
1

A model for mathematical analysis of functional logic programs and

their implementations�

Egon B�orgera, Francisco J. L�opez-Fraguas and Mario Rodr��guez-Artalejo b y

a Dip. di Informatica, Universit�a di Pisa, Cso Italia 40, I-56100 PISA,
boerger@di.unipi.it

bDep. Inform�atica y Autom�atica, Universidad Complutense, Av. Complutense s/n,

28040 Madrid,Spain, ffraguas,mariog@dia.ucm.es

We extend the mathematical de�nition and analysis of Prolog program execution on
the WAM, developed in [2,3], to functional logic languages and machines. As reference
language we choose the functional logic programming language BABEL [8].

1. Introduction

We extend the core Prolog model of [2] to a model for the functional logic program-
ming language BABEL [8] by adding, to Prolog's backtracking structure, rules for the

reduction of functional expressions to normal form. Then we de�ne six typical provably
correct re�nements which are directed towards implementation of functional logic pro-
grams: structure sharing for expressions, explicit computation of the normal form con-
dition, embedding of the backtracking tree into a stack, localization of the normal form
computation for expressions (introducing local environments for computation of subex-
pressions) together with some optimizations in IBAM [6], a (graph|) narrowing machine

actually implementing innermost BABEL. Thus the machinery of [2,3] for mathematical
description and analysis of logic programs, is linked to functional logic programs and
their implementation on machines which typically combine the WAM [9] with features
from reduction machines [4] for functional languages (see also [7]).
The fundamental concept which allows us to describe complex program and machine

structure by simple abstract mathematical speci�cations is Gurevich's notion of evolving
algebras which we will use throughout and for which we refer the reader to [5]. We
expect from the reader also basic knowledge of logic programming and term rewriting,
and assume familiarity with [2]. For BABEL we note here only that programs consist of
de�ning rules of the form f(t1; :::; tn) := r where r may be a guarded expression (b! e).
We will consider here only the �rst order subset of the language, and will omit correctness

proofs for our re�nements. For details and extensions we refer to [1].

�In: B. Pehrson and I. Simon (Eds.) IFIP 13th World Computer Congress 1994, Volume I:

Technology/Foundations, Elsevier, Amsterdam.
yThis research has been partially supported by the Spanish National Project TIC92{0793{C02{01 \PDR"



2

2. From Prolog to BABEL tree algebras

A BABEL computation can be seen as systematic search of a space of possible solutions
to an initially given goal. The goals are expressions which have to be reduced to normal
form using narrowing (uni�cation and reduction) with respect to the given set of de�ning
rules for the user de�ned functions. Thus de�ning the semantics of BABEL programs
has to incorporate, besides reduction to normal form, the concepts of uni�cation and

backtracking|which can be taken almost literally from Prolog.

2.1. The narrowing{backtracking core

For the top level description of BABEL it su�ces to enrich the core model for Prolog
de�ned in [2] as follows. The role of Prolog goals is taken by the expression still to be
reduced, provided by a function exp : NODE ! EXPRESSION : Since reduction steps
might take place in subexpressions of the given expression, a function pos : NODE !
POSITION provides for given state the position in the associated expression at which
the next reduction step will take place. We assume, in accordance with usual practice,
that positions u are coded as �nite sequences of positive integers. The speci�cation of the
function pos depends on the reduction strategy; in this model for BABEL we will de�ne
it for the leftmost innermost strategy (which corresponds to an eager implementation).
The distinguished elementmode, indicating the action to be taken at currnode, besides

values Apply;Select for creating the alternative narrowing states and selecting among
them, can also assume the additional value Eval for evaluating the expression obtained
by narrowing.
procdef now handles access to candidate de�ning rules. The role of the activator is taken

by the selected exp-subexpression de�ned by currexp � exp[pos], where for accessing and

manipulating subexpressions of given expressions (read: subtrees of trees) we use four
standard tree functions yielding the subexpression e[u] of e at position u, the result
e[u  e0] of replacing e[u] by e0 in e, the information occurs(u,e) whether u is a legal
position in e, and concatenation of positions.
For the initialization it is assumed that pos is the empty position and mode is Eval .
The backtracking behaviour of BABEL programs is de�ned by the corresponding two

