
The Mathematics of Set Predicates in Prolog?

Egon B�orger
1

Dean Rosenzweig
2

1 Dip. di Informatica, Universita di Pisa

boerger@di.unipi.it
2 FSB, University of Zagreb

dean@math.hr

Abstract. We provide a logical speci�cation of set predicates �ndall

and bagof of Prolog. The speci�cation is given in proof theoretic terms,

and pertains to any SLD{resolution based language. The order depen-

dent aspects, relevant for languages embodying a sequential proof search

strategy (possibly with side e�ects), can be added in an orthogonal way.

The speci�cation also allows us to prove that bagof cannot be de�ned by

SLD{resolution alone. We show the correctness, wrt to our speci�cation,

of Demoen's de�nition of bagof for Prolog in Prolog. The speci�cation of

bagof allows us to throw some light on the logical problems with setof .

Introduction

The solution collecting predicates �ndall, bagof, setof of Prolog have been quite

extensively discussed in the literature| [PerPor 81], [Warren 82], [Ueda 86],

[Ueda 87], [O'Keefe 90], [Demoen 91], [Dodd 91], [WG17 92] and can be found,

in di�erent versions, in most Prolog systems (DEC-10, C, Quintus, BIM, Sic-

stus, IBM, LPA,. . .). Discussion has however mainly been about whether and

why they should be used, and whether and how they are eliminable. The dis-

cussion never came to the point that these predicates are needed because they

express (however imperfectly) fundamental logical principles , which have explic-

itly been with us since Frege. This may be because the predicates are usually

explained through examples and de�ned, if at all, by speci�c algorithms, and

not by a mathematical semantics which could be clearly seen as derived from

those principles.

We provide a purely logical semantics of �ndall and bagof predicates, based

on proof theory of SLD-resolution but independent of any particular proof search

strategy. The speci�cation thus pertains to any SLD-resolution based language.

We relate the speci�cation of bagof to the underlying fundamental mathemati-

cal principles of comprehension (abstraction) and parametrization. Some choices,

made in (current practice and) the draft standard proposal [WG17 92] for bagof ,
turn out to be best justi�ed by combining proof theoretical and model theoretical

considerations. Once the speci�cation is given, we can prove that bagof cannot

be de�ned by SLD{resolution alone. We also prove that the algorithm, prob-

ably intended by the ISO Prolog standardization committee [WG17 92], and

? in: Computational Logic and Proof Theory , G.Gottlob, A.Leitsch, D.Mundici Eds.,

Springer LNCS 713, 1993, pp.1{13.

expressed by an elegant piece of Prolog code by [Demoen 91], is correct with

respect to our speci�cation.

The mathematical crux of the paper is section 2 which provides the logi-

cal semantics of bagof/3. Section 1 prepares the ground with a logical (order{

independent) semantics for �ndall/3, giving also the methodological paradigm.

In Section 3, we prove correctness of Demoen's Prolog code for bagof . In Section

4 we examine setof .

Terminology and notation

The notation for `the set of all x such that P (x)', fx j P (x) g, is understood as

denoting application of comprehension (abstraction,collection) operator to vari-

able x and expression P (x), which binds all occurrences of x within its scope|in

very much the same way as other variable{binding operators, such as 8; 9 in

predicate calculus, � in �{calculus,
R b
a
in integral calculus... bind all occurrences

of a variable in an expression. Variable (occurrences)s which are not bound, in

this sense, are free. In order to distinguish this logical notion of bound variable

from the computing notion of variable being `bound to a value', we shall call the

latter, in this logic programming context, instantiated .

Every textbook on logic explains why bound variables can and must be re-

named, to avoid clashes with variables which occur free in the same context.

Most notable example in logic programming is probably renaming of a clause

to be resolved, since all variables occurring in a clause are tacitly understood as

being bound by a universal quanti�er.

We shall have to deal with multisets (bags , `sets with repetitions'). We adopt

the following notation, for `the bag of all x such that P (x; i), so that, for each

such i 2 A, a copy of x is taken', where A is an ordinary set:

hx j P (x; i) ii2A:

In such an expression x; i are both bound. For instance

h j j i2 = j ii2f�1;0;1g = h 0; 1; 1 i:

where the form hx1; : : : xn i will denote bags given by enumeration (obviously,

the order of enumeration is irrelevant here). We shall drop the indication of index

set, i 2 A, when it is clear from the context. We use _ to denote multiset union,

thus h 1; 2; 1 i _ h 2; 2 i = h 1; 1; 2; 2; 2 i.
We shall otherwise rely on standard notation and terminology of logic pro-

gramming, cf. [Apt 90].

