, treated so far, influence the flow of Prolog control in a local, gentle
way—Dby setting its boundary conditions—whereas catch and throw affect it drastically, by al-
lowing an instantaneous jump out of a deeply nested, maybe recursive, call. Their origin in LISP is
reflected in their names; setjmp,longjmp play a very similar role in C. The usual verbal explanation
runs roughly as follows: catch(Goal, Catcher, Recovery) executes Goal in the usual way—as far as
within that call no throw is executed. If however a throw(Ball) is executed within this call, the
Ball seeks the nearest surronding catch with whose Catcher it can unify. Upon success Recovery
is executed, proceeding further from that call of catch.

A precise definition is given by the following rules. Note that this is the first time we use the
special marks we have allowed ourselves to put into the calling stack. The mark, left by executing
catch in node, is of form Catchpt(node), and is kept in the decglseq immediately behind the goal
argument. The information stored in such a mark is node—the functor Catchpt merely indicates
the kind of special action this mark serves for. All throw has to do then is seek an appropriate
mark, recursively down the decglseq—this search procedure is encapsulated in an abstract function
called find_catcher below.

if act = catch(G,C, R) if act = throw(B)
& mode = Call & mode = Call
then & find_catcher(cont, B) # root
attach ¢t with then currnode : = found
decglseq(t) : = [ ([G], currnode), decglseq(found)
Catchpt(currnode) | cont) := [ ([R], father (found))
s(t):=s | cont(found)]6
mode : = Select s(found) : = s(found)

where found = find_catcher(cont, B)
act(found) = catch(G,C, R)
0 = mgu(B,C)

where the function
find_catcher : DECGOAL® x TERM — NODE
is defined as satisfying the following requirements.

find_catcher([],B) = root

find_catcher ([ Entry | Rest], B) = if Entry = Catchpt(caller)
& act(caller) = catch(G,C, R)
& mgu(B,C) # nil
then caller
else find_catcher(Rest, B)

Note that, due to the following definition of special_action for Catchpt(node) as first parameter
special_action(Catchpt(node),n) = decglseq(n) : = rest(rest(decglseq(n)))

the marks are placed in such a way that, by the full proceed rule of Section 2, normal operation of
the system will not be influenced by the existence of Catchpt marks—only throw sees them.

The reader who knows about implementation, will recognize find_catcher as embodying a
search of the environment stack. This strategy could be optimized, allowing access to the next
catch in constant time (cf. [Demoen 89]), by linking the Catchpt marks and storing the top one
in a fixed place. While such implementation issues can be sometimes clearly expressed even
in this abstract framework, we shall not go into them here (but see [Borger,Rosenzweig 93a,
Borger,Rosenzweig 91b]).
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4 Database operations

The understanding of programs as data is pushed in Prolog to the point that even dedicated
constructs for explicit viewing and modification of the program, during execution, are provided.
Since the rest of Prolog is independent of that possiblity, the signature, and the assumptions we
imposed upon it, were so far consistent with seeing the program db as constant. It is only here
that we shall, in an orthogonal way, add the fragment of signature and the assumptions allowing
us to view db as variable in time.

Current practice (and the draft standard proposal) classify user defined predicates into static
and dynamic, reflected here by a Boolean recognizer dynamic, which we shall, for simplicity, apply
to literals (instead of their predicate indicators). The basic operations of inspecting and modifying
(by deletion and insertion of clauses which are given in the form (Head, Body)) will be represented
by functions

clause_list : TERM x TERM x PROGRAM — CODE" + {nil}
predicate_list : PROGRAM — PI*
delete_.cl : CODE x PROGRAM — PROGRAM
delete_pi : PI x PROGRAM — PROGRAM
insert : TERM x TERM x PROGRAM — PROGRAM

where PI C CODE is the universe of predicate indicators, and insert is a generic instance of
functions inserta and insertz for inserting at beginning and at end respectively. The following
integrity constraints express the mutual dependencies of these functions and procdef:

p/n € predicate_list(db) <= (3t1,...,tn,z)(clause list(p(t1,. .., t,),z, db) # nil)

clause_list(g, X, db

procdef (g, db)

