
BPMN Core Modeling Concepts:
Inheritance-Based Execution Semantics

Egon Börger and Ove Sörensen

Abstract We define an abstract model for the dynamic semantics of the core process
modeling concepts in the OMG standard for BPMN 2.0. The UML class diagrams
associated therein with each flow element are extended with a rigorous behavior def-
inition, which reflects the inheritance hierarchy structure by refinement steps. The
correctness of the resulting precise algorithmic model for an execution semantics
for BPMN can be checked by comparing the model directly with the verbal expla-
nations in [OmgBpmn(2009)]. Thus, the model can be used to test reference imple-
mentations and to verify properties of interest for (classes of) BPMN diagrams.1

1 Introduction

The Business Process Modeling Notation (BPMN) is standardized by the Object
Management Group (OMG). We explain here its main modeling concepts with a fo-
cus on the behavioral meaning of processes, based upon the currently (March 2010)
available OMG document [OmgBpmn(2009)], abbreviated op.cit. As a distinctive
feature we adapt a stepwise refinement technique to follow the successive detailing
of the BPMN execution semantics along the inheritance hierarchy in op.cit.

We associate with each UML class diagram defined in op.cit. for the syntax of
behavioral BPMN elements a description of their behavior. These descriptions make

Egon Börger
Visiting ETH Zürich, hosted by the Chair for Information Security, on sabbatical leave from Com-
puter Science Department, University of Pisa, Italy, e-mail: boerger@di.unipi.it

Ove Sörensen
Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, D-24098 Kiel,
Germany, e-mail: ove@is.informatik.uni-kiel.de

1 The work of the first author has been partially supported by a Research Award from the Alexan-
der von Humboldt Foundation (Humboldt Forschungspreis) and partially supported by the Italian
Government under the project PRIN 2007 D-ASAP (2007XKEHFA).

1

2 Egon Börger and Ove Sörensen

the natural language formulations in the standard document precise at the minimal
level of rigour needed to faithfully capture a common understanding of business
processes by business analysts and operators, information technology specialists
and users (suppliers and customers). Such a common understanding, which must
not be obfuscated by mere formalization features, is crucial to faithfully link the
three different views of business processes by designers, implementors and users.

To obtain such a precise, inheritance hierarchy based high-level description of
the execution semantics of BPMN we use the semantical framework developed
in [Börger and Thalheim(2008)] for business process modeling notations and ap-
plied there to BPMN 1.0 [OmgBpmn(2006)]. Since it is based only upon standard
document terms, it allows one to check by direct inspection the faithfulness of the
description with respect to the verbal explanations in op.cit. On the other hand, the
rigorous operational character of the description offers the possibility to use it as the
reference model for testing and for comparing different implementations as well as
for a mathematical analysis of properties of interest for classes of BPMN process
diagrams (see [Wei(2010)]). Since the standardization process is still ongoing our
BPMN model leaves all those issues open which are not (yet?) sufficiently clarified
in op.cit. However our work shows that it would have been possible to provide a
succinct and complete, rigorous and thereby objectively checkable BPMN execu-
tion semantics, although the OMG standardization committee seems to have voted
against such an endeavor (op.cit.Ch.14) in favor of an informal description with
various loose ends implementations will have to clarify.

Technically speaking we assume the reader to have an understanding of what it
means to execute simultaneously finitely many transition rules of form

if Condition then Actions

prescribing a set of actions to be undertaken if some events happen; happening of
events is expressed by conditions becoming true. For a simple foundation of the
semantics of such rule systems, which constitute Abstract State Machines (ASMs)
and can be viewed as a rigorous form of pseudo-code, we refer the interested reader
to [Börger and Stärk(2003)]. Such rules are inserted as behavioral elements at ap-
propriate places in the BPMN class hierarchy. The ASM refinement concept sup-
ports strictly following the inheritance steps in the BPMN class hierarchy. In Sect.2
we describe the class hierarchy of BPMN elements, focussing on message flow and
the behaviorally relevant diagram structure, which is represented by the so-called
sequence flow of flow nodes. In Sect.3- 5 we describe the three main subclasses of
the BPMN FlowNode class, namely for gateways, activities and events. To avoid
repetitions, we frequently rely upon the explanations or illustrating diagrams in the
standard document and assume the reader to have a copy of it at hand.

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 3

2 Structure of the Class Hierarchy of BPMN 2.0

We restrict our attention to those features of the BPMN class hierarchy which are rel-
evant for the behavioral description of single processes, namely diagram structure,
flow elements and message flow. The class FlowElement in op.cit.Fig.8.23 contains,
besides SequenceFlows and FlowNodes also Dataobjects, which we represent by
ASM locations. Their read/write operations represent what is called a “data associa-
tion execution”(op.cit.Fig.10.63). Due to space limitations we investigate the single
process view (called orchestration) and treat process interaction features—the col-
laboration of and the communication between processes, called choreography—in
terms of abstract interface conditions.

2.1 Message Flow

The interaction between multiple processes happens in BPMN via communication
(messages between pools, activities and events) or shared data. The concept of mon-
itored locations in the ASM framework provides an exact interface of process in-
stances to message handling which abstracts in particular from the BPMN choreog-
raphy diagrams op.cit.Sect.12 and in particular from correlation issues for the de-
livery of messages. Consider an abstract operation SEND(payload(m),receiver(m))
which is refined for all related elements of the BPMN MessageFlow class diagram
op.cit.Fig.8.38; we write sender for sourceRef and receiver for targeRef . The oper-
ation is restricted by the stipulation that the receiver of a message is either a partici-
pant (here appearing as pool) or an activity or an event. Thus message arrival is re-
flected as an update by payload(m) of a location which is monitored by receiver(m);
reading a message means to read such a monitored location.

2.2 Diagram Structure (Sequence Flow)

The BPMN diagram structure is used to pictorially represent a business process
and is defined by the SequenceFlow class diagram op.cit.Fig.8.48. The sequence
(‘control’) flow shows the order of flow elements in a process. Such a diagram is a
graph of flow nodes (gateways, activities, events) connected by arcs (Fig.1).

Therefore we use standard graph-theoretic concepts like source(arc), target(arc)
for source and target node of an arc (denoted sourceRef resp. targetRef and re-
stricted by op.cit.Table 8.60 to certain flow nodes), pred(node) for the (possibly
ordered) set of source nodes of arcs with target node, inArc(node) for the set of arcs
ingoing the target node, succ(node) for the (possibly ordered) set of target nodes of
arcs with source node, outArc(node) for the set of arcs outgoing the source node,
etc. If in a diagram a node has only one incoming or one outgoing arc and if from the

4 Egon Börger and Ove Sörensen

Fig. 1 Basic Class Hierarchy of Diagram Contents

context the node in question is clear, we write in / out instead of inArc(node) = {in}
outArc(node) = {out}.

We model the token-based BPMN interpretation of control flow by associat-
ing tokens—elements of an abstract set Token—to arcs, using a dynamic function
token(arc). Since a token is characterized by the process ID of the process instance
pi to which it belongs (via its creation at the start of the process instance), we dis-
tinguish tokens belonging to different instances of one process p, writing tokenpi to
represent the current token marking in the process diagram instance of the process
instance pi a token belongs to. Thus tokenpi(arc) denotes the multiset of tokens be-
longing to process instance pi and currently residing on arc. We can suppress the
parameter pi due to the single process view where pi is clear from the context.

For a rule at a target node of incoming arcs to become fireable some arcs must be
Enabled by tokens being available at the arcs. This condition is usually required to
be an atomic quantity formula stating that the number of tokens (belonging to a pro-
cess instance pi) and currently associated to in (read: the cardinality of tokenpi(in),
denoted | tokenpi(in) |, used in particular in connection with complex gateways
and called there ActivationCount, but also for readying activities where it is called

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 5

StartQuantity) is at least the quantity inQty(in) required for incoming tokens at this
arc. Unless otherwise stated the assumption is made that inQty(in) = 1, as suggested
by the warning in op.cit.Table 10.3,Sect.14.2.2.

Enabled(in) = (| token(in) |≥ inQty(in))

Correspondingly the control operation CTLOP of a workflow usually consists
of two parts, one describing which (how many) tokens are CONSUMEd on which
incoming arcs and one describing which (how many) tokens are PRODUCEd on
which outgoing arcs, indicated by using an analogous abstract function outQty (for
activities called CompletionQuantity). We use macros to encapsulate the details.

CONSUME(t, in) = DELETE(t, inQty(in), token(in))
PRODUCE(t,out) = INSERT(t,outQty(out), token(out))
CONSUMEALL(X) = forall x ∈ X CONSUME(x)
PRODUCEALL(Y) = forall y ∈ Y PRODUCE(y)

The use of abstract DELETE and INSERT operations instead of directly updating
token(a, t) serves to make the macros usable in a concurrent context, where multi-
ple agents may want to simultaneously operate on the tokens on an arc. It is also
consistent with the special case that in a transition with both DELETE(in, t) and
INSERT(out, t) one may have in = out, so that the two operations are not considered
as inconsistent, but with their cumulative effect.

Structural relations between the consumed incoming and the produced outgo-
ing tokens can be expressed by using an abstract function firingToken(A), which is
assumed to select for each element a of an ordered set A of incoming arcs tokens
from tokenpi(a) that enable a and can be CONSUMEd. firingToken([a1, . . . ,an]) =
[t1, . . . , tn] denotes that for each i, ti is the (set of) token occurrence(s) selected to
be fired on arc ai. We write firingToken(in) = t instead of firingToken({in}) = [t].
Apparently the idea of a hierarchical token structure, which appeared in op.cit.
and was modeled in [Börger and Thalheim(2008)], has been abandoned for BPMN
2.0 [Voelzer(2010b)] so that we write CONSUME(in) and PRODUCE(out) where the
type of underlying tokens (assumed to belong to one process instance) is irrelevant
or clear from the context.

2.3 Flow Nodes

The behaviorally central class is FlowNode, a subclass of FlowElement and com-
ing with subclasses Gateway, Activity, Event (as explained above we disregard the
fourth subclass ChoreographyActivity). Each instance node of this subclass repre-
sents a workflow construct whose behavioral meaning is expressed by a transition
rule FLOWNODEBEHAVIOR(node) stating upon which events and under which fur-
ther conditions—typically on the control flow, the underlying data and the availabil-
ity of resources—the rule can fire to execute the following actions:

6 Egon Börger and Ove Sörensen

perform specific operations on the underlying data (‘how to change the internal
state’) and control flow (‘where to proceed’),
possibly trigger new events (besides consuming the triggering ones) and releas-
ing some resources.