1 Semantics of �ndall

The predicate �ndall(T, G, L) has been introduced into Prolog in order to auto-

mate the process of �nding (through repeated backtracking) and collecting into

2

a list, all values of the term T with which the goal G succeeds, unifying subse-

quently this list with L. Can we make some logical sense out of this procedural

description, uncoupling its overdependence on Prolog backtracking (and hence

on ordering)?

Let t be a term and g a goal. Let X be the (sequence of) variables occuring

in t, and Y the variables occuring in g but not in t. During the computation of

g, both X-variables and Y-variables get instantiated to some values. By �nd-
all(t,g,l) only the values of the X-variables are collected into the list, while the

collecting phase disregards the Y values. The mathematical idea underlying this

collecting process can be, in the �rst approximation, expressed by comprehension

f t(X) j 9Y g(X;Y) g:

Note that all variables are bound here, Y's by quanti�cation, and X's by com-

prehension3. These bound variables must be treated as nameless dummies, i.e.

as distinct from all variables occurring free in the same context|in l or in the

calling environment|even if they have the same name. But note that being a

free or a bound variable is here a runtime property; as long as �ndall (t; g; l) is
not called, all variable occurrences in t; g; l are instantiated uniformly. The ne-

cessity to distinguish bound from free variables, without in general using explicit

variable{binding operators with syntactically clearly de�ned scope, does create

some diÆculties for logic programming, as we shall see in a more pronounced

way in the section on setof .
In the context of usual model theory of logic programming, an approxi-

mate model-theoretic speci�cation for �ndall would then be: compute (a �nite

representation of) the set

S = f t(a) j 9b j= g(a;b) g

where a;b are understood as ranging over (a �nite power of) the Herbrand uni-

verse (i.e. sequences of ground terms). This approximate speci�cation disregards

both possible repetition of solutions and the order of their appearance.

We cannot do much better with model theory alone, since �ndall inherently
involves proof-theoretic notions.

. . . although Prolog reports solutions, it is looking for proofs, and �ndall/3
is de�ned to return an instance of the t for every proof of g. [O'Keefe 90]

For the following proof theoretical analysis we have the assumption that

the SLD-tree of g is �nite (since otherwise the computation of �ndall will not
terminate). In that case, as is well known, for terms a;b of the Herbrand universe,

j= g(a;b) i� j{ g(a;b).

Let then �1; : : : �n be all SLD{proofs of (the original goal) g, and �i =

�(�i) the corresponding answer substitutions. The requirement, as formulated

by O'Keefe, can be expressed by the bag

B = h t�iri j �i = �(�i); j
�i

{ g ii=1;:::;n

3 Remember that f t(X) j : : : g is set theoretical shorthand for

fU j 9X(U = t(X)& : : :) g.

3

where each ri is a renaming of t�i by fresh variables (more exactly, we assume

the ranges of ri's to be disjoint, mutually and from the set of all variables present

in the calling environment). The renamings may need some explanation. Only

the X;Y variables, which appear in the original t; g as well as in t�i, really

need renaming, since all other variables, which may occur in t�i, are brought

in by resolution, and therefore are always fresh. The renaming makes every bag

element come with distinct variables. Intuitively this makes them independent|

mutually, and from the environment|as they should be, since they come from

independent computations. More formally, this is needed to distinguish between

free and bound variable occurrences, since our multiset comprehension also binds

all variables which occur there.

To sum up, a better approximate speci�cation of �ndall is: compute a repre-

sentation of B. It re�nes the �rst model-theoretic approximation by the obvious:

Proposition 1. For a ground term t(a), t(a) 2 S i� it is a (ground) instance of

an element of B.