¢ for any z,y

p/n

= [c| clause.list(H, B, db) ]
iff clause(c) = H :— B

)
clause_list(z,y, delete_cl(c, db))
predicate_list(delete_pi(p/n, db))
clause_list(H, B, inserta(H, B, db))

with a similar condition for insertz. The assert predicate, coming in 2 versions, asserta, as-
sertz, coupled to corresponding insert functions, appends a clause—to be found by subsequent
calls—at the appropriate end of the procedure. Note how this is forced by conditions relating
insert, clause_list and procdef .

if act = assert(H, B)
& dynamic(H)
then db : = insert(H, B, db)
succeed

Whereas assert is ‘deterministic’, the predicates clause and retract, which serve for viewing and
deleting, respectively, of alternative clauses matching their arguments, are resatisfiable. Since their
applicability to a clause depends on successful unification, they can be described following closely
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the pattern of Call and Select rules for user defined predicates of Section 2.

if act = clause(H,B) | retract(H, B) if act = clause(H, B) | retract(H, B)
& dynamic(H) & dynamic(H)
& mode = Call & mode = Select
then attach [{1,...,t,] thenif cands =[]
with cll(t;) = ¢ then backtrack
mode : = Select else resolve
where clause_list(H, B, db) = [c1,...,¢n] if 0 # nil
then _ | db : = delete_cl(cll(fst_cand), db)
where

6 = mgu(H' : — B', clause(cll(fst_cand)))
new_decglseq = cont

where _ | _ is used as obvious shorthand for two similar rules. In fact, these rules may be obtained
from those of Section 2 by a straightforward transformation, where resolve comes with redefined
0, new_decglseq.

The constructs current_predicate and abolish are isomorphic to the clause, retract pair,
with a predicate indicator instead of either a clause or a code pointer (clauseline), predicate_list
instead of clause_list, and delete_pi instead of delete_cl, cf. the Appendix. With the benefit of
hindsight one can see that it is due to decomposing the basic Prolog computation step into calling
and selecting that the isomorphism of user—defined predicates to clause, retract, current_predicate,
abolish becomes explicit. Note that the function predicate_list defines the order in which predicate
indicators are found by current_predicate; it may be considered as implementation dependent, as
required by [WG17 92]. Given the constraints, our rules don’t specify any action in the case access
to a clause for an abolished predicate is attempted—this falls under error handling, and will be
discussed in section 6.

The interpretation our rules give to database operations is that of so—called logical view [Lindholm,O’Keefe 87]—
modifications of the database affect only subsequent calls, but the alternatives for current call
remain as they were at time of call, by being copied into the tree structure by the appropriate
call rule. The logical view is the one adopted in the draft standard proposal—for an analysis
of alternative possibilities see [Borger,Demoen 91, Borger,Rosenzweig 91b]. Here it will have to
suffice to say that the following program

q : — assertz(q), fail.
r:— retract(r, X), fail.
T.

differentiates between different views, and unfolds the related difficulties [Bérger,Rosenzweig 91b].
Under the logical view ¢ fails while r succeeds—the reader may work it out with the rules.

5 Solution collecting predicates

The predicates findall, bagof, setof bring the second-order notion of comprehension (collection)
into the first order world of Prolog. The first order realizations of the second order comprehension
principle are necessarily approximate and imperfect—which partially accounts for some difficulties
a specification of these predicates must encounter.

A call of findall( Term, Goal, Bag) finds values of Term as instantiated by answer substitutions
0 of all solutions of Goal, collects them into a list (in the ordering of solutions), and unifies this

18



list with Bag. The independence of solutions is reflected by fresh renaming of all uninstantiated
variables which might occur in Term 6, at every collecting step.

A realization of findall, if it is to use backtracking to make Prolog find all solutions auto-
matically, must introduce some external mechanism, to remember (the needed fragment of) the
computed answer substitution, which Prolog alone would forget on backtracking. The external
mechanism, or special action to be taken immediately after completion of every successful compu-
tation of Goal, is in our rules indicated by a mark Collect(caller). The special action consists in
collecting, at caller, the renamed Term 0, and triggering backtracking. The solutions are accumu-
lated in a list provided by an additional (partial) function

term_list : NODE — TERM*

Insertion of the mark, and starting computation of Goal from a newly created node, is done in
Call mode. We also use a Select mode, this time not to pass to alternatives, since there are none,
but to complete the process when backtracking finally leaves Goal, by unifying Bag with term_list.