FLOWNODEBEHAVIOR(node) =
if EventCond(node) and CtlCond(node) and DataCond(node)

and ResourceCond(node) then
DATAOP(node)
CTLOP(node)
EVENTOP(node)
RESOURCEOP(node)

FLOWNODEBEHAVIOR, associated with the class FlowNode, is a rule scheme,
technically an ASM with well-defined semantics (see [Börger and Stärk(2003)]).
Its abstractions are refined by further detailing in the next three sections the guards
(conditions) respectively the operations (submachines) for workflow transitions to
describe the behavioral meaning for instances of each of the three subclasses of
FlowNode. When we need to consider to which process instance a flow node in-
stance belongs we write procInst(node), to be distinguished from process(node)
(the BPMN diagram) node belongs to.

3 Gateways

Gateway is a subclass of FlowNode used to describe the divergence (splitting) or
convergence (merging) of control flow (op.cit.p.263) in two forms:

to create parallel actions or to synchronize multiple actions,
to select (one or more) among some alternative actions.

Gateway has five concrete subclasses for exclusive, inclusive, parallel, event-
based and complex gateways (Fig.2), which come with specific constraints formu-
lated in op.cit.Table 8.47 in terms of an attribute gatewayDirection on the number
of their incoming and outgoing arcs.

Each gateway behavior is an instance of a scheme GATEBEHAVIORPATTERN
associated with the abstract class Gateway and is defined as follows, refining the
FLOWNODEBEHAVIOR: two (possibly ordered) sets of incoming respectively of
outgoing arcs are selected where tokens are consumed respectively produced. To de-
scribe these sets we use functions selectConsume(node) and selectProduce(node) which
will be constrained in various ways for specific gateways. The general control con-
dition2 is that all arcs in the selected (usually required or assumed to be non-empty)
set of incoming arcs are enabled and that the process instance the gateway node be-
longs to is Active (see Sect. 4 for the concept of activity lifecycle). The control op-
eration consists of a) consuming the firing tokens on each selected incoming arc and

2 Except the special case analyzed in Sect. 3.4.1 of an event-based gateway used to start a process.

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 7

Fig. 2 Basic Class Hierarchy of Gateways

b) producing the required tokens on each selected outgoing arc (in the normal case
that no exception does occur). DATAOP(node) consists of multiple assignments(o)
associated to the outgoing arcs o.

The THROW(exc,node) macro is used to indicate when an exception is thrown
from a node to its possible catcher, triggering an event that is attached to the inner-
most enclosing scope instance (if any) and may be able to catch the exception. We
assume a detailed definition of this macro to include the performance of the data as-
sociation for throw events. This has the effect that when a throw event is triggered,
this happens with the corresponding data in its scope assigned to what op.cit. calls
the ‘event data’, from where the related catch event assigns them (see Sect. 5) to the
so-called data elements in the scope of the catch event op.cit.10.4.1.

GATEBEHAVIORPATTERN(node) =
let I = selectConsume(node)
let O = selectProduce(node)

FLOWNODEBEHAVIOR(node, I,O) where
CtlCond(node, I) = forall in ∈ I Enabled(in) and Active(procInst(node))
CTLOP(node, I,O) =

CONSUMEALL({(tj, inj) | 1≤ j≤ n})
where [t1, . . . , tn] = firingToken(I), [in1, . . . , inn] = I

if NormalCase(node) then PRODUCEALL(O)
else THROW(GateExc,node)

DATAOP(node,O) = forall o ∈ O forall i ∈ assignments(o) ASSIGN(toi, fromi)

8 Egon Börger and Ove Sörensen

Active(p)= (lifeCycle(p)=active)

We now refine this rule to the behavior of the five gateway subclasses.

3.1 Parallel Gateway (Fork and Join)

PARGATEBEHAVIOR is associated with the class ParallelGateway. Its behavior is
to synchronize multiple concurrent branches (called AND-Join) by consuming one
token on each incoming arc, and to spawn new concurrent threads (called AND-
Split or Fork) by producing one token on each outgoing arc. A parallel gateway is
not allowed to throw an exception. Thus it refines GATEBEHAVIORPATTERN.

Fig. 3 Parallel Gateway –
unconditionally spawn and
synchronize threads of execu-
tion

PARGATEBEHAVIOR(node) = GATEBEHAVIORPATTERN(node) where
selectConsume(node) = inArc(node) // AND-JOIN merging behavior
selectProduce(node) = outArc(node) // AND-SPLIT (branching behavior
NormalCase(node) = true // gate throws no exception
forall in ∈ inArc(node) inQty(in) = 1
forall out ∈ outArc(node) outQty(out) = 13

3.2 Exclusive Gateway (Data-Based Exclusive Decision)

EXCLGATEBEHAVIOR is associated with class ExclusiveGateway.
Its behavior is to react to the enabledness of just one incoming arc (no matter

which one, a feature named pass-through semantics), namely by consuming an en-
abling token, and to enable exactly one outgoing arc, namely the first one (in the di-
agram order) whose associated DataCondition evaluates to true (so-called exclusive
data-based decision). Usually a default case is specified to cover the situation where
none of these DataConditions is true; otherwise in this case an exception is thrown.
Thus EXCLGATEBEHAVIOR is an instantiation of GATEBEHAVIORPATTERN.
3 The two constraints on inQty and outQty seem to be intended for all flow node instances, except
where state differently, so that from now on we assume them to be added implicitly.

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 9

Fig. 4 Exclusive Gateway –
choose exactly one thread of
execution for synchronization
and spawning

EXCLGATEBEHAVIOR(node) = GATEBEHAVIORPATTERN(node) where
| selectConsume(node) |= 1 // exclusive merge
selectProduce(node) = fst({a ∈ outArc(node) | DataCond(a)})
NormalCase(node) if and only if
{a ∈ outArc(node) | DataCond(a)} 6= /0 or

some default sequence flow is specified at node

3.3 Inclusive Gateway

INCLGATEBEHAVIOR is associated with class InclusiveGateway.

Fig. 5 Inclusive Gateway –
synchronize and spawn some
threads of execution

It enables every outgoing arc whose associated DataCondition is true (branch-
ing [OmgBpmn(2009), 10.5.3]), with the same convention on exceptions as for ex-
clusive gateways, and to synchronize the (required to be non-empty) set of incom-
ing arcs which are enabled or have an “upstream token” (UpstreamToken 6= /0) in
the graph, not waiting for tokens on those unenabled arcs which “have no token
upstream”.

INCLGATEBEHAVIOR(node) = GATEBEHAVIORPATTERN(node) where
selectConsume(node) = // NB. all to be enabled to fire
{in ∈ inArc(node) | Enabled(in) or UpstreamToken(in) 6= /0}

selectProduce(node) = {a ∈ outArc(node) | DataCond(a)}
CtlCond(node, I,O) =

10 Egon Börger and Ove Sörensen

CtlCondGATEBEHAVIORPATTERN(node, I,O) and I 6= /0
NormalCase(node) = NormalCaseEXCLGATEBEHAVIOR(node)

An incoming arc “without token anywhere upstream” is defined in op.cit.Table
14.3 as unenabled arc to which there is no directed Sequence Flow path from any
(arc with a) token unless

path visits the inclusive gateway or
path visits a node that has a directed path to a non-empty incoming sequence
flow of the inclusive gateway and does not visit the gateway4.

t ∈ UpstreamToken(in) if and only if InhibitingPath(t, in) 6= /0 and
thereIsNo j ∈ inArc(node) AntiInhibitingPath(t, j) 6= /0

where
p ∈ InhibitingPath(t, in) =

p ∈ Path(t, in) and token(in) = /0 and target(in) 6∈ VisitedBy(p)
p ∈ AntiInhibitingPath(t, in) =

p ∈ Path(t, in) and token(in) 6= /0 and target(in) 6∈ VisitedBy(p)
VisitedBy(p) = {n | n ∈ Node and n occurs as source or target on p}
Path(t, in) = Path(arc, in) if t ∈ token(arc)

3.4 Event-Based Gateway (Event-Based Exclusive Decision)

For event-based gateways the standard describes two behaviors, depending on
whether the gateway is used to start a process or not, resulting in two ASM
rules associated to the class EventBasedGateway. The EVENTGATEBEHAVIOR
for the second case, in which the gateway is required to have some incoming
sequence flow, is pictorially represented by Fig.6. In the first case the event-
based gateway may have no (or only some special) incoming sequence flow; its
EVENTGATEPROCSTARTBEHAVIOR is described in Sect.3.4.1.

Fig. 6 Event-Based Gateway
– choose exactly one thread of
execution, depending on the
first triggered gate event

EVENTGATEBEHAVIOR does not throw any exception. It has pass-through se-
mantics for incoming sequence flow and the activated outgoing arc is defined to be

4 The last conjunct has been added in [Voelzer(2010a)], correcting the definition which originally
appeared in op.cit. Upstream tokens are called there tokens that have an inhibiting path but no
anti-inhibiting path to the gateway.

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 11

the first one at which an associated gateEvent Occurs and can be CONSUMEd. Thus
EVENTGATEBEHAVIOR refines GATEBEHAVIORPATTERN as follows:

selectConsume(node) chooses for each activation one incoming sequence flow,
selectProduce(node) yields one (dynamically determined5) outging sequence
flow, namely the one whose associated gateEvent Occurs first (so-called ex-
clusive event-based decision),
NormalCase(node)= true: event-based gateways ‘cannot throw any exception’,
the selected gateEvent is CONSUMEd.

We use a dynamic function fst to select an outgoing arc among those whose
associated gateEvent (required to be either an event which has to be Triggered or
a receiveTask which has to be Completed) Occurs ‘first’; fst solves the conflict for
concurrently occuring events. Receive tasks are tasks which wait for a message to
arrive and are Completed by receiving the message (op.cit.p.139 and Sect.4.1).

EVENTGATEBEHAVIOR(node) = // case with incoming arcs
GATEBEHAVIORPATTERN(node) where

| selectConsume(node) |= 1
EventCond(node) = forsome a ∈ outArc(node) Occurs(gateEvent(a))
selectProduce(node) = fst({a ∈ outArc(node) | Occurs(gateEvent(a))})
EVENTOP(node) = CONSUME(gateEvent(selectProduce(node)))
NormalCase(node) = true // event gate throws no exception
Occurs(gateEvent(a)) ={

Triggered(event(a)) if gateEvent(a) = event(a)
Completed(receiveTask(a)) if gateEvent(a) = receiveTask(a)

3.4.1 Event-Based Gateways for Process Start

If event-based gateways are used to start a process P, to be declared by setting
their instantiate attribute to true, it is required that (except the case described in
the next footnote) they have no incoming sequence flow—the only case of gate-
ways with no ingoing arc op.cit.14.4.1.6 The standard document considers two
cases depending on whether there is only one event-based gateway (called exclu-
sive event-based gateway) or a group of multiple event-based gateways which are
used to start P. Such group elements are required to participate in the same con-
versation and at each gateway one event “needs to arrive; the first one creates

5 The standard document interpretes this choice as “deferred until one of the subsequent Tasks
or Events completes”op.cit.14.3.3. This creates an ambiguity for two successive enablings of
the gate with deferred choice of an outgoing branch. We avoid this ambiguity by letting
EVENTGATEBEHAVIOR only fire when the choice is possible due to at least one gate event oc-
curring.
6 The allowed case of incoming sequence flow whose source is an untyped start event (op.cit.p.276)
is covered by the description explained below, including the usual conditions and operations for
pass-through semantics.