This makes every element s of B stand for, in classical model theory,

fU j j= 9Z(U = s(Z))g;

where Z are all variables occurring in s. The bag represents the union of (sets

represented by) its elements. Note that, under this interpretation, all variables

in s should be seen as bound .
A natural representation of a bag is a list of its elements. Such a repre-

sentation, however, imposes an ordering on bag elements (as would any other

simple representation). If we are to have unique representability, some ordering

criterion must then be selected. Since our speci�cation has so far remained or-

der independent, we can adopt any choice whatsoever. Therefore we have the

following

Speci�cation of �ndall(g,t,l). Given an ordering criterion, compute the repre-

sentation of B in that ordering and unify the resulting list with l. This uni�er

is the answer substitution.

For languages based on some sequential proof search strategy, the natural

choice of ordering is the solution ordering (the solutions come in the list in the

order in which they appear during the computation). For Prolog this is the usual

left-to-right preorder of the tree. For languages with side e�ects, a proviso should

be added: the side e�ects of proofs �i appear in the order in which they happen

(in those proofs).

2 Semantics of bagof

Whereas nobody has problems with understanding or explaining �ndall|this

fact is re
ected in the straightforwardness of the preceding section|this does

4

not seem to be the case with bagof, as one can see from the discussion in the

literature. In fact bagof(t,g,l) brings into the logic programming environment

the fundamental mathematical operation of parameterized comprehension, which

can be, in the �rst approximation, expressed by the comprehension

f t(X) j g(X;Y) g:

where now however the variables Y are free|they are the parameters, and

what needs to be represented is not only the collection but also its dependence
on values of parameters. An approximate model theoretic speci�cation is then:

compute (a �nite representation of) the set

S(b) = f t(a) j j= g(a;b) g

in its dependence on parameters b.

A proof-theoretic analysis has to proceed more gradually here, keeping how-

ever the assumption of �niteness of the computation tree. If we �x parameter

values b, the proof-theoretic approach of the previous section gives us the mul-

tiset

B(b) = h t�i�iri j �i = �(�i); j
�i

{ g ; Y�i�i = b ii

where t; �i; �i are de�ned as in the previous section, �i is the (minimal) ground

substitution instantiating Y�i to b (i.e. their mgu). The renamings ri rename

(freshly) only those bound variables, occuring in t�i, which are not instantiated

by �i.This means those X's, that do not occur in Y�i, i.e. are not linked to

parameters by the answer substitutions. No Y's are renamed here, which re
ects

their role of parameters ; their identity must be preserved|across alternative

solutions and wrt to the calling environment|formally they are free in the call

of bagof . As in the case of �ndall , of course, the distinction of free vs. bound is

a runtime property.

For reference, let us note that domains and ranges of �i; ri, as de�ned above,

are pairwise disjoint, thus

Lemma 1. Substitutions �i; ri, as de�ned in B(b), commute.

We have the obvious

Proposition 2. A ground term is an element of S(b) i� it is a (ground) instance

of some element of B(b).

If our approximate speci�cation is re�ned to `computing a �nite represen-

tation of B(b) in its dependence on b', we are led to the following (tentative)

requirements:

Requirement 1. If there are no free variables, bagof (t; g; l) behaves exactly as

�ndall (t; g; l), given that g has a solution at all (cf. below).

Requirement 2. In general, bagof (t; g; l) may have alternative solutions.

5

Requirement 3.Alternative solutions to bagof (t; g; l) should re
ect dependence
of B(b) on b.

Requirement 1 is due to the observation that, in case of no free variables, we

are really talking about B from the previous section. Requirement 2 then follows,

since it is easy to concoct examples yielding drastically di�erent bags for di�erent

instantiations of g. Requirement 3, however, does have a model-theoretic
avour,

which may not be quite appropriate in this proof-theoretic context|what is

computed in proofs, namely, are not ground instances of parameters, b, but

`computed parameter values' Y�i. Hence requirement 3 may be moderated by

Requirement 4. Alternative solutions to bagof (t; g; l) should re
ect alternative

computed parameter values.

From the wording of Requirement 4 it is clear why we had to put an additional

condition on Requirement 1: if g had no solutions, Requirement 4 would prohibit

us to return an empty bag, since it would not re
ect any computed parameter

value (see also [Warren 82]). Thus,

Requirement 4'. If g has no solution, bagof (t; g; l) should fail.