Since Call rule is common to findall, bagof, setof , we shall list it once, with the generic predicate
name SETEXPR standing for each of the three.

if act = SETEXPR(T,G, B) if act = findall(T,G, B)
& mode = Call & mode = Select
then thenif p = nil
cands : =[] then backtrack
term_list(currnode) : = [] else s:=sp
extend NODE by t with decglseq : = contp
father(t) : = currnode mode : = Call
decglseq(t) : = [ ([G], currnode), where p : = mgu(term_list(currnode), B)
Collect(currnode) |
s(t):=s
currnode 1=t
endextend
special_action(Collect(caller), node) =  if act(caller) = findall(T,G,B)

then let 6 = s(node)
term_list(caller) : =
append (term_list(caller),[ (T 0)'])
vir=vi+1
backtrack

The bagof, setof predicates do everything findall does, classifying also the solutions according to
the values taken by parameters, i.e. those variables which occur in Goal but not in Term. The list
of solutions, i.e. values of Term 6 which come together, according to this classification, is unified
with Bag as one (alternative) solution to bagof. It follows that in case of no solution bagof should
fail, unlike findall, since there are no parameter values a solution could correspond to. It also
follows that, in case of no parameters, bagof should be the same as findall (given that there is a
solution), since there is nothing according to what one could classify.

The (rough) idea may be seen from the following example.

If we had a database of child (peter, fred), child(paul, fred), child(mary, joan), child(fred, ann),
child (joan, ann), the solution to grandchildren collecting call

findall(X, and(child(X, Parent), child( Parent, ann)), Grandchildren)
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would be Grandchildren = [ peter, paul, mary | (without binding Parent), while a call
bagof (X, and(child(X, Parent), child(Parent, ann)), Grandchildren)
would have two solutions,

Parent = fred, Grandchildren = [ peter, paul |

Parent = joan, Grandchildren = [ mary |

The common core of solution collecting predicates is reflected in having a common Call rule,
as well as in the same structure of special action, cf. below, except that, instead of just appending,
the new contribution is put in its place according to the computed value of parameters Y. The
Select rule below has to have alternative sons, in view of resatisfiability of bagof,setof; additional
unification effects the final binding of parameters Y to their computed value.

How a computed T with parameters Y is to be put in its place, depends on the classification
principle, which is, in the definition of put_in_place update below, represented by a function

find_class : TERM® x NODE* — NODE + {nil}

Of this function we assume to, for given parameters Y and a list of candidate nodes, select a
node in which term-parameters pairs T; — YZ, belonging to the same class with )7, are already
being collected. If one is found, the T; — Y; entry is appended to the list, unifying thereby the
parameters to ensure their identity. The classification principle must of course be such as to make
this unification coherent. If no such node exists, find_class will return nil, and put_in_place will
create a new son, insert it into the list of those corresponding to already existing classes, and start
collecting a new class there.

The predicate setof is usually explained as being the same as bagof, with, additionally, sorting
the solutions, removing thereby any duplicates. For this purpose an additional sorting function is
used.

In the Select rule below, we shall use a function params, which extracts a list of all variables
occurring in the Goal but not in Term. The syntax also allows quantified goals as arguments to
set expressions, where some variables are explicitly excluded from being parameters. We assume
params to know that.

if act = bagof (T,G,B) | setof (T,G,B)
& mode = Select
thenif cands =[]
then backtrack
elsifp = nil
then cands : = rest(cands)
else go_fst_cand
s(fst_cand) : = s(fst_cand) p
decglseq(fst_cand) : = cont(fst_cand) p
mode : = Call
where
Y = params(T,G)
term_list(fst_cand) = [Ty — Yi,...,Tp — )_;n]
6 = mgu(Y,Y,)
p= mgu([Ty,...,T,]0,B) | mgu(sort([Ty,...,T,]6),B)
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special_action(Collect(caller), node) = if act(caller) = bagof (T, G, B)
or act(caller) = setof (T, G, B)
then put_in_place((TH)', (Y8)', caller)

vit=vi+1

backtrack

where Y = params(T,G)
6 = s(node)

if class = nil
then extend NODFE by t with
father(t) : = caller
cands(caller) : = ins(t, cands(caller))
term_list(t) : = [T — Y]
s(t) =[]

put_in_place(T, Y, caller)

else
term_list(class)
:= append( [T B Ry )_;m],
[T—-Y])8
s(class) : = s(class) 0
where class = find_class(Y , cands(caller))
term_list(class) = [Ty — Yy,..., T — Yo ]

- o

0 = mgu(Y,Yn)

Disagreements in specification and implementation of these predicates can all be viewed as
encapsulated in classification and sorting principles involved, i.e., in the context of above rules,
in the find_class, sort, insert functions. It is indeed disputable whether the proposed (or any)
classifying and sorting principles are sound when parameters are not fully instantiated. Therefore
we leave these functions abstract, but see [Borger,Rosenzweig 93a] for analysis, rationale and
criticism.