12 Egon Börger and Ove Sörensen

a new process instance, while the subsequent ones are routed to the existing in-
stance”(op.cit.14.4.1) “rather than creating new process instances” (op.cit.p.402).
In both cases EVENTGATEPROCSTARTBEHAVIOR is obtained by analogous refine-
ment conditions as for event-based gateways with incoming sequence flow, however
the incoming arc selection and related control condition are empty and the control
operation essentially creates a new instance of P.

To precisely reflect what is intended to happen when some expected gate events
happen concurrently at multiple event-based gateways belonging to a same group
(and to avoid a repetition for the first part of the behavior which is almost the same
for singleton and multiple elements groups), we use a virtual node group to which
EVENTGATEPROCSTARTBEHAVIOR is attached.7 The formulation uses two modes
with corresponding subbehaviors, the second one being performed only if the group
has more than one element. This reflects the requirement that for groups with mul-
tiple elements upon a ‘first’ event a new process instance is created “while the sub-
sequent ones are routed to the existing instance”(op.cit.p.252).

EVENTGATEPROCSTARTBEHAVIOR(group) =
EVENTGATEPROCSTARTBEHAVIORStart(group)
EVENTGATEPROCSTARTBEHAVIORProgress(group)

In mode= Start, EVENTGATEPROCSTARTBEHAVIORStart upon the ‘first’ arrival
of an event performs the following three actions:

create a new instance of the to-be-started process and make it Active,8

mimic the EVENTGATEBEHAVIOR(g) for a node g ∈ group where a gateEvent
Occurs ‘first’,
in case there are other group members switch to mode = Progress, whereby the
EVENTGATEPROCSTARTBEHAVIORProgress becomes firable if some gateEvent
Occurs at some other group member.

We use the dynamic abstract function fst here to select both a group member and
an outgoing arc where a ‘first’ gateEvent Occurs.

EVENTGATEPROCSTARTBEHAVIORStart(group) =
GATEBEHAVIORPATTERN(group) where

selectConsume(group) = /0
CtlCond(group) = (mode(group) = Start)
EventCond(group) = forsome g ∈ group Occurs(gateEvent(g))
let g = fst({g ∈ group | Occurs(gateEvent(g))})

selectProduce(group) = fst({a ∈ outArc(g) | Occurs(gateEvent(g,a))})
CTLOP(group,O) =

let P = new Instance(process(group))

7 The standard document makes the distinction in terms of an eventGatewayType attribute set to
parallel for the case of multiple group elements.
8 In general upon being enabled a process first becomes Ready and can GETACTIVE only after
some input became available, see Sect. 4. But since at an event-based gateway the only allowed
triggers are catch events or receive tasks which have no input data assignment, the newly created
process becomes immediately Active.

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 13

PRODUCE(selectProduce(group)P)
lastCreatedProcInst(group) := P
lifeCycle(P) := active

Seen(g) := true
if | group |> 1 then mode := Progress
EVENTOP(group) = CONSUME(gateEvent(selectProduce(g)))

NormalCase(group) = true // no event gate throws an exception
Occurs(gateEvent(g)) = forsome a ∈ outArc(g) Occurs(gateEvent(g,a))

EVENTGATEPROCSTARTBEHAVIORProgress is executed in mode=Progress each
time a gateEvent for a remaining group member Occurs—until each group mem-
ber has been Seen, in which case mode(group) switches back to Start and resets
Seen.9 The standard document leaves this case underspecified. For definiteness we
formulate here the following interpretation: a) once a group element has been Seen
(because one of its gateEvents Occurs), it is not reconsidered for another gateEvent
to Occur before each group element has been Seen; b) no subsequent gateEvent
PRODUCEs further tokens (on the arc where the gateEvent Occurs) before each
group element has been Seen.

EVENTGATEPROCSTARTBEHAVIORProgress(group) =
GATEBEHAVIORPATTERN(group) where

selectConsume(group) = /0
CtlCond(group) = (mode(group) = Progress)
EventCond(group) =

forsome g ∈ {g ∈ group | not Seen(g)} Occurs(gateEvent(g))
let g = fst({g′ ∈ group | Occurs(gateEvent(g′)) and not Seen(g′)})

selectProduce(group) = fst({a ∈ outArc(g) | Occurs(gateEvent(g,a))})
EVENTOP(group) = CONSUME(gateEvent(selectProduce(group)))
CTLOP(group,O) =

if LastSeen(g,group) then // reset group state
mode(group) := Start
forall g′ ∈ group Seen(g′) := false

else Seen(g) := true
PRODUCE(selectProduce(group)lastCreatedProcInst(group))

NormalCase(group) = true
LastSeen(g,group) = (group = {g′ | Seen(g′)}∪{g})

3.5 Complex Gateway

COMPLGATEBEHAVIOR is associated with class ComplexGateway. It has two rules
(op.cit.Table 14.5): COMPLGATEBEHAVIORstart describing the behavior in mode
waitingForStart and COMPLGATEBEHAVIORreset for reset mode.

9 This reflects the standard document requirement that “one event out of each group” has to arrive
to complete the process instance created upon the ‘first’ arrival of an event.

14 Egon Börger and Ove Sörensen

Fig. 7 Complex Gate-
way – user-defined split-
ting/synchronizing behaviour

COMPLGATEBEHAVIOR =
COMPLGATEBEHAVIORstart
COMPLGATEBEHAVIORreset

If waitingForStart, a complex gateway waits for its activationCondition to be-
come true. This attribute expresses a (somehow restricted) condition on data and the
number of tokens on incoming arcs (called activationCount) so that we represent
it as DataCond. When the rule fires, it consumes a token from each enabled in-
coming arc and produces a token on each outgoing arc whose associated condition
is true. The evaluated expressions may depend on the value of waitingForStart. If
none of these conditions is true and no default flow has been specified, an exception
is thrown. In addition, when no exception occured a) the mode switches by setting
waitingForStart to false and b) the set of in waitingForStart mode enabled incoming
arcs (where therefore a token has been consumed) is recorded for use in reset mode.
Thus COMPLGATEBEHAVIORstart refines GATEBEHAVIORPATTERN as follows:

COMPLGATEBEHAVIORstart(node) = GATEBEHAVIORPATTERN(node) where
DataCond(node) = activationCondition(node) and waitingForStart(node)
selectConsume(node) = {in ∈ inArc(node) | Enabled(in)}
selectProduce(node) = {o ∈ outArc(node) | DataCond(a) = true}
CTLOP(node, I,O) =

CTLOPGATEBEHAVIORPATTERN(node, I,O)
if NormalCase(node) then

atStartEnabledArc(node) := selectConsume(node)
waitingForStart := false

NormalCase(node) = NormalCaseEXCLGATEBEHAVIOR(node)

In the reset case (i.e. if waitingForStart = false), a complex gateway awaits a to-
ken on each incoming arc that has not been enabled when waitingForStart, except on
not enabled arcs which have no token upstream (as defined above for inclusive gate-
ways). It consumes tokens from each of these arcs, produces a token on each outgo-
ing arc whose associated condition is true and resets its mode to waitingForStart =
true. No exception is thrown in reset mode. Thus COMPLGATEBEHAVIORreset is an
instantiation of GATEBEHAVIORPATTERN, refined as follows.

COMPLGATEBEHAVIORreset(node) = GATEBEHAVIORPATTERN(node) where
DataCond(node) = not waitingForStart(node)
selectConsume(node) = {in ∈ inArc(node)\atStartEnabledArc(node) |

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 15

Enabled(in) or UpstreamToken(in) 6= /0} // NB. all to be enabled to fire
selectProduce(node) = {o ∈ outArc(node) | DataCond(a) = true}
CTLOP(node, I,O) =

CTLOPGATEBEHAVIORPATTERN(node, I,O)
waitingForStart := true

NormalCase(node) = true // no exception thrown in mode reset

4 Activities

Fig. 8 Basic Class Hierarchy of Activities

The Activity subclass of FlowNode is associated with an ACTIVITYBEHAVIOR
which describes the general form of the behavior of an Activity node, whether atomic
or compound and whether performed once or repeatedly. It is refined for each of the
three subclasses Task, SubProcess and CallActivity of Activity (see Fig.8).

Activities have associated InputSets and OutputSets which define the data re-
quirements for input/output to/from the activity (via an InputOutputSpecification
op.cit.Fig.10.54). At least one InputSet must be Available for the activity to become
Active with data input from the first Available set; at the completion of the activity,
some data output may be produced from the first Available OutputSet if it satis-
fies the activity’s IORule expressing a relationship between that OutputSet and the
InputSet used to start the activity. An exception is thrown if there is no Available
OutputSet at all or if the IORule is not satisfied for the first Available OutputSet
(op.cit.Sect.14.2.2).

16 Egon Börger and Ove Sörensen

Activities can be without incoming sequence flow. Examples are compensation
activities, (event) subprocesses, a Receive task in a process without start event which
is used to start this process. We treat such specialized activities separately and de-
scribe first the behavior of activities which do have some incoming sequence flow.

When at least one among possibly multiple incoming arcs is Enabled10 (so-called
uncontrolled flow) a new activity instance is created, is linked by a parent func-
tion to the process that triggered it and becomes Ready waiting to GETACTIVE.11

The two parameters for the corresponding set InstSet of process instances and
the trigger process TriggerProc will be instantiated below to describe variations
of this ACTIVITYENTRY behavior. If the activity is not Interrupted, its lifecycle
switches to Active, to STARTEXECution, after an input set from inputSets became
Available (in which case this set is recorded for use when the activity is com-
pleted) [OmgBpmn(2009), p.130,393]. selectInputSets expresses which input set is
chosen, specified by the standard document as the first available input set (with
respect to a given order). INTERRUPT among others switches the lifeCycle to
Withdrawn, Failed or Terminated; we abstain from completing here the loose dec-
laration of intents for the activity lifecylce in op.cit.14.2.2.