Requirements 3 and 4 should not be taken too literally; they would namely

be contradictory. Requirement 3, taken literally, would lead to the following

collection procedure: take B(b)'s, strip away the ground substitutions �i, and

provide the �nitely many (up to renaming of nonparametric variables) bags

as alternative solutions. Equivalently, we could de�ne alternative results to be

(some renamings and uni�cations of, cf. De�nition 3 below)

R = h t�iri ii2T

where T ranges over all maximal nonempty index sets such that all computed

parameter values Y�i; i 2 T are mutually consistent, i.e. unifying. It is easy to

see that every B(b) is, elementwise, an instance of an R.

This would, however, destroy Requirement 4 completely. Same computed

parameter values would reappear in di�erent solutions, and it is possible for

some di�erent (but consistent) values to appear always together (if there is no

further alternative to separate them).

How is Requirement 4 then to be understood? If we take `alternative' com-

puted parameter values literally, as coming from di�erent proofs, then all col-

lecting is lost (as all bags would be singleton), contradicting even Requirement

1. We thus have to abstract from proofs here, and look elsewhere for a criterion

of `being alternative'.

There seems to be (almost) a consensus in the Prolog community about

where to look|to model theory. From model theoretic point of view, computed

parameter values are di�erent if they have di�erent sets of (ground) instances. It

is known [Apt 90] to be equivalent to the following criterion: computed parameter

6

values Y�i;Y�j are alternative if they are not variants. The decision, to group

into one alternative solution (bag) those proofs which yield variant parameter

values, is then expressed by

De�nition 1. Answer substitutions �i; �j are equivalent ifY�i;Y�j are variants.

Denote by � the equivalence class of �.

For later use, let us record

Lemma 2. For a parameter Y

(a) Y 2 vars(Y�i)) Y �i = Y

(b) Y 2 vars(Y�i)) Y 2 vars(Y�j)
at exactly the same position, for �i; �j 2 �:

Proof. Statement (a) follows from answer substitutions being idempotent|cf.

[Apt 90]. Statement (b) follows from (a), observing that sequences

: : : t(: : : Y : : :) : : : Y : : : and : : : t(: : : Z : : :) : : : Y : : :

cannot be variants, for any Z which is not Y .

De�nition 2. B(b; �) = h t�i�iri j Y�i�i = b; �i 2 �ii

Proposition 3. B(b) =
_
fB(b; �) j b is an instance of Y�g

A solution to bagof (t; g; l) will then be de�ned, up to ordering, by

De�nition 3. B(�) = h t�irir
0
i� j �i 2 � ii where � is the mgu of Y and

all Y�ir
0
i with �i 2 �, where r

0
i are fresh renamings of those bound variables

occuring in t�i and Y�i (and therefore not renamed by ri).

This uni�cation is necessary to preserve the identity of parameters|unin-

stantiated variables, distinct from X;Y and possibly brought into Y�i by SLD-

resolution, are all distinct, but should be matched across proofs contributing to

the same bag. Thus Y� now provides a cannonical representative of `computed

parameter values'. The �i's of De�nition 2 and � of De�nition 3 are linked by

Lemma 3. Let �i = mgu(Y�i;b); � = mgu(Y�;b). Then the equation �i = r
0
i��

holds when both sides are restricted to vars(t�i) [vars(Y�i).

Proof. A parameter Y not occurring in Y�i, is necessarily included in the

domain of �i, and therefore by idempotence cannot occur in its range, and hence

not in t�i. Thus the lemma does not claim anything about Y , and the following

cases remain to be proved:

7

Case Y 2 vars(Y�i) Then Yr
0
i = Y since Y is not in the domain r

0
i;

Y� = Y by Lemma 2 (a) and the de�nition of �.

Therefore Y�i = Y� = Yr
0
i�� by de�nition of �i; �.

Case Z 62 vars(Y�i) Then Z�i = Z by de�nition (and relevance) of �i;

Zr
0
i = Z since Z is not in the domain of r0i;

Z� = Z by de�nition (and relevance) of �;

Z� = Z by de�nition (and relevance) of �; �,

since Z 62 vars(Y�).

Case Z 2 vars(Y�i) Then Zr
0
i� is a variable (because all Y�i are

variants) occurring, in Y�, at exactly the same

positions in which Z occurs, in Y�i. Then the claim

Z�i = Zr
0
i�� follows by de�nition of �i; �.