6 Error Handling

Error handling, as prescribed by the draft standard proposal, is very easy to describe in this
framework. We have, in Section 2, already mentioned putting all ‘normal’ rules under the guard
error = 0. Exceptional rules, without that guard, will be error handlers. FError handling, as
foreseen by the standard proposal, is very uniform—throw an error indicator—enabling the pro-
grammer to write his own error handlers. The only exception is system_error, in which case the
action is ‘implementation dependent’. Thus the guards of all our rules do exclude the condition
error = system_error—in that case the system would just halt. All other errors would then be
handled by the following uniform rule:

iferror ¢ {0, system_error}
then decglseq : = [ (throw(rep(error)),.) | cont]
error : =0

Of function rep here we assume to represent the error indicator by a Prolog term. Note that
error has to be reset, so that a catch can continue the computation. Since throw doesn’t use the
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cutpoint, we have put a dot instead. We couldn’t have skipped the continuation—it is essential to
throw.

The orthogonality of normal operation and error handling can be expressed by composition
operators on evolving algebras introduced in [Glavan,Rosenzweig 93]: if the set of all ‘normal’
rules, including those below, is denoted as Prolog, and the (singleton containing) error rule above
as Error, Prolog with error handling will be represented by the evolving algebra

(OK? Prolog | Error)

where ¢?A denotes evolving algebra A with guard ¢ added to all its rules, and | - denotes disjoint
sum of rule sets.

The default error behaviour, if the programmer hasn’t encapsulated his code in appropriate
calls of catch, would then be given by the rule

if act = throw(B)

& mode = Call

& find_catcher(cont, B) = root
then error : = system_error,

cf. rule for throw. The rest is a description of conditions under which error situations occur.
For instance, an uninstantiated activator in Call mode produces an instantiation error, while an
instantiated activator which is not a callable predication produces a type error.

if is_var(act) if wrong_type(act)
& mode = Clll & mode = Clall
then error : = instantiation_error then error : = type_error

where is_var, wrong-type are obvioous recognizers. The result of an attempt to call a syntactically
legal user defined activator, which is however not in predicate_list (cf. Section 4), should, according
to standard proposal [WG17 92], depend on the value of undefined_predicate flag:

if is_user_defined(act)
& mode = Clall
& procdef (act, db) = nil
thenif undefined_predicate = error
then error : = undefined_predicate_error
else backtrack
if undefined_predicate = warning
then warn

where update warn abstractly represents the action of warning the user.
A further typical example would be

if act = clause(H,B) | retract(H, B)
& mode = Call

thenif is_var(H)

then error : = instantiation_error

elsif wrong_type(H)

then error : = type_error

elsif ~dynamic(H)

then error : = database_error

etc. etc. All other error conditions, listed in [WG17 92], follow this straightforward pattern.
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7 Box model

Byrd’s box model [Quintus 87] for debugging is usually explained along the following lines. When
a goal is called, a box is created, which is immediately entered via its Call port. If the call is
completed successfully, the box is left via its FExit port. If backtracking later forces an attempt to
resatisfy that call, the box is reentered via its Redo port. If all attempts at (re)satisfaction fail,
the box is finally left via its Fail port. Passing through ports, the debugger reports the port and
the goal which owns the box (instantiated with the current substitution). The debugger may be
switched on and off, and applied to selected user defined predicates, during the computation.