ACTIVITYENTRY(node, InstSet,TriggerProc) = FLOWNODEBEHAVIOR(node)
where
CtlCond(node) = forsome in ∈ inArc(node) Enabled(in)
CTLOP(node) =

let arc = selectConsume({in ∈ inArc(node) | Enabled(in)})
CONSUME(firingToken(arc),arc)

let a = new InstSet
lifeCycle(a) := ready
parent(a) := TriggerProc

step GETACTIVE(a,node)12

GETACTIVE(a,node) =
if Ready(a) and forsome i ∈ inputSets(node) Available(i) then

let i = selectInputSets({i ∈ inputSets(node) | Available(i)})
STARTEXEC(a,node)
lifeCycle(a) := active
currInputSet(node) := i

if Interrupted(a) then INTERRUPT(a)
Ready(a) = (lifeCycle(a) = ready)

10 Enabledness is defined here to mean that “the required number of Tokens . . . StartQuantity . . . is
available”, as reflected by our macro definition in Sect. 2.2.
11 The 1.0 standard version required in addition that the activity has no currently active instances,
in accordance with the suggested transformation to BPEL. Such an additional guard guarantees
that all instances of an activity are ultimately triggered by one enabling token, which reflects the
intended termination behavior of all activity instances in case of a failure. Probably also for 2.0
this guard should be added.
12 step denotes the interruptable FSM-like variant of sequential execution of ASMs
(see [Börger and Craig(2009)] for an explicit definition).

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 17

ACTIVITYBEHAVIOR is an instance of ACTIVITYENTRY where the instance
node of the activity is added to the set of instances of this activity in the process
instance node belongs to and the parent process is this process instance.

ACTIVITYBEHAVIOR(node) =
ACTIVITYENTRY(node, Instance(node,procInst(node)),procInst(node))

In the following subsections this rule is instantiated for the three Activity subtypes
by refining the abstract STARTEXEC machine. See Sect. 4.4 for the instantiation for
iterated activities (standard loops and multi-instance loops).

4.1 Tasks

A task is an atomic activity describing work in the given process that “cannnot be
broken down to a finer level of detail”(op.cit.Sect.10.2.3), although it may take its
(in the process not traceable) execution time. This atomicity is expressed by the se-
quentiality operator seq for structuring ASMs (see [Börger and Stärk(2003), Ch.4]),
which turns a low-level sequential execution view of two machines M followed by N
into a high-level atomic view of one machine M seq N.

Therefore STARTEXEC(task, t) means to a) EXECute the task (instance to which
the triggering token t belongs), whose exact definition depends on the type of the
task, and b) when the execution is Completed without failure to produce outgo-
ing sequence flow (CompletionQuantity(task) many tokens on each arc outging the
task op.cit.p.130,393) possibly together with some output.13 selectOutputSets is de-
fined as yielding the first available output set in a given order op.cit.p.393. Thus
TASKBEHAVIOR refines ACTIVITYBEHAVIOR as follows.

TASKBEHAVIOR(node) = ACTIVITYBEHAVIOR(node) where
STARTEXEC(a,node) = EXEC(a) seq

if Completed(a) then EXIT(a,node)
if Interrupted(a) then INTERRUPT(a)
if CompensationOccurs(a) then

TRIGGERCOMPENSATION(a)
lifeCycle(a) := compensating

EXIT(a,node) =
forall o ∈ outArc(node) PRODUCE(o)14

DELETE(a, Instance(node,procInst(node)))
PUSHOUTPUT(a,node)

PUSHOUTPUT(a,node) =

13 We skip the cases that a task may fail or terminate due to a fault in the environment. We also
skip the Completing activity mode, which is forseen for the final 2.0 version of the standard but not
yet furthermore specified in op.cit.p.393.
14 Here again our macro definition of PRODUCE captures that the “number of tokens indicated by
. . . CompletionQuantity is placed” on the outgoing arcs, see op.cit.pg.393.

18 Egon Börger and Ove Sörensen

if forall o ∈ outputSets(node) not Available(o)
then THROW(noAvailOutputExc,node)
else let o = selectOutputSets({o ∈ outputSets(node) | Available(o)})

if IORules(node)(o,currInputSet(a)) = false
then THROW(noIORulesExc,node)
else PUSH(output(o))

Remark. In the case of an activity without outgoing sequence flow, forall o ∈
outArc(task) PRODUCE(o) is an empty rule so that if there are no end events in the
containing (sub)process the activity terminates here.

There are seven types (subclasses) of Task, each coming with characteristic at-
tributes, constraints and meaning of EXECution (op.cit.Fig.10.10); not furthermore
specified tasks are considered as abstract tasks.

TaskType = {Send,Receive,Service,User,Manual,Script,BusinessRule}

Each of these subclasses is associated with a refinement of TASKBEHAVIOR de-
fined by refining EXEC(task[, i]) and Completed(task) as follows. A further spec-
ification of the abstractions we use in these definitions appears either in the stan-
dard document or comes with the task instantiation. For example, RECEIVE(m) is
described as ‘waiting for m until it arrives’ [OmgBpmn(2009), 14.2.3], job(t) for
type(t) ∈ {Service,Script,User,Manual} as the associated service or script or user
task or manual task (also denoted operationRef (t) for service tasks). Since abstract
tasks (read: with undefined type) are considered as ‘never actually executed by an
IT system’, we treat them here as empty actions.

EXEC(t) = let i = currInputSet(a) in

SEND(payload(mssg(t)),receiver(mssg(t))) if type(t) = Send
RECEIVE(mssg(t)) if type(t) = Receive
INVOKE(job(t), i) if type(t) ∈ {Service,Script}
ASSIGN(job(t), i,performer(job(t), i)) if type(t) ∈ {User,Manual}
CALL(businessRule(t), i) if type(t) = BusinessRule
skip if Abstract(t)

Sent(mssg(t)) is described for t of type Send as true ‘upon instantiation’ of t,
Received(mssg(t)) for t of type Receive as true‘when the message arrives’.

Completed(t) =

Sent(mssg(t)) if type(t) = Send
Received(mssg(t)) if type(t) = Receive
Completed(job(t)) if type(t) ∈ {Service,Script}
Completed(businessRule(t)) if type(t) = BusinessRule
Done(job(t)) if type(t) ∈ {User,Manual}
true if Abstract(t)

There is a special case which requires an additional rule. A Receive task which
is “used to start a Process”, a fact indicated by an Instantiate(task) flag, is required
to either have no incoming arc in its associated process without start event, or to

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 19

have an incoming arc with source(in) being a start event of the associated process
(op.cit.p.139). For the first case a special instance of FLOWNODEBEHAVIOR(task)
is added which has no control condition and no control operation and where
EventCond(task) is defined as Received(mssg(task)).

There are also further refinement constraints for some tasks. For example service
tasks are required to have exactly one input set and at most one output set.

4.2 Sub-Processes

Subprocesses are activities which encapsulate a process (op.cit.p.394). They define
a contextual scope that can be used for attribute visibility, for the handling of trans-
actions, events, exceptions and compensations (op.cit.p.152). Their behavior con-
cerning exception handling and compensation is described below when explaining
the behavior of intermediate events that are placed on the boundary of an activity.
Their normal behavior along their inner sequence flow is described by the behavior
of tasks, events and gateways which constitute their internal details. What remains
to be described for arbitrary subprocesses is a) the activation of subprocesses, which
involves an activity instantiation and passing data from caller to callee, and b) how
to EXIT subprocesses upon their completion. For the special internal control and
exit behavior of elements of the AdHocProcess subclass of class SubProcess see
Sect. 4.2.2, for elements of the subclass Transaction of SubProcess Sect. 4.2.3.

Fig. 9 Basic Class Hierarchy of Subprocesses

20 Egon Börger and Ove Sörensen

4.2.1 Subprocess Activation

There are two cases of subprocess activation, depending on whether the sub-
process node has incoming sequence flow or not. In the first case the associ-
ated SUBPROCESSBEHAVIOR refines ACTIVITYBEHAVIOR, in the second case
SUBPROCESSNOINFLOWBEHAVIOR refines FLOWNODEBEHAVIOR.

For a subprocess with some incoming sequence flow its activation is triggered
through tokens produced by the caller process on the (unique) incoming arc. It con-
sists in a) creating a new instance of the subprocess as child process of the caller
process (which we retrieve, for the sake of example, from the token produced by the
latter on the arc incoming the subprocess) and b) triggering its start.

Triggering the new process instance has in [OmgBpmn(2009), 14.2.4] two ver-
sions, depending on whether the subprocess either has a (and then unique) startEvent
or otherwise a non-empty set StartNode of “activities and gateways without incom-
ing sequence flow”. In the first subcase simply the startEvent is triggered.

In the second subcase we interpret the stipulation that “all such activities and
gateways get a token” by associating in the graph with each n∈ StartNode a (virtual)
entry arc in(n) which can be enabled by producing a new token on it (in the new
process instance, thus triggering n there; using a process subscript distinguishes
elements in the current process from their analogues in the new instance).

SUBPROCESSBEHAVIOR(node) = ACTIVITYBEHAVIOR(node) where
STARTEXEC(a,node) =

if startEvent(node) 6= undef then
let {t}= trigger(startEvent(a))
TriggerOccursP(t,startEvent(a)) := true

else
forall n ∈ StartNode(node) PRODUCE(startToken(a,node), in(n))

For a subprocess without incoming sequence flow, it is required that there is a
non-empty set StartEvent of “start events that are target of sequence flow from out-
side the sub-process” [OmgBpmn(2009), 14.2.4]. It is stipulated that each such start
event “that is reached by a token”15 generates a new subprocess instance, similar to
the pass-through semantics for incoming sequence flow. In other words a triggered
start event with a trigger is chosen, it is consumed, a new process instance is created
and the trigger of the chosen start event is set in the new subprocess instance.

For the special case of a so-called event subprocess (denoted by setting the
triggeredByEvent flag) it is required that it has no incoming and no outgoing se-
quence flow and exactly one startEvent, so that StartEvent = {startEvent}. In this
case a new instance is started each time this startEvent is triggered while the parent

15 This sounds ambiguous: where should the token arrive if there is no incoming sequence flow? We
interpret it as meaning that some caller process triggers a start event in the callee, the targetyRef
subprocess node [OmgBpmn(2009), p.215].

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 21

process is active.16 The parent process can be interrupted or not, depending on
whether the start event isInterrupting or not.

We incorporate both behaviors in one refinement EVENTSUBPROCESSBEHAVIOR
of FLOWNODEBEHAVIOR, defined for event subprocess nodes as follows. The cor-
responding start event rule defined in Sect. 5 describes how the new subprocess
instance starts its execution once (one of) its start event is triggered.