Prolog rules in [2], handling expressions and their positions instead of goals: in the Call
rule, currexp = f(e1; : : : ; en) is added as condition; the Selection rule, when switching to
mode Eval, uses uni�cation of currexp with the left hand side of the candidate de�ning
rule and narrowing of the current environment:

if is user de�ned(currexp) &mode = Apply

& currexp = f(e1; : : : ; en)
then let [ dr1; : : : ; drm ] = procdef (currexp ; db)

extend NODE by n1; : : : ; nm with

bfather(ni) : = currnode

rule(ni) := dri
cands : = [n1; : : : ; nm ]

endextend

mode := Select

if mode = Select

thenif cands = [ ] then backtrack

else let (Lhs := Rhs)
= rename(rule(fst cand); vi)

let � = mgu(currexp;Lhs)
cands : = rest(cands)
if � 6= nil

then go fst cand in Eval

narrow curr env(Rhs; �)
vi : = vi + 1

with go fst cand in Eval and narrow curr env (E; �) abbreviating respectively



3

currnode : = fst cand ;mode : = Eval

exp(fst cand ) := exp[ pos  E] �; pos(fst cand) := pos; s(fst cand) := s �

2.2. Reduction to normal form

Since evaluation follows the leftmost innermost strategy, it is started by searching the
position of the leftmost innermost subexpression of the current expression which is not in

normal form. If currexp is not in normal form, we check whether its leftmost subexpression
(at the extension pos.1 of the current position) is responsible for this. Otherwise we have to
continue the evaluation for the next relevant subexpression (brother- or father-expression
of currexp, see below). This is described by the evaluation starting rule:

if mode = Eval thenif is not in normal form(currexp) then pos : = pos :1
else mode : = Continue

where is not in normal form is an auxiliary Boolean{valued function (with the obvious
meaning) and Continue as value of mode signals that currexp has been reduced to normal
form.
Once currexp appears to be in normal form, the computation goes on to evaluate the

next brother expression if there is one; otherwise the computation passes to apply the
outermost symbol of the father expression (all of which arguments have been reduced

then to normal form). There is a special case: some prede�ned functions are considered
as strict 3 only in the �rst argument. For these functions, once the �rst argument has
been reduced to normal form, the evaluation must proceed in the father position in mode
Apply. All this is formalized by the evaluation continuation rule:

if mode = Continue & pos = u:i thenif :occurs(u:(i+ 1); currexp) or nonstrict(u)
then pos : = u; mode : = Apply

else pos : = u:(i+ 1); mode : = Eval

where nonstrict(u) tells whether the subexpression exp[u] is an application of one of the
prede�ned functions and(b1; b2), or(b1; b2), b ! e (read if b then e), b ! e1#e2 (read if

b then e1 else e2) which are strict only in the �rst argument and need special evaluation
rules.
If there is no father expression, re
ected by pos coming back to its initial empty value

(say �), the whole initial expression has been reduced to normal form, and hence the
computation of one solution has been completed. Then the computed solution is added
to the solution list, and the user is asked interactively whether more solutions are wanted,

using a Boolean valued 0-ary function more|external in the sense of [5]|to take care
of external request of more solutions. Otherwise the computation terminates with �nal
success. This is described by the stop rule:

if mode = Continue & pos = � then solution list : = [hexp; s jGoalvarsi j solution list]
if more = 1 then backtrack

else stop = 1

where s jV denotes the restriction of s to the set of variables V ; Goalvars is a (static)
0-ary operation ranging over a universe VAR of variables. Goalvars is initialized to be
the set of variables of the initial expression to be reduced, and is not changed during the

computation.

3f is strict in its i-th argument i� f(a1; : : : ; ai; : : : ; an) is unde�ned whenever ai is unde�ned.