B(�) covers exactly all the B(b; �) via instantiations of parameter values

to ground terms, as shown by

Proposition 4. Each B(b; �) is identical to B(�)� for � = mgu(Y� b).

Corollary. For each substitution � such that Y�� is ground, B(�)� is an in-

stance of B(Y��;�).

Proof. The equations

t�i�iri = t�iri�i = t�irir
0
i��

Y�i�i = Y�ir
0
i�� = Y��

follow, respectively, from Lemma 1, Lemma 3, Lemma 3 and the de�nition of �.

In a call of bagof (t; g; l), g is usually allowed to be a quanti�ed goal , i.e. a
form Z1̂ : : : Zn̂ g1, where g1 is a goal, understanding the variables Z1; : : : ; Zn to

be existentially quanti�ed . That would, in a �rst model theoretical formulation,

mean S = f t j 9Z1 : : : Zn g1 g. The simple remark, that quanti�ed variables are

bound , suÆces to make our treatment verbatim correct for quanti�ed goals too.

The logical speci�cation, resulting from the above decision, is then:

Speci�cation of bagof (t; g; l). Given an ordering criterion, for (alternative) so-

lution corresponding to equivalence class �, compute the representation of B(�)

and unify it with l�. This uni�er, composed with �, is the answer substitution.

For languages based on some sequential proof search strategy, we must specify

the ordering of appearance of alternative solutions|the natural choice is the

solution ordering of �rst elements of their representations. For languages with

side e�ects we must specify also the side e�ects of bagof (t; g; l). In case of Prolog,

8

the decision of ISO WG17 seems to be `follow the usual implementations', i.e.

execute all side e�ects of �ndall (t; g; l), before reporting any solutions of bagof
(cf. also Section 3).

Propositions 3 and 4 might help explain some of the usual diÆculties in

understanding bagof . It namely violates the lifting property of SLD-resolution

[Apt 90]: a solution of an instance of a goal is an instance of a solution of that

goal. Here, as shown, the solution B(b) (given that g itself has the lifting prop-

erty) for an instance of g may only be patched together from instances B(b; �)

of alternative solutions for g. For instance, if predicate g, checking whether at

least two of its three arguments unify, was de�ned by clauses

g(E;E;A): g(E;A;E): g(A;E;E):

a call of bagof (1; g(Y1; Y2; Y3); L) would yield three alternative solutions, each of

them unifying L with [1], whereas a call of bagof (1; g(Y; Y; Y); L) would have

only one solution, unifying L with [1; 1; 1]. Given the lifting property of SLD{

resolution, we have

Proposition 5. Given any ordering criterion, a predicate satisfying the above

speci�cation of bagof cannot be de�ned by SLD{resolution alone.

This proposition con�rms that some interleaving of model-theoretical and

proof-theoretical arguments, in deriving a logical description of bagof , was in-
evitable. It also makes visible that the notion of declarative semantics, if we are

to analyze real phenomena such as bagof , cannot be understood in a very narrow
sense (say only in terms of simple �xpoint constructions like classical TP)

4

3 Correctness of Demoen's speci�cation of bagof

In case of Prolog, several descriptions of bagof have been put forward in the con-

text of the standardization e�ort in ISOWG17 [Demoen 91, Dodd 91, WG17 92].

The only speci�cation which, to us, seems to be clear and precise enough to be

related to our speci�cation by a proof, is due to Bart Demoen, and comes in the

form of the following elegant piece of Prolog code [Demoen 91].

bagof (Term;Goal;Bag) :�
free variables(Goal;Term;Vars);
�ndall (Vars� Term;Goal;Answerlist);
produce(Answerlist;Answer;Vars);
Bag = Answer:

4 Proposition 5. applies, strictly speaking, to �ndall as well, but, as shown by the

above example, `less strikingly so'.

9

produce([Params� Term j Rest];Bag;Vars) :�
split(Rest;Params;Terms;Bags);
(Bag = [Term j Terms];Vars = Params
;

produce(Bags;Bag;Vars)):

split([]; ; []; []):
split([Params� Term j Rest];Params1; [Term j Terms];Bags) :�

variants(Params;Params1);
!,

split(Rest;Params1;Terms;Bags):
split([Term j Terms];Params;Bag; [Term j Bags]) :�

split(Terms;Params;Bag;Bags):

We have not listed the code for predicates free variables, variants - of them

we shall assume the following.