EVENTSUBPROCESSBEHAVIOR(node) = FLOWNODEBEHAVIOR(node)
where

EventCond(node) =
forsome e ∈ StartEvent(node) Happened(e)

and if triggeredByEvent(node) then Active(parent(procInst(node)))
let e = selectStartEvent({n ∈ StartEvent(node) | Happened(e)}
let {t}= selectTrigger{t ∈ trigger(e) | TriggerOccurs(t,e)}

EVENTOP(node) = CONSUME(t,e)
CTLOP(node) =

let P = new Instance(process(node))

caller(P) :=
{

parent(procInst(node)) if triggeredByEvent(node)
caller(node) else

TriggerOccursP(t,e) := true
if isInterrupting(node) then CANCEL(parent(procInst(node)))

Happened(e) = forsome t ∈ trigger(e) TriggerOccurs(t,e)

4.2.2 Ad-hoc Processes

Ad-hoc processes are called non-operational elements for which “only concep-
tual model is provided which does not specify details neede to execute them
on an engine” op.cit.p.389. This means that the standard document intends to
specify ad-hoc processes only loosely so that we leave their treatment here at
the same degree of underspecification. Each subprocess marked as ad-hoc has
a static set of InnerActivities intended to be executed (if Enabled) in an order
that is mainly “determined by the performers of the activities” op.cit.10.2.5,p.161.
We denote by EnabledInnerAct(node) the runtime set of Enabled elements of
InnerActivities, which is required to be initially the set of inner activities without
incoming sequence flow (op.cit.14.2.5). We reflect the performers’ choice by a func-
tion selectEnabledInnerAct(node) together with a monitored predicate ActivationTime to
express the moment where a new selection takes place. Nevertheless an adHo-
cOrdering function is provided to specify either a parallel execution (the default
case that the dynamic and initially empty set RunningInnerAct of concurrently run-
ning inner activities is finite) or a sequential execution (where “only one activity

16 op.cit.p.156. Sect.14.4.4 says “Running”, a term which is not defined in Fig.14.2. and seems
to request an active parent process only for initiating a non-interrupting event subprocess. We
disregard here the baroque looking additional feature mentioned on p.405 that “An Event Sub-
Process can optionally retrigger the Event through which it was triggered, to cause its continuation
outside the boundary of the associated Sub-Process.”

22 Egon Börger and Ove Sörensen

can be performed at a time”(op.cit.Table 10.22) so that RunningInnerAct is empty
or a singleton set). An AdHocCompletionCondition is evaluated each time an in-
ner activity completes and defines whether the subprocess completes by EXITing
(possibly producing some output). In the parallel case this depends on whether the
attribute CancelRemainingInstances is true: if it is, all elements of RunningInnerAct
are CANCELed, otherwise the ad-hoc subprocess is required to wait for completion
until each element of RunningInnerAct has completed or terminated. We use the
await Cond M construct to describe such waiting for the execution of M until the
Condition becomes true, as defined for ASMs in [Altenhofen and Börger(2009)].

Therefore the behavior ADHOCBEHAVIOR of class AdHocProcess elements
is the following refinement of ACTIVITYBEHAVIOR. For simplicity of exposi-
tion and without loss of generality we assume that each launched inner activity
upon its completion enables a (virtual) link which enters the evaluation of the
AdHocCompletionCondition of its ad-hoc subprocess.

ADHOCBEHAVIOR(node) = ACTIVITYBEHAVIOR(node) where
STARTEXEC(a,node) =

while not AdHocCompletionCond(node)
if adHocOrdering(node) = Sequential then LAUNCHINNERACT(node)
if adHocOrdering(node) = Parallel then

if ActivationTime(node) then LAUNCHINNERACT(node)
seq

if CancelRemainingInstances(node) then
forall a ∈ RunningInnerAct(node)

CANCEL(a)
EXIT(a,node)

else awaitforall a ∈ RunningInnerAct(node)
Completed(a) or Terminated(a)

EXIT(node)
LAUNCHINNERACT(node) =

if enabledInnerAct(node) 6= /0 then
let e = selectEnabledInnerAct(node)(EnabledInnerAct(node))

ACTIVITYBEHAVIOR(e)
INSERT(e,RunningInnerAct(node))
DELETE(e,EnabledInnerAct(node))

4.2.3 Transaction

Transactions are subprocesses whose behavior is also controlled by a transaction
protocol, which is assumed to be given. They come with a special method to undo a
transaction when it is cancelled. The behavioral instantiation of a transaction comes
up to add in the specification of the entry and exit actions the details for creating
the transactional scope and for what should happen when a transaction fails (roll-
back and possibly compensation of the involved processes). We do not specify this
behavior here because it is only loosely hinted at in the BPMN standard document.

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 23

4.3 Call Activity

Any CallActivity (also called reusable sub-process) “calls a pre-defined process”
and “results in the transfer of control” to the “CallableElement being invoked”, us-
ing the data inputs and outputs as well as InputSets and OutputSets of the referenced
callable element [OmgBpmn(2009), 10.2.5/6]. We denote the called activity by
activity(reference(node)), of which a new instance is created and added to the set
of active instances of the activity, having triggered one of its start events (possibly
provided with some available input).

CALLACTIVITYBEHAVIOR(node) =
ACTIVITYENTRY(node, Instance(activity(reference(node))),node)

where STARTEXEC(a,node) =
choose n ∈ {n ∈ StartEvent(a) | trigger(n) = None}
TriggerOccursa(None,n) := true
INSERT(a,ActiveProcInst(activity(reference(node)))))

4.4 Iterated (Loop) Activities

Loop and Multiple Instances activities act as wrapper for an activity that can be iter-
ated respectively spawn multiple instances in parallel or sequentially. We interprete
the wrapper as providing the input, but probably other interpretations are allowed
by the standard. An activity with LoopCharacteristics has an iterative behavior ei-
ther of StandardLoopCharacteristics or of MultiInstanceLoopCharacteristics type
(op.cit.Fig.10.6).

The standard loop characteristics defines a LoopCondition which is checked, as
indicated by a testBefore attribute, either before or after an execution of the loop
body to decide whether the loop completes at this moment or not:

If testBefore is true, then LoopCond is evaluated before the first iteration of the
to be iterated activity is started (and then again after each iteration), in which
case the loop activity corresponds to the while construct,
If testBefore is false, then LoopCond is evaluated after the first iteration has
finished (and then again after each iteration), in which case the loop activity
corresponds to the until construct.

A loopMaximum can be used in the loopCond. We use a function inputs to de-
scribe the data flushed to the selected input set currInputSet(node) in the following
refinement STANDARDLOOPBEHAVIOR of ACTIVITYBEHAVIOR. To ACTIVATE
the loop body means to trigger the execution of the BPMN process defined by the
body; ACTIVATE is defined depending on the type of its argument process. For sim-
plicity of exposition and without loss of generality we make a similar assumption as
for the ADHOCBEHAVIOR rule, namely that each body process upon its completion
enables a (virtual) link which enters the evaluation of the loopCondition.

24 Egon Börger and Ove Sörensen

STANDARDLOOPBEHAVIOR(node) = ACTIVITYBEHAVIOR(node) where
STARTEXEC(a,node) =

let i = inputs(currInputSet(node))
if testBefore(node) = true then

while loopCond(a,node) ACTIVATE(body(a,node), i)
if testBefore(node) = false then

until loopCond(node) ACTIVATE(body(a,node), i)
seq if Completed(a,node) then EXIT(a,node)

Completed(a,node) ={
not loopCond(a,node) if testBefore(node) = true
loopCond(a,node) if testBefore(node) = false

The multi-instance loop characteristics determines how many instances of an
activity are spawned to be executed sequentially or in parallel. A loopCardinality
expression defines the number of to be created activity instances and an attribute
isSequential determines whether the instances are executed sequentially (“a new in-
stance is generated only after the previous one has been completed”) or in parallel.
As for ad-hoc activities, a MiCompletionCondition is evaluated each time an in-
stance completes and when it becomes true, the remaining instances are cancelled
and the multi-instance loop completes. There are four types of instance completion
behavior determining “when events shall be thrown from an activity instance that is
about to complete” [OmgBpmn(2009), Table 10.26]:

Case behavior = All: “no event is ever thrown; a token is produced after com-
pletion of all instances”.
Case behavior = None: An event noneBehaviorEventRef is thrown each time
an instance completes.
Case behavior = One: An event oneBehaviorEventRef is thrown “upon the first
instance completing” .
Case behavior =Complex: a complexBehaviorDefinition determines “when and
which events are thrown”.

MULTINSTLOOPBEHAVIOR refines ACTIVITYBEHAVIOR in two respects:
Refining the input selection and output production to data collections whose
elements are associated to the activity instances; this is a signature refine-
ment defined in op.cit.Sect.14.2.7, as is the corresponding refinement of the
PUSHOUTPUT(p) component of EXIT(p) for multiple instance activities p.
Refining the definition of STARTEXEC.

For simplicity of exposition and without loss of generality we make a sim-
ilar assumption as for the STANDARDLOOPBEHAVIOR rule, namely that each
inner activity instance upon its completion enables a (virtual) link entering the
MiCompletionCondition evaluation. The events thrown by EMITEVENT each time
an inner activity completes are instances of the class ImplicitThrowEvent, read:
events that are automatically thrown to be caught by a boundary event on the multi-
instance activity (op.cit. Table 10.28). The standard document does not explain the
data input/output behavior of multiple instances, so that we do not enter its formal-
ization here.

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 25

MULTINSTLOOPBEHAVIOR = ACTIVITYBEHAVIOR(node) where
STARTEXEC(a,node) =

while MiCompletionCond(a,node) = false
if isSequential(node) then

LAUNCHINSTANCE(node) // run first instance until completion
step // creation of further instances

while loopCardinality(node)>| ActiveInnerAct(a,node) |
LAUNCHINSTANCE(a,node) // run next instance until completion

else // parallel case: new instances created at activation time
while loopCardinality(node)>| ActiveInnerAct(a,node) |

if ActivationTime(node) then // run one more instance
LAUNCHINSTANCE(a,node)

step
forall b ∈ ActiveInnerAct(a,node) CANCEL(b)
EXIT(a,node) // NB with refined PUSHOUTPUT

LAUNCHINSTANCE(a,n) =
let act = new Instance(innerAct(n)){

ACTIVATE(act)
INSERT(act,ActiveInnerAct(a,n))

step await Completed(act) EMITEVENT(n)
EMITEVENT(n) =

THROW(noneBehaviorEventRef (n),n) if behavior(n) = None
THROW(oneBehaviorEventRef (n),n) if behavior(n) = One

and | Instance(innerAct(n)) |= 1
forall e ∈ ComplexBehaviorDefinition

THROW(e,n) if behavior(n) = Complex

5 Events

Events are used in BPMN to control the execution order or timing of process ac-
tivities (op.cit.8.3.6). Event splits into two subclasses ThrowEvent and CatchEvent
both of which can contain intermediate events, which may throw or catch triggers,
the causes of events. EndEvents are ThrowEvents because they typically “throw”
a result when a process ends, whereas StartEvents “catch” a trigger to start a pro-
cess and thus form a subclass of CatchEvent, as do the elements of BoundaryEvent
which are typically attached as intermediate events to an activity. When an event is
thrown, its trigger is propagated to the innermost enclosing scope instance where an
attached event can catch the trigger. For some cases (e.g. for errors or escalations) it
is intentionally left underspecified what should happen when no catching event can
be found.