In order to incorporate the box model, we introduce a 0O-ary function debugging, and a unary
spying, indicating whether and which predicates are being debugged. We further insert into our
basic rules, at appropriate places, updates of form say(Port, goal), which abstractly represent the

reporting.
The Call and Select rule are then enriched to take the form
if is_user_defined(act) if is_user_defined(act)
& mode = Call & mode = Select
then if debugging thenif cands =[]
& spying(act) then backtrack
then say(Call, act) if debugging

& spying(act)
then say(Fail, act)
else resolve

where ... stands for the rest of the Call rule, as in Section 2. Reporting of Redo will be taken care
of by backtracking, which must check the father it revisits, being thus

backtrack =  if father = root
then stop : = Failure
else currnode : = father
mode : = Select
if debugging & spying(act(father))
then say(Redo, act(father))

In order to record which box is to be exited, we use again the technique of marks, to be pushed
for spied activators. Formally, this turns new_decglseq, to be set up at selection, to

new_decglseq =  if spying(act)
then [ (Bdy', father), Exit(currnode) | cont]6
else [(Bdy’, father) | cont]8

special_action(Ezit(node),n) = decglseq(n) : = rest(decglseq(n))
if debugging & Spying(act(node))
then say(Ezit, act(node))

Usually predicates debug/0, spy/1 are provided to control the debugger at runtime. Their rules

take the form
if act = WHAT | noWHAT

then WHAT ing : = true | false
with the obvious range for WHAT.
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Concluding Remarks

We hope to have convinced the reader that we have provided what was promised in the introduction—
a simple but rigorous definition, as laid down for reference in the Appendix, which naturally reflects
the basic intuitions of full Prolog.

The definition is of course operational: it is presented as an evolving algebra interpreter for
full Prolog programs. Nevertheless, it is a logical characterization of the language, in at least two
ways.

o The four rules, which determine the meaning of pure Prolog, are nothing but the SLD-
resolution rule, presented so as to fit the view of Horn—clause sets as programs. The appear-
ance of the two success rules reflects the fact that programs consist of procedures, and may
terminate—goal success represents exit from a procedure, and query success termination.
The decomposition of a resolution step into call and select is one small concession proof the-
ory has to make here to the fact that what has to be interpreted is a programming language,
and not just a deductive system. This decomposition namely enables smooth and uniform
transition from user—defined predicates to resatisfiable built—in constructs. This may help to
extend also the established body of the logic programming theory ;from Horn—clause logic
to the real programming language.

e There are strong grounds to maintain that the whole underlying framework of evolving
algebras is logical in its essence—its semantics is the standard semantics of logic, struc-
tures interpreting a signature, as indicated in the Introduction (but see also [Gurevich 91,
Glavan,Rosenzweig 93]).

It is thus not accidental that assuming the core of the present model as a starting point has helped
to reveal the logical structure of the WAM and some of its extension ([Borger,Rosenzweig 92a,
Beierle,Borger 92, Salamone 93]). We hope that the full model will serve well for mathematical
analysis of real Prolog programs.
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Appendix

For the reference, we list here all the universes, functions, abbreviations and rules used, except for
usual ones pertaining to Prolog syntax.

Universes, Functions, Actions

universes

LIT, TERM, GOAL = TERM*, CLAUSE,
SUBST, MARK, PROGRAM, ERROR

dynamic universe NODE, DECGOAL = (GOAL x NODE)*

functions
father : NODE — NODE

root, currnode € NODE

decglseq: NODE — (DECGOAL + MARK)*
s: NODE — SUBST
cll : NODE — CODE
vi € N

cands : NODE — CODE™
clause : CODE — CLAUSE + {nil}
db € PROGRAM
procdef : LIT x PROGRAM — CODE™ + {nil}

mode € {Call, Select}

stop € {0, Success, Failure}
error € ERROR

abbreviations—functions

father = father(currnode)
cands = cands(currnode)
s = s(currnode)
decglseq = decglseq(currnode)
fst_cand = fst(cands)
goal = fst(fst(decglseq))
cutpt = snd(fst(decglseq))
act = fst(goal)
cont = [(rest(goal), cutpt)
| rest(decglseq) |
OK = stop=0 & error =0
lit = rename(lit, vi)
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abbreviations—updates

go_fst_.cand = currnode : = fst_cand
cands : = rest(cands)
mode : = Call

backtrack = if father = root
then stop : = Fuilure
else currnode : = father
mode : = Select

resolution step

resolve = if 0 = nil

then

attach t1,...,t, = extend NODE
with updates by t1,...,t, with

father(t;) : = currnode
cands : = [t1,...,tn]
updates

succeed = decglseq : = cont

proceed = if rest(decglseq) =[]

or snd(decglseq) § MARK

then decglseq := rest(decglseq)

else special_action( snd(decglseq),
currnode)

cands : = rest(cands)

else

go_fst_cand

decglseq(fst_cand) : = new_decglseq
s(fst_cand) : = s6

vi:=wvi+ 1

where

Hd : — Bdy = clause(cll(fst_cand))
0 = mgu(act, Hd")
new_decglseq = [ (Bdy', father) | cont] 8