(i) free variables(Goal;Term;Vars) uni�es Vars with the list of all

variables free in Goal wrt Term, i.e. of those unquanti�ed

variables in Goal which do not occur in Term;

(ii) variants(X;Y) fails if X and Y are not variants, and uni�es

them together otherwise.

Note that, in the algorithm, the free variables are detected only at runtime,

after bagof has been called, as they should be. Since implementations of Pro-

log usually do not provide the occur{check , semantic reasoning about Prolog

programs usually applies only to situations satisfying the following additional

general assumption:

(iii) All uni�cations executed are not subject to the occur{check.

In view of the fact that the draft Prolog standard proposal [WG17 92] does not
specify behaviour of systems when this assumption is violated, there is little

that can be said in that case. In particular, since most implementations produce

idempotent and relevant mgu's as soon as assumption (iii) holds, we will in this

section rely on that. Under assumptions (i), (ii), (iii) we have

Proposition 5. Demoen's Prolog code is correct wrt to speci�cation of bagof
in Section 2.

Proof. We have to prove that, on alternative backtracking calls, the algorithm

computes the representation of each B(�) and uni�es it with Bag . Given (the

code under) usual operational understanding of Prolog, i.e of the way it searches

the SLD{tree, following remarks are true:

(a) The only point where the SLD{tree can branch into alternative solutions

(choicepoint , in WAM jargon) is the one indicated by the semicolon in code for

produce|backtracking will use it only after a solution has been produced;

10

(b)`Witnesses' Vars (generated by free variables , cf. assumption (i)) repre-

sent the Y�i's. In case that some Y remains uninstantiated by (some i� all, cf.

Lemma 2) �i's, it will, in this algorithm, get renamed by �ndall . To see this

does not a�ect the computed B(�), consider de�nition 3 with the renamings r0i
extended so as to rename such uninstantiated Y 's as well. � however undoes this

extra renaming by unifying all such Y r
0
i together and with the original Y 's.

(c) � is created incrementally, propagating uni�cation along the list as it

is being split by variants (cf. assumption (ii)), unifying Y�i's together, and

completed after a solution is produced by explicit uni�cation Bag = Answer,
unifying them with Y.

Then a simple induction over the size of B(�) proves that the algortihm �nds

the (next) B(�) in the right ordering, and an equally simple induction over the

number of �'s (solutions) shows that it �nds them all.

For the reader who �nds this proof to be handwaving, and requires a `more

formal' argument, we would have to substitute `the usual operational under-

standing' of Prolog (i.e. of the way it searches the SLD{tree) with a mathemat-

ical model. Our tree model [BoeRos 91, BoeRos 92] adheres so closely to this

`usual operational understanding' that a transfer of the preceding proof to the

mathematical model is nothing but an excercise, which we may leave to the

interested reader. The primary purpose of operational semantics was, after all,

precisely to provide operational arguments of this kind with some certainty and

dignity of mathematics.

4 Analysis of setof

From the set theoretical point of view, a bag is just a redundant representation

of a set. The predicate setof is thus usually explained as being the same as bagof ,
with

(a) removing duplicates from solutions;

(b) sorting the solutions, providing unique list representation.

Both (a) and (b) are simple and well justi�ed in case of ground terms. In case

of uninstantiated variables in terms however, both (a) and (b) require de�nition.

Trying to �nd a common demoninator of current practice, ISO WG17 has

decided [WG17 92] to interprete duplicates as identical terms in sense of Prolog

predicate == =2. However obvious this choice may seem, in case of not fully

instantiated terms it is impossible to justify logically, as sensed also by O'Keefe:

(setof is) . . . only sound when the free variables and template variables

are bound to suÆciently instantiated terms . . . [O'Keefe 90]

Consider a database with facts

p: p: q(Z;Z): q(Z;Z):

The calls setof (1; p; L1); setof (X; p; L2); setof (X; q(X;Y); L3) provide, under this

semantics, the solutions L1 = [1]; L2 = [X 0
; X

00]; L3 = [Y]. L2 has two ele-

ments only due to renaming of bound variables (by ri of section 2)|X
0
; X

00 are

11

just placeholders, nameless dummies which cannot occur anywhere else. In light

of model theoretic discussion of Section 1, X 0 stands here for

fU j j= 9X 0(U = X
0)g;

but then X
0
; X

00 stand for the same thing (even the same expression, cf. below).