We indicate by trigger(node) the set of types of event triggers that may be as-
sociated to node as defined in op.cit.Table 10.77: a message (arriving from another

26 Egon Börger and Ove Sörensen

participant), a timer, a condition, a signal (broadcasted from another process) or
none (and in event subprocesses also escalation, error or compensation).

Fig. 10 Basic Class Hierarchy of Events

In the following subsections we explain the behavior of these Event subclasses,
mostly abstracting from the data events may carry. The (throw) behavior of so-called
implicit throw events, which are used in connection with multi-instance activities,
has already been described when defining the EMITEVENT macro in Sect. 4.4.

5.1 Start Events

Fig. 11 Start Events – None, Message, Timer, Escalation, Error, Compensation, Signal, Multiple,
Parallel Multiple

A start event has no incoming arc (except when attached to the boundary of a
subprocess to which a higher-level process may connect) and every process con-

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 27

taining some (possibly more than one) start event is required to have no other
flow elements without incoming sequence flow (except intermediate events attached
to an activity boundary, event subprocesses or compensation activities, see be-
low) [OmgBpmn(2009), 10.4.2]. When at a start event a TriggerOccurs—a pred-
icate representing that an event “happens” during the course of a business process,
see a definition in Sect. 5.3.2—a new process instance is created and started by
producing a (unique) startToken on every outgoing arc.

If there are multiple ways to trigger a process only one trigger is required to occur
except in the special case where all elements of trigger(node) must be triggered
to instantiate the process. This is expressed by the following two refinements of
FLOWNODEBEHAVIOR(node) for start event nodes without incoming arc.17

STARTEVENTBEHAVIOR(node) = FLOWNODEBEHAVIOR(node)
where // normal case without parallel multiple trigger

EventCond(node) = ParallelMultiple 6∈ trigger(node) and
forsome e ∈ trigger(node) TriggerOccurs(e,node)

EVENTOP(node) =
choose e ∈ {e ∈ trigger(node) | TriggerOccurs(e,node)}

CONSUME(triggerOccurence(e))
CTLOP(node) =

let P = new Instance(process(node))
forall o ∈ outArcP(nodeP) PRODUCE(startTokenP(node),o)

STARTEVENTPARMULTBEHAVIOR(node) = FLOWNODEBEHAVIOR(node)
where // case with parallel multiple triggers

EventCond(node) = ParallelMultiple ∈ trigger(node) and
forall e ∈ trigger(node)\{ParallelMultiple}

TriggerOccurs(e,node)
EVENTOP(node) =

forall e ∈ trigger(node)\{ParallelMultiple}
CONSUME(triggerOccurence(e))

CTLOP(node) =
let P = new Instance(process(node))
forall o ∈ outArcP(nodeP) PRODUCE(startTokenP(node),o)

In the special case of a start event node with an incoming arc in, the event is
required to be attached to the boundary of a subprocess to which a higher-level pro-
cess may connect. This situation can be modeled by treating in as a virtual incoming
arc which can be Enabled by a token produced by the higher-level process, so that
Triggered(node) is instantiated to Enabled(in(node)) and CONSUMEVENT(node)
to CONSUME(firingToken(in(node)), in(node)).

Remark on processes without a start event. Constructs without incoming arc
and belonging to a process without a start event are required to be activated when

17 Since in this chapter we do not investigate BPMN choreography features, we disregard the case
of start events which participate in a conversation including other start events where only one new
process instances is created for the specific conversation.

28 Egon Börger and Ove Sörensen

the process is instantiated. For simplicity of exposition we model such processes
by equipping them with a virtual start event from which a virtual arc leads to each
construct without incoming sequence flow. Then these constructs are all triggered
when by the instantiation of the process the start event is triggered.

Table 10.77 op.cit. explains how TriggerOccurs is defined. For a conditional trig-
ger e CONSUME(triggerOccurence(e)) is required to let the corresponding condi-
tion become false between two occurrences of that trigger.

5.2 End Events

Fig. 12 End Events – None, Message, Escalation, Error, Cancel, Compensation, Signal, Multiple,
Termination

An end event is used to indicate where a process will end and thus has incom-
ing arcs (where each arriving token will be consumed) and no outgoing sequence
flow (except when the end event is attached to the boundary of a subprocess from
where a higher-level process may proceed); furthermore every process containing
some (possibly more than one) end event is required to have no other flow ele-
ments without outgoing sequence flow (except compensation activities, see below)
(op.cit.10.4.3). An end event may emit (possibly multiple) results belonging to its
resultType set containing elements of the following types: message, signal, termi-
nate, error, escalation, cancel, compensation or none (op.cit.Table 10.81]).

Thus ENDEVENTBEHAVIOR refines FLOWNODEBEHAVIOR as follows.

ENDEVENTBEHAVIOR(node) = FLOWNODEBEHAVIOR(node) where
CtlCond(node) = forsome in ∈ inArc(node) Enabled(in)
CTLOP(node) = choose in ∈ {in ∈ inArc(node) | Enabled(in)}

CONSUME(firingToken(in), in)
if Multiple 6∈ resultType(node) // normal case without multiple results
then let {res}= resultType(node) in EMITRESULT(res,node)
else forall res ∈ resultType(node)\{Multiple}

EMITRESULT(res,node)

EMITRESULT is detailed in op.cit.Table 10.81. For message result type the
MessageFlow determines the message(s) to be sent from the sender to the receiver.
For signal result type the corresponding signalRef is BROADCAST from node to

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 29

‘any process that can receive it’ (we write receivers(signalRef (node),node)). Error
result type yields THROWing an error—to be caught by an enclosing intermedi-
ate event if there is any, otherwise it is intentionally left unspecified what should
happen—and terminating all the activities which are currently active in the sub-
process (assumed to include all instances of multi-instances). Similarly THROWing
an Escalation or Cancel type from node has the effect to trigger an enclosing
targetIntermEv(escalation,node) in an attempt to catch the escalation and in case it
is not caught there to propagate it further up; the cancel case is required to be used
only within a transaction subprocess, with targetIntermEv(resType,node) attached
to the boundary of the transaction, and in addition a transaction protocol cancel
message has to be sent to any entities involved in the transaction; we represent this
behavior as a CALLBACK to each participant in the set listener(Cancel,node). Com-
pensation result type yields THROWing a compensation event, which is required to
activate the compensation handler of the corresponding activity (or set of activi-
ties) actRef (node) after their completion. If resType = Terminate ‘all activities in
the process should be immediately ended’, including multiple instances; this can be
achieved by deleting all tokens on any arc in the given process(node) and in any
active inner activity, deleting the latter from the set of active inner activities. For
resType = None in the special case of an end node of a subprocess which completed,
when the subprocess is Completed the flow has to go back to the caller process, to
which effect a token is PRODUCEd on the arc outgoing the caller of the process in-
stance to which the end node belongs and the process instance is deleted from the
set of active instances of the called activity(reference(node)).

EMITRESULT(resType,node) =
if resType = Message then forall m ∈MessageFlow

if sender(m) = node then SEND(payload(m),receiver(m)))
if resType = Signal then

BROADCAST(signalRef (node),receivers(signalRef (node),node))
if resType = Error then

THROW(error,node)
forall a ∈ ActiveActivity(process(node)) TERMINATE(a)

if resType ∈ {Cancel,Escalation} then
THROW(resType,node)
if resType = Cancel then

CALLBACK(mssg(Cancel,node), listener(Cancel,node))
if resType = Compensation then

THROW((compensation,actRef (node)),node)
if resType = Terminate then INTERRUPT(process(node))
if resType = None and IsSubprocessEnd(node)

and Completed(process(node)) then
PRODUCE(returnToken(node),out(caller(process(node))))
DELETE(process(node),ActiveProcInst(activity(reference(node))))

where
CALLBACK(m,L) = forall l ∈ L SEND(payload(m), l)

30 Egon Börger and Ove Sörensen

INTERRUPT(p) =
DELETEALLTOKENS(p)
forall q ∈ ActiveInnerAct(p)

DELETEALLTOKENS(q)
DELETE(q,ActiveInnerAct(p))

5.3 Intermediate Events

Intermediate events occur between start and end events and may either throw or
catch triggers, namely to send or receive messages or to establish a condition or to
react to its satisfaction, where the conditions may concern timing features or excep-
tions or compensations. If an intermediate event is enabled during normal process
flow, it will either (“throw use”) immediately set off the event trigger and perform
its normal sequence flow CTLOP (CONSUME its enabling token and PRODUCE to-
kens on its outgoing sequence flow) or (“catch use”) wait to perform its normal
CTLOP until its trigger occurs. When intermediate events are used in an activity
to describe exception or compensation handling which is outside the normal flow
of the activity, they are attached to the boundary of that activity (represented by
attachedTo = activity), formally as elements of boundaryEventRefs(activity). Such
events can only catch their triggers during an execution of the activity they are at-
tached to, thereby starting an exception or compensation flow which may interrupt
the activity (as error or cancel intermediate events always do).

The intermediate events which can be used in normal flow or as attached to an
activity boundary are listed in [OmgBpmn(2009), Tables 10.82/3]. In the following
two sections we describe the associated normal flow behavior; for the boundary
event behavior see Sect. 5.4.

5.3.1 Intermediate Throw Events in Normal Flow

Fig. 13 Intermediate Throw
Events – Message, Escala-
tion, Compensation, Signal,
Multiple

An intermediate throw event is required to have some (‘uncontrolled’ if multiple)
incoming and (except intermediate link events) some (simultaneously activated if
multiple) outgoing sequence flow (op.cit.10.4.4). The details of its event operation
SETEVENTTRIGGER depend on the trigger type associated to the event.

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 31

SETEVENTTRIGGER yields message SENDing in case of a Message trigger type,
a BROADCAST for Signal trigger type, triggering (the unique) targetLink for trig-
ger type Link and THROWing an escalation or compensation18 for Escalation or
Compensation trigger type. If trigger(node) contains multiple trigger elements, then
SETEVENTTRIGGER(node, t) is performed for each trigger element t∈ trigger(node).

Thus INTERMEDIATETHROWEVENTBEHAVIOR refines FLOWNODEBEHAVIOR
as follows and is associated to the class INTERMEDIATETHROWEVENT.