4

In Apply mode there are several cases to consider, depending on the value of currexp:
it can be an expression formed by a user{de�ned function applied to arguments which are
all in normal form (in which case narrowing takes place as described above by Call and
Selection rules), it may be a constructor expression, or the application of some prede�ned
function. For each of these cases there is a corresponding rule.
If in Apply mode currexp has a constructor c as topmost symbol, then the evaluation

has to stop and to continue at another (brother{ or father{) expression, as described by
the construction rule:

if mode = Apply & is construction(currexp) thenmode : = Continue

We skip the rules for prede�ned functions which can be de�ned like Prolog built-in pred-

icates in [2].

3. BABEL stack algebras

In order to come closer to a realistic implementation, in this section we re�ne BABEL

tree algebras by structure sharing for expressions, explicit computation of the normal form

condition and embedding of the backtracking tree structure into a stack. For exact for-

mulation and proof of the correctness statements see [1].

Structure sharing for expressions can be obtained in a provably correct way as

follows. When during narrowing the left hand side of a de�ning rule is replaced by its

right hand side, we put only the source code expression involved, without applying the

unifying substitution which is kept apart. This means that a) the update for exp(fst cand)

in the Selection rule is changed to be without applying the unifying substitution, and b)

the substitution must be applied to those occurrences of currexp or expressions e in the

rules , where the condition to be checked or the operation to be performed on those

expressions really depend on the substitution ; see [1].
Re�ning the normal form test means to de�ne the is normal form function used

in the evaluation starting rule. The idea is to traverse an expression in mode Eval until a
non decomposable normal form is reached. 4 Thus the new evaluation starting rule,
where atomic(e) recognizes if the expression e is a variable or a constant symbol c:

if mode = Eval thenif :atomic(currexp) then pos : = pos :1 else mode : = Continue

The provably corret re�nement to stack representation of BABEL trees is similar to

the corresponding stack implementation in [3] and therefore skipped here.

4. Localizing the environment and Optimizations

The normal form computation for expressions is localized in two steps: introduction of

states which control normalization of subexpressions, completed by subsequent replace-

ment of `global' by dedicated `local' environments.

Up to now, states (nodes of NODE ) re
ect only backtracking. They are created when

a function call is made for reducing currexp, but their role does not correspond exactly

to computing just that subexpression. In fact, if no more call is performed, the created

state remains the current one until the end of the computation for the whole exp.

4By this we come closer to implementations, where in the compilation process all the expressions in the

source program are traversed and code instructions are generated for them.



5

We now make states responsible only for the computation of the corresponding subex-

pression. Once this computation is �nished, control will be returned (by a Return rule) to

the state which was current in the moment of the call: the activator of the state created

by the call and denoted by a function act node from NODE to NODE .

This call ing structure induces a new tree structure in NODE (which is actually the

core of the IBAM) and imposes two changes in connection with backtracking:

� currnode may now be updated also by the new Return rule. Consequently, when

a new state is created by a call, currnode may not represent the last created state

to which to backtrack from the new state. Therefore a 0-ary function lastnode is

introduced to store that information. Initially lastnode is set to be the child of root.

� All the alternatives for a given call have to be tried with the same environment,

namely exp, pos, s as they were in the moment of the call. In the previous algebras,

these values were accessed from the environment of the backtracking father. This

will not be safe any more, since exp,pos and s for the backtracking father could have

changed in the meantime, had control come back to it by the return rule. Therefore

in the moment of a call, `safe copies' of exp,pos and s are stored in the new state.

We denote these values by functions act exp, act pos, act s de�ned on NODE .

act node, act env, lastnode are handled by additional updates to Call and Selection

rules. Since in this �rst step towards `local', subexpression-normalization, the global

expressions are still kept as decorations of states, we obtain the modi�ed call rule

by changing the update of bfather to bfather(N) :=lastnode and by adding the updates

act node(N) : =currnode and store act env at N, de�ned by

store act env at N � act exp(N) := exp; act pos(N) := pos; act s(N) := s

Themodi�ed select rule is literally the same as before, replacing bfather env by act env,

both in the de�nition of the mgu � and in the abbreviation narrow bfather env.