The fallacy of collecting them here as distinct objects may originate from the fact

that the binding comprehension operator is not visible any more. It is notorious

in logic that no meaningful distinction can be made between expressions which

di�er only wrt the names of their bound variables|they are considered as being

syntactically identical . For instance,
R
1

0
x
2
dx =

R
1

0
y
2
dy is not a theorem of the

integral calculus|the two sides are simply the same expression. For systematic

discussion in the context of �{calculus, cf. [Barendregt 84].

To de�ne duplicates by == =2 amounts to collecting sets of names . Even
without drawing on the vast literature on the perils of confusing naming and

meaning, mention and use, note that collecting names is surely not what the

user is led to think of when writing a setof expression.

From the logical point of view then the terms being collected by bagof should
at least be considered as duplicates when they are variants, modulo (variables

linked by answer substitution to) parameters.

From the (classical) model theoretic point of view it would even be natu-

ral to consider as redundant also instances of terms which already exist in the

representation|they add only (ground) elements which are already represented.

In both cases it is simple to adapt our speci�cation of bagof , to yield an

appropriate setof , without complicating the implementation excessively.

As to sorting criterion, it is really the �xation on names which must have

led to term ordering as a supposedly natural choice [WG17 92]|even though

di�erent implementations cannot be reasonably expected to agree on ordering of

uninstantiated variables. In some cases the ordering is thus left unde�ned, mak-

ing it implementation dependent and not portable. In addition, term ordering is

not preserved by instantiation, which is another, this time unnecessary, violation

of the lifting property.

References

[Apt 90] K.R.Apt, Logic Programming, in: J. van Leeuwen (ed.), Formal

Models and Semantics. Handbook of Theoretical Computer Science,

Vol.B, Elsevier 1990, pp. 493{574

[Barendregt 84] H.P.Barendregt, The Lambda Calculus, Elsevier 1984

[BoeRos 91] E.B�orger, D.Rosenzweig, A Formal Speci�cation of Prolog by Tree

Algebras, in: V.�Ceri�c et.al. (eds.), Proceedings of The Third Inter-

national Conference on Information Technology Interfaces, SRCE,

Zagreb 1991, pp. 513{518

[BoeRos 92] E.B�orger, D.Rosenzweig, The WAM|De�nition and Compiler Cor-

rectness, Technical report TR{14/92, Dipartimento di Informatica,

Universit�a di Pisa 1992

12

[Demoen 91] B.Demoen, Code and Comments Regarding bagof/3 , in: PROLOG.

Paris papers 2, ISO/IEC JTC1 SC22 WG17 N.80, pp. 85-86

[Dodd 91] A.Dodd, The Predicates bagof/3 and setof/3 , a Proposal, in: PRO-

LOG. Paris papers 2, ISO/IEC JTC1 SC22 WG17 N.80, pp. 75{84

[O'Keefe 90] R.A.O'Keefe, The Craft of Prolog , MIT Press 1990

[PerPor 81] L.M.Pereira, A.Porto, All Solutions, in: Logic Programming Newslet-

ter 2, 1981, pp. 9-10

[Ueda 86] K.Ueda, Making Exhaustive Search Programs Deterministic, in: Pro-

ceedings of the 3rd International Conference on Logic Programming ,

pp. 270{282

[Ueda 87] K.Ueda, Making Exhaustive Search Programs Deterministic, Part 2,

in: Proceedings of the 4th International Conference on Logic Program-

ming , pp. 356{375

[Warren 82] D.H.D.Warren, Higher Order Extensions to Prolog: Are they

Needed?, in: Machine Intelligence 10(1982), pp. 441{454

[WG17 92] PROLOG. Part 1, General Core, Committee Draft 1.0 , ISO/IEC

JTC1 SC22 WG17 N.92

This article was processed using the LATEX macro package with LLNCS style

13