INTERMEDIATETHROWEVENTBEHAVIOR(node) =
FLOWNODEBEHAVIOR(node) where

CtlCond(node) = forsome in ∈ inArc(node) Enabled(in)
CTLOP(node) = choose in ∈ {in ∈ inArc(node) | Enabled(in)}

CONSUME(firingToken(in), in)
PRODUCEALL(outArc(node))19

EVENTOP(node) =
if Multiple 6∈ trigger(node) // case with only one trigger

then let {t}= trigger(node) in SETEVENTTRIGGER(t,node)
else forall t ∈ trigger(node)\{Multiple} SETEVENTTRIGGER(t,node)

SETEVENTTRIGGER(t,n) =

forall m ∈MessageFlow with sender(m) = node
SEND(payload(m),receiver(m)) if t = Message

BROADCAST(signalRef (n),receivers(signalRef (n),n)) if t = Signal
Triggered(targetLink(n)) := true if t = Link
THROW(escalation,n) if t = Escalation
THROW((compensation,actRef (node)),node) if t =

Compensation

5.3.2 Intermediate Catch Events in Normal Flow

Fig. 14 Intermediate Catch Events – Message, Timer, Escalation, Error, Cancel, Compensation,
Signal, Multiple, Parallel Multiple

18 We do not describe further details about compensation because this concept is only unsatisfac-
torily sketched in the standard document, in particular when it comes to speak about compensation
of multiple activities.
19 If for a source intermediate link event outArc(node) = /0, then PRODUCEALL(/0) = SKIP.

32 Egon Börger and Ove Sörensen

An intermediate catch event, when token Enabled, will wait to perform its nor-
mal CTLOP until its EventCondition is satisfied expressing that the triggers to be
caught occur. When it becomes true the normal CTLOPeration is performed and the
occuring event triggers are consumed (where relevant, e.g. for link type where the
Triggered predicate at sourceLink(node) has to be reset to false), op.cit.10.4.6.

Thus INTERMEDIATECATCHEVENTBEHAVIOR refines FLOWNODEBEHAVIOR
as follows and is associated to the class INTERMEDIATECATCHEVENT. The predi-
cate TriggerOccurs(t,node) is defined in op.cit.Table 10.82.

INTERMEDIATECATCHEVENTBEHAVIOR(node) =
FLOWNODEBEHAVIOR(node) where

CtlCond(node) = forsome in ∈ inArc(node) Enabled(in)
EventCond(node) =

(ParallelMultiple 6∈ trigger(node) // only one trigger required to occur
and forsome t ∈ trigger(node) TriggerOccurs(t,node))

or
(ParallelMultiple ∈ trigger(node) // all triggers required to occur

and forall t ∈ trigger(node) TriggerOccurs(t,node))
EVENTOP(node) =

let TriggOcc = {t ∈ trigger(node) | TriggerOccurs(t,node))}
if ParallelMultiple 6∈ trigger(node) then

choose t ∈ TriggOcc CONSUME(triggerOccurence(t))
else forall t ∈ TriggOcc CONSUME(triggerOccurence(t))

CTLOP(node) = choose in ∈ {in ∈ inArc(node) | Enabled(in)}
CONSUME(firingToken(in), in)
PRODUCEALL(outArc(node))

TriggerOccurs(t,node) =
forsome m ∈Message Received(m,node) if t = Message
TimerCondition(node) = true if t = Timer
EventExpression(node) = true if t = Conditional
Triggered(sourceLink(node)) = true if t = Link

As [OmgBpmn(2009), Table 10.94] shows, the TimerCondition(node) typically
involves timeData(node) or cycleData(node). Timer as well as conditional triggers
are implicitly thrown, meaning that when activated they wait until TriggerOccurs,
namely when their time based or state based condition becomes true.

5.4 Boundary Events

An intermediate event that is attachedTo the boundary of an activity has no incom-
ing but has (possibly multiple) outgoing sequence flow—except intermediate events
with a Compensation trigger which are required not to have any outgoing sequence

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 33

Fig. 15 A Task Activity with
an Intermediate Catching
Error Event attached to its
boundary

flow, although they may have an outgoing association. When a boundary interme-
diate event is triggered, three things happen: a) the event trigger occurence is con-
sumed; b) if the cancelActivity(act) attribute is true,20 the activity is INTERRUPTed
(including all its inner activity instances in case of a multi-instance activity, see the
definition in Sect. 5.2); c) the CTLOP enables the outgoing sequence flow activating
an event handler [OmgBpmn(2009), p.234,253,14.4.3]. For a compensation event
trigger to occur means that the toBeCompensatedActivity has Completed, so that
the compensation handler for that activity is activated (for which reason a compen-
sation event is required to be non interrupting).

Thus BOUNDARYEVENTBEHAVIOR refines FLOWNODEBEHAVIOR. The defi-
nition of TriggerOccurs(t,node) from Sect. 5.3.2 is extended by op.cit.Table 10.83.

BOUNDARYEVENTBEHAVIOR(node) = FLOWNODEBEHAVIOR(node) where
EventCond(node) =

(ParallelMultiple 6∈ trigger(node) // only one trigger required to occur
and forsome t ∈ trigger(node) TriggerOccurs(t,node))

or
(ParallelMultiple ∈ trigger(node) // all triggers required to occur

and forall t ∈ trigger(node) TriggerOccurs(t,node))
EVENTOP(node) =

let TriggOcc = {t ∈ trigger(node) | TriggerOccurs(t,node))}
if ParallelMultiple 6∈ trigger(node) then choose t ∈ TriggOcc

CONSUME(triggerOccurence(t))
if t = Compensate then

ACTIVATE(compensation(attachedTo(node)))
else forall t ∈ TriggOcc

CONSUME(triggerOccurence(t))
if Compensate ∈ TriggOcc then

ACTIVATE(compensation(attachedTo(node)))
CTLOP(node) =

PRODUCEALL(outArc(node))
if cancelActivity(attachedTo(node)) then INTERRUPT(attachedTo(node))

20 It is required to always hold for Error and to never hold for Compensate type.

34 Egon Börger and Ove Sörensen

TriggerOccurs(t,node) =

forsome m ∈Message Received(m,node) if t = Message
TimerCondition(node) = true if t = Timer
EventExpression(node) = true if t = Conditional
forsome n node ∈ receivers(signalRef (n),n)

and Arrived(signalRef (n),node) if t = Signal
triggerOccurence(t) = (Completed,a) and Completed(a) if t = Compensate
Caught(t,node)

if t ∈ {Escalation,Error,Cancel}

6 An Example

Fig. 16 Example – A compensatable process with a remote arbiter

We illustrate the preceding definitions by the workflow in Fig.16. It has two
pools: one is used as an abstract blackbox for an external participant and is left

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 35

empty, the other one is assumed to contain all the other elements and is drawn with
an invisible outline.

The workflow execution begins with the Start Event in the upper left corner.
Since there is no specific trigger type associated with this event, it has to be trig-
gered manually. When such a manual TriggerOccurs, EventCond is true and the
underlying BPMN scheduler can choose to fire this Start Event. This process con-
sumes through the EVENTOP the event trigger and produces through CTLOP a token
on the outgoing edge, thus enabling the follwing subprocess to start. The subprocess
is instantiated by SUBPROCESSBEHAVIOR through triggering its start event.

Within the subprocess, the exclusive gateway is used as a join. It can fire upon
the arrival of the produced single incoming token because EXCLGATEBEHAVIOR
restricts its consumption function by |selectConsume(node)| = 1. The next workflow
element is a collapsed subprocess “Process Input” which loops over some not fur-
thermore specified input, using multiple instances, as indicated by the vertical bars.
After consuming the firing token through an application of ACTIVITYBEHAVIOR,
the refined version of STARTEXEC for Multi Instance Looping Activities invokes its
inner activity with simultaneous multiple instances because the loop is marked as
non-sequential. The exact mechanism involves mapping a collection of input data
to those instances by means of some Input Association and is carried out by the
interpreter. The inner process activities are instantiated via the ACTIVATE macro.

In case none of the created instances raises an error, the loop activity will even-
tually be finalised via EXIT, which places a token on the ougoing edge of the loop
activity. In case at least one instance of the loop subprocess raises an error that
is not caught within its scope, all instances of the subprocess are terminated by
EMITRESULT. The interpreter searches now for a suitable boundary event match-
ing this error, rethrowing it on every level on the process hierarchy. In the example
there is a catching intermediate event of type error directly on the boundary of the
“Process Input” subprocess. Assuming that its definition matches the error that was
thrown, the interpreter will signal its associated trigger, thus fulfilling its EventCond.

The only flow node which can be fired at this stage is the “Generate Report”
task. Apart from collecting and processing information about the caught error, it dis-
patches a message to the external participant represented by the empty pool. From
the local point of view of the single example process no details about what happens
in the empty pool are known except that its participant adheres to the message-
exchange indicated in the diagram. The following event-based gateway due to its
EventCond can only be enabled after one of its associated events is triggered. This
can either be an external message requesting to repeat the “Process Input” activity,
or a message informing that the process failed, or a failure to receive at least one of
these messages within a certain timeframe. The latter case is also regarded as a fail-
ure. Choosing the appropriate outgoing edge to place a token on relies on an order-
ing among the triggers, as expressed by the fst function that is used in selectProduce
within EVENTGATEBEHAVIOUR.

In the Retry case, a token is placed on the edge leading back to the exclusive
join, resulting in another iteration. In the failure and timeout cases, the token is
produced on a path that ends with the Error end event “Escalate”. The intermediate

36 Egon Börger and Ove Sörensen

event on whose incoming edge the token is placed initially has in all possible cases
a true EventCondition and thus can fire without delay. This is guaranteed by the
selectProduce function of the event-based gateway and the fact that the triggers are
only cleared by the following events.

The subprocess can be exited via one of the two end events or via some uncaught
terminating trigger further down in the process hierarchy. The “Escalate” end event
signals a terminal failure of the process and throws an error that can possibly be
caught in an enclosing context to handle the exception. Because the outermost pro-
cess that is modeled in this diagram has no designated event handlers, it would be
automatically be terminated as well when this end event is triggered. The other end
event does not throw any other than the none trigger, so if the subprocess token ar-
rives there it is Completed and thus via EMITRESULT returns to the caller process.

Finally, the toplevel process exits via either the “Success” or the “Undo” end
event. In the first case, control is returned to the calling instance higher in the hier-
archy, or the interpereter if there was no such instance. The “Undo” end event has
an attached trigger of type compensation. The trigger that it throws contains a ref-
erence to the activity that is to be compensated, as expressed by the actRef function
in EMITRESULT. Compensations are different from errors in that they are usually
directed from an outer towards an inner context. As described in the text, we assume
that the interpreter will catch the trigger and find the associated compensation activ-
ity of the enclosed reference. In our case, the “Undo” end event references the inner
subprocess, so the “Handle Compensation” activity would be invoked to undo the
effects of the “Process Input” subprocess.

7 Conclusion

One could simplify considerably the BPMN execution semantics by restricting it to
a core of BPMN constructs in terms of which all the other constructs can be defined,
to streamline the standard as suggested already in [Börger and Thalheim(2008)]. Up
to now missing or ambiguous issues one would like to see clarified by the standard
document can be integrated into the model once they are decided. This holds in
particular for a satisfactory specification of the lifecycle concept for activities and
its relation with exception handling and compensation.