In addition lastnode, to which bfather will be set by the following execution of Call rule,

is updated to currnode. The modi�ed evaluation continuation rule obtains the

additional test whether the current position is root of a subcomputation which has been

activated by currnode; in this case it switches to a new mode Return. Formally it is

su�cient to replace the guard in the evaluation continuation rule by the following one:

if mode = Continue thenif pos = act pos then mode : = Return

else let u:i = pos

if :occurs(u:(i+ 1); currexp) or : : :

For technical convenience, we assume that act pos is initialized to be � for the child of root,

which means that the switching to mode Return will also happen when the evaluation of

the whole initial expression �nishes (in this case, pos = act pos = �). As a consequence, the

condition mode = Continue&pos = � in Stop changes to mode = Return&bfather = root.

The new mode Return is governed by a Return rule through which control is returned

to the activating node, with expression (still globally) updated by the result of the just

terminated subcomputation.

if mode = Return & bfather 6= root then currnode : = act node

return curr env to act env

mode := Continue



6

where return curr env to act env abbreviates

exp(act node) := exp; pos(act node) := pos; s(act node) := s

Subcomputations with local expressions are obtained by replacing `global' envi-

ronments by `local' ones, i.e. handling of act env (narrowing of and returning to in Selec-

tion and Return rules) is done with the relevant `local' expression. For the new selection

rule, narrow act env(Rhs,�) is re�ned using the `local' updates exp : = Rhs ; pos : = �.

In the new return rule the subcomputation result is returned to act node by plac-

ing it into the expression of act node at its activation position (thus making it `global'

relative to act node). Formally this means to re�ne return curr env to act env assigning

act exp[act pos exp] to exp(act node) and act pos to pos(act node). In addition, due to

the rede�nition of pos in the selection rule, the condition pos = act pos in the Evaluation

continuation rule for switching to mode Return must be replaced by pos = �.

Some Optimizations in the IBAM can be conveniently speci�ed at this level of ab-

straction. As an example, we explain here the optimized last return, which means the

following: When a a value is returned by a task which is the last (active) created task

and has an empty list of alternatives, then this task will not perform any other successful

computation. If by backtracking it is reactivated later on, it will fail immediately and

backtracking will be done to its backtracking father. One can anticipate this situation by

resetting lastnode to the backtracking father of the task (the task node itself could in fact

be collected as garbage). The optimized last return rule expresses this by adding a

conditional update for lastnode:

if lastnode = currnode & cands = [ ] then lastnode : = bfather

For the speci�cation of other optimizations, see again [1].

REFERENCES

1. E. B�orger, F. J. L�opez Fraguas, and M. Rodr��guez Artalejo. Towards a mathematical speci-
�cation of narrowing machines. Research report DIA 94/5, Dep. Inform�atica y Autom�atica,
Universidad Complutense, Madrid, March 1994.

2. E. B�orger and D. Rosenzweig. A simple mathematical model for full Prolog. Research
report TR-33/92, Dipartimento di Informatica, Universit�a di Pisa, Pisa, October 1992. to
appear in Science of Computer Programming, 1994.

3. E. B�orger and D. Rosenzweig. The WAM { de�nition and compiler correctness. Research
report TR-14/92, Dipartimento di Informatica, Universit�a di Pisa, Pisa, 1992. to appear
in: Logic Programming: Formal Methods and Practical Applications (C.Beierle, L.Pl�umer,
Eds.), North-Holland, Series in Computer Science and Arti�cial Intelligence, 1994.

4. A.J. Field and P.G. Harrison. Functional Programming. Addison Wesley, 1988.
5. Y. Gurevich. Evolving algebras. A tutorial introduction. Bulletin of EATCS, 43:264{284,

1991.
6. H. Kuchen, R. Loogen, J.J Moreno Navarro, and M. Rodr��guez Artalejo. Graph-based

implementation of a functional logic language. In ESOP, volume 432 of Lecture Notes in

Computer Science, pages 271{290. Springer, 1990.
7. R. Loogen. Relating the implementation techniques of functional and functional logic lan-

guages. to appear in New Generation Computing.



7

8. J.J Moreno Navarro and M. Rodr��guez Artalejo. Logic programming with functions and
predicates: The language BABEL. Journal of Logic Programming, 12:189{223, 1992.

9. D.H.D. Warren. An abstract prolog instruction set. Technical Note 309, SRI International,
Menlo Park, 1983.