Pure Prolog

if decglseq =[]

then stop : = Success

if is_user_defined(act)

& mode = Call
then

attach ty,...,t,

with Cll(ti) =C

mode := Select
where

[c1y. ) Cn]

= procdef (act, db)

if goal =[]
then proceed

if is_user_defined(act)
& mode = Select

thenif cands =[]

then backtrack

else resolve



Control

if act = true
then succeed

if act =!

then
father : = cutpt
succeed

if act = call(G)
thendecglseq : = [([G ], father) | cont]

if act = and(G1,G>2)
then decglseq:= [([G1,G2], cutpt) | cont]

ifact = (s=1t)

thenif 0 = nil

then backtrack

else decglseq : = contf
s:=s6

where 6§ = mgu(s,t)

if act = or(G1,G>)
& mode = Call
then
attach t,, ¢, with
decglseq(t;) : = [([G;], cutpt) | cont]
s(t;) :=s
mode : = Select

if act = not(G)
& mode = Call
then
attach ty,t; with
decglseq(ty) : = [ ([G], currnode),
([1, fail], father) ]
decglseq(ts) : = cont
s(t;) :=s
mode : = Select
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if act = fail
then backtrack

if act = once(Q)
thendecglseq : = [([G, ], father) | cont]

if act = if-then(I,T)
then decglseq:=1[ ([I,!], father),
([T], cutpt) | cont]

if is_bip(act)

& mode = Select
thenif cands = [ ]
then backtrack
else go_fst_cand

if act = if-then_else(I,T, E)

& mode = Clall
then
attach ty, ¢, with
decglseq(ty) :=[ ([I], currnode),
([], father),
([T], cutpt) | cont]
decglseq(t2) : = [([ E], cutpt) | cont]

s(t;):=s
mode : = Select

if act = repeat
& mode = Clall
then
attach t;,t; with
decglseq(t1) : = cont
decglseq(t2) : = [ (repeat,.) | cont]
s(t;)):=s
mode : = Select



catch and throw

Catchpt(node) € MARK
find_catcher : DECGOAL* x TERM — NODE

find_catcher([], B) = root
find_catcher([ Entry | Rest], B)
= if Entry = Catchpt(caller)
& act(caller) = catch(G,C, R)
& mgu(B,C) # nil
then caller
else find_catcher(Rest, B)

special_action(Catchpt(node),n) = decglseq(n) : = rest(rest(decglseq(n)))

if act = catch(G,C, R) if act = throw(B)
& mode = Call & mode = Call
then & find_catcher(cont, B) # root
attach ¢t with then currnode : = found
decglseq(t) : = [ ([G], currnode), decglseq(found)
Catchpt(currnode) | cont) :=[ ([R], father (found))
s(t):=s | cont(found)]6
mode : = Select s(found) : = s(found) 0

where found = find_catcher(cont, B)
act(found) = catch(G,C, R)
0 = mgu(B,C)

Dynamic Database

predicate indicators PI C CODE

clause_list : TERM? x PROGRAM — CODE* + {nil}
predicate_list : PROGRAM — PI*
del_cl : CODE x PROGRAM — PROGRAM
del_pi : PI x PROGRAM — PROGRAM
insert : TERM* x PROGRAM — PROGRAM

p/n € predicate_list(db) <
(31, ) (clause_list(p(t), z, db) # nil)

clause_list(g, X, db) = procdef (g, db)
clause_list(z,y, del_cl(c, db F c
predicate_list(del_pi(p/n, db 3 p/n

clause_list(H, B, inserta(H, B, db
clause_list(H, B, insertz(H, B, db

[c| clause_list(H, B, db) ]
append (clause_list(H, B, db),[c])
clause(c) = H :— B

)
)
)
)
)

—_— — ~— ~—
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if act = assert(H, B)
& dynamic(H)
then db:= ins(H, B, db)
succeed

if act = clause(H,B) | retract(H, B)
& dynamic(H)

& mode = Call
& clause_list(H, B, db) = [c1,...,cn]
then attach [{,...,t,]

with cll(t;) = ¢
mode : = Select

if act = current_predicate(P) | abolish(P)
& mode = Call
& predicate_list(P, db) = [p1, ...
& _| dynamic(P)
then attach [¢1,...,t,]
with Cll(ti) = Di
mode : = Select

s Pn ]

All Solutions

if act = clause(H, B) | retract(H, B)
& dynamic(H)
& mode = Select
thenif cands =[]
then backtrack
else resolve
if 0 # nil
then _ | db : = del_cl(cll(fst_cand), db)
where
6 = mgu(H' : — B', clause(cll(fst_cand)))
new_decglseq = cont

if act = current_predicate(P) | abolish(P)
& mode = Select
thenif cands =[]
then backtrack
else resolve
if 0 # nil
then _ | db : = del_pi(cll(fst_cand), db)
where 6 = mgu(P, cll(fst_cand))
new_decglseq = cont

term_list : NODE — TERM*
sort : TERM* — TERM*
find_class : TERM™ x NODE™ — NODE + {nil}
Collect(node) € MARK

if act = SETEXPR(T,G, B)
& mode = Call
then
cands : =[]
term_list(currnode) : =[]
extend NODFE by t with
father(t) : = currnode
decglseq(t) : = [ ([G], currnode),
Collect(currnode) |
s(t):=s
currnode 1=t
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if act = findall(T, G, B)
& mode = Select

thenif 6 = nil

then backtrack

else s:=s6
decglseq : = cont
mode : = Call

where 6 = mgu(term_list(currnode), B)



if act = bagof (T,G, B) | setof (T,G, B)
& mode = Select
thenif cands =[]
then backtrack
elsifp = nil
then cands : = rest(cands)
else go_fst_cand
s(fst_cand) : = s(fst_cand) p
decglseq(fst_cand) : = cont(fst_cand) p
mode : = Call
where
Y = params(T,G)
term_list(fst_cand) = [Ty — Y1,..., T — Y, ]
0= mgu(?a 1_;n)
p= myu([Tr,...,T,]6,B) | mgu(sort([Th,...,T,]6),B)

special_action(Collect(caller), node) =  if act(caller) = findall(T,G,B)
then term_list(caller) : = append( term_list(caller),
[(T8)'])

elsif act(caller) = bagof (T, G, B)

or act(caller) = setof (T, G, B)
then put_in_place((TH)', (Y8)', caller)
vii=wvi+1
backtrack
where Y = params(T, G)

6 = s(node)

put_in_place(T,Y, caller) = if class = nil
then extend NODE by t with
father(t) : = caller
cands(caller) : = ins(t, cands(caller))
term_list(t) : = [T — Y|
s(t) =11
else
term_list(class)
1= append( [Ty — Yy, T — ?m],
[T-Y])6
s(class) : = s(class) 0
where class = find_class(Y , cands(caller))
term_list(class) = [Ty —Yi,...,Ton — Y]
9 = mgu(Y, V)
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Error Handling

evolving algebra

(OK?Prolog | Error)

where Prolog contains all rules except for Error below

error € ERROR
rep : FERROR — TERM

if ERROR_CONDITION if act = throw(B)
then error : = FRROR_INDICATOR & mode = Call

Error

& find_catcher(cont, B) = root
then error : = system_error

iferror ¢ {0, system_error}
then decglseq : = [ (throw(rep(error)),.)

Box Model Debugger

modified call and select rules

| cont]
error : =0

debugging € BOOL
spying : PI — BOOL
Ezit(node) € MARK
abstract update say(-, -)

if is_user_defined(act) if is_user_defined(act)
& mode = Call & mode = Select
then if debugging thenif cands = |
& spying(act) then backtrack
then say(Call, act) if debugging
attach t1,...,t, with & spying(act)
cl(t;) :=¢ then say(Fail, act)

mode : = Select else resolve

where [cy,...,c,] = procdef (act, db)

modified updates

backtrack

new-decglseq

if father = root

then stop : = Failure

else currnode : = father
mode : = Select
if debugging & spying(act(father))
then say(Redo, act(father))

if spying(act)
then [ (Bdy', father), Exit(currnode) | cont]6
else [ (Bdy’, father) | cont] 8
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special_action(Exit(node),n) = decglseq(n) : = rest(decglseq(n))
say(Exit, act(node))

if act = WHAT | noWHAT
then WHAT ing : = true | false

WHAT € {debug, spy(p/n)}

Final Draft. To appear in: Science of Computer Programming 24 (1995) 249-286.
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