Acknowledgements We thank Wei Wei and Son Thai for helpful comments on the first draft of
this chapter and Hagen Völzer for information on the current status of the work in the OMG BPMN
standardization committee.

Draft of April 10. Final version to appear in: D. Embley and B. Thalheim (Eds):
Handbook of conceptual modelling. Springer-Verlag, 2010.

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 37

Appendix: BPMN in a Nutshell

We list here the behavioral rules associated with the subclasses of the BPMN
FlowNode class.

FLOWNODEBEHAVIOR(node) =
if EventCond(node) and CtlCond(node) and DataCond(node)

and ResourceCond(node) then
DATAOP(node)
CTLOP(node)
EVENTOP(node)
RESOURCEOP(node)

7.1 GateWay Behavior

GATEBEHAVIORPATTERN(node) =
let I = selectConsume(node)
let O = selectProduce(node)

FLOWNODEBEHAVIOR(node, I,O)
where

CtlCond(node, I) = forall in ∈ I Enabled(in) and Active(procInst(node))
CTLOP(node, I,O) =

CONSUMEALL({(tj, inj) | 1≤ j≤ n}) where
[t1, . . . , tn] = firingToken(I), [in1, . . . , inn] = I

if NormalCase(node) then PRODUCEALL(O)
else THROW(GateExc,node)

DATAOP(node,O)= forall o∈O forall i∈ assignments(o) ASSIGN(toi, fromi)
Active(p) = (lifeCycle(p) = active)

PARGATEBEHAVIOR(node) = GATEBEHAVIORPATTERN(node) where
selectConsume(node) = inArc(node) // AND-JOIN merging behavior
selectProduce(node) = outArc(node) // AND-SPLIT (branching behavior
NormalCase(node) = true // gate throws no exception

EXCLGATEBEHAVIOR(node) = GATEBEHAVIORPATTERN(node) where
| selectConsume(node) |= 1 // exclusive merge
selectProduce(node) = fst({a ∈ outArc(node) | DataCond(a)})
NormalCase(node) = NormalCaseEXCLGATEBEHAVIOR(node)

INCLGATEBEHAVIOR(node) = GATEBEHAVIORPATTERN(node) where
selectConsume(node) = // NB. all to be enabled to fire
{in ∈ inArc(node) | Enabled(in) or UpstreamToken(in) 6= /0}

selectProduce(node) = {a ∈ outArc(node) | DataCond(a)}
CtlCond(node, I,O) =

38 Egon Börger and Ove Sörensen

CtlCondGATEBEHAVIORPATTERN(node, I,O) and I 6= /0
NormalCase(node) if and only if // as for the exclusive case
{a ∈ outArc(node) | DataCond(a)} 6= /0 or

some default sequence flow is specified at node

EVENTGATEBEHAVIOR(node) = // case with incoming arcs
GATEBEHAVIORPATTERN(node) where

| selectConsume(node) |= 1
EventCond(node) = forsome a ∈ outArc(node) Occurs(gateEvent(a))
selectProduce(node) = fst({a ∈ outArc(node) | Occurs(gateEvent(a))})
EVENTOP(node) = CONSUME(gateEvent(selectProduce(node)))
NormalCase(node) = true // event gate throws no exception
Occurs(gateEvent(a)) ={

Triggered(event(a)) if gateEvent(a) = event(a)
Completed(receiveTask(a)) if gateEvent(a) = receiveTask(a)

EVENTGATEPROCSTARTBEHAVIOR(group) =
EVENTGATEPROCSTARTBEHAVIORStart(group)
EVENTGATEPROCSTARTBEHAVIORProgress(group)

EVENTGATEPROCSTARTBEHAVIORStart(group) =
GATEBEHAVIORPATTERN(group) where

selectConsume(group) = /0
CtlCond(group) = (mode(group) = Start)
EventCond(group) = forsome g ∈ group Occurs(gateEvent(g))
let g = fst({g ∈ group | Occurs(gateEvent(g))})

selectProduce(group) = fst({a ∈ outArc(g) | Occurs(gateEvent(g,a))})
CTLOP(group,O) =

let P = new Instance(process(group))
PRODUCE(selectProduce(group)P)
lastCreatedProcInst(group) := P
lifeCycle(P) := active

Seen(g) := true
if | group |> 1 then mode := Progress

EVENTOP(group) = CONSUME(gateEvent(selectProduce(g)))
NormalCase(group) = true // no event gate throws an exception
Occurs(gateEvent(g)) = forsome a ∈ outArc(g) Occurs(gateEvent(g,a))

EVENTGATEPROCSTARTBEHAVIORProgress(group) =
GATEBEHAVIORPATTERN(group) where

selectConsume(group) = /0
CtlCond(group) = (mode(group) = Progress)
EventCond(group) =

forsome g ∈ {g ∈ group | not Seen(g)} Occurs(gateEvent(g))
let g = fst({g′ ∈ group | Occurs(gateEvent(g′)) and not Seen(g′)})

selectProduce(group) = fst({a ∈ outArc(g) | Occurs(gateEvent(g,a))})

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 39

EVENTOP(group) = CONSUME(gateEvent(selectProduce(group)))
CTLOP(group,O) =

if LastSeen(g,group) then // reset group state
mode(group) := Start
forall g′ ∈ group Seen(g′) := false

else Seen(g) := true
PRODUCE(selectProduce(group)lastCreatedProcInst(group))

NormalCase(group) = true
LastSeen(g,group) = (group = {g′ | Seen(g′)}∪{g})

COMPLGATEBEHAVIOR =
COMPLGATEBEHAVIORstart
COMPLGATEBEHAVIORreset

COMPLGATEBEHAVIORstart(node) = GATEBEHAVIORPATTERN(node) where
DataCond(node) = activationCondition(node) and waitingForStart(node)
selectConsume(node) = {in ∈ inArc(node) | Enabled(in)}
selectProduce(node) = {o ∈ outArc(node) | DataCond(a) = true}
CTLOP(node, I,O) =

CTLOPGATEBEHAVIORPATTERNnode, I,O)
if NormalCase(node) then

atStartEnabledArc(node) := selectConsume(node)
waitingForStart := false

NormalCase(node) = NormalCaseEXCLGATEBEHAVIOR(node)

COMPLGATEBEHAVIORreset(node) = GATEBEHAVIORPATTERN(node) where
DataCond(node) = not waitingForStart(node)
selectConsume(node) = {in ∈ inArc(node)\atStartEnabledArc(node) |

Enabled(in) or UpstreamToken(in) 6= /0} // NB. all to be enabled to fire
selectProduce(node) = {o ∈ outArc(node) | DataCond(a) = true}
CTLOP(node, I,O) =

CTLOPGATEBEHAVIORPATTERN(node, I,O)
waitingForStart := true

NormalCase(node) = true // no exception thrown in mode reset

7.2 Activity Behavior

ACTIVITYENTRY(node, InstSet,TriggerProc) = FLOWNODEBEHAVIOR(node)
where
CtlCond(node) = forsome in ∈ inArc(node) Enabled(in)
CTLOP(node) =

let arc = selectConsume({in ∈ inArc(node) | Enabled(in)})
CONSUME(firingToken(arc),arc)

let a = new InstSet
lifeCycle(a) := ready

40 Egon Börger and Ove Sörensen

parent(a) := TriggerProc
step GETACTIVE(a,node)

GETACTIVE(a,node) =
if Ready(a) and forsome i ∈ inputSets(node) Available(i) then

let i = selectInputSets({i ∈ inputSets(node) | Available(i)})
STARTEXEC(a,node)
lifeCycle(a) := active
currInputSet(node) := i

if Interrupted(a) then INTERRUPT(a)
Ready(a) = (lifeCycle(a) = ready)

ACTIVITYBEHAVIOR(node) =
ACTIVITYENTRY(node, Instance(node,procInst(node)),procInst(node))

TASKBEHAVIOR(node) = ACTIVITYBEHAVIOR(node) where
STARTEXEC(a,node) = EXEC(a) seq

if Completed(a) then EXIT(a,node)
if Interrupted(a) then INTERRUPT(a)
if CompensationOccurs(a) then

TRIGGERCOMPENSATION(a)
lifeCycle(a) := compensating

EXIT(a,node) =
forall o ∈ outArc(node) PRODUCE(o)
DELETE(a, Instance(node,procInst(node)))
PUSHOUTPUT(a,node)

PUSHOUTPUT(a,node) =
if forall o ∈ outputSets(node) not Available(o)

then THROW(noAvailOutputExc,node)
else let o = selectOutputSets({o ∈ outputSets(node) | Available(o)})

if IORules(node)(o,currInputSet(a)) = false
then THROW(noIORulesExc,node)
else PUSH(output(o))

EXEC(t, i) = let i = currInputSet(a) in

SEND(payload(mssg(t)),receiver(mssg(t))) if type(t) = Send
RECEIVE(mssg(t)) if type(t) = Receive
INVOKE(job(t), i) if type(t) ∈ {Service,Script}
ASSIGN(job(t), i,performer(job(t), i)) if type(t) ∈ {User,Manual}
CALL(businessRule(t), i) if type(t) = BusinessRule
skip if Abstract(t)

SUBPROCESSBEHAVIOR(node) = ACTIVITYBEHAVIOR(node) where
STARTEXEC(a,node) =

if startEvent(node) 6= undef then
let {t}= trigger(startEvent(a))
TriggerOccursP(t,startEvent(a)) := true

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 41

else
forall n ∈ StartNode(node) PRODUCE(startToken(a,node), in(n))

EVENTSUBPROCESSBEHAVIOR(node) = FLOWNODEBEHAVIOR(node)
where

EventCond(node) =
forsome e ∈ StartEvent(node) Happened(e)

and if triggeredByEvent(node) then Active(parent(procInst(node)))
let e = selectStartEvent({n ∈ StartEvent(node) | Happened(e)}
let {t}= selectTrigger{t ∈ trigger(e) | TriggerOccurs(t,e)}

EVENTOP(node) = CONSUME(t,e)
CTLOP(node) =

let P = new Instance(process(node))

caller(P) :=
{

parent(procInst(node)) if triggeredByEvent(node)
caller(node) else

TriggerOccursP(t,e) := true
if isInterrupting(node) then CANCEL(parent(procInst(node)))

Happened(e) = forsome t ∈ trigger(e) TriggerOccurs(t,e)

ADHOCBEHAVIOR(node) = ACTIVITYBEHAVIOR(node) where
STARTEXEC(a,node) =

while not AdHocCompletionCond(node)
if adHocOrdering(node) = Sequential then LAUNCHINNERACT(node)
if adHocOrdering(node) = Parallel then

if ActivationTime(node) then LAUNCHINNERACT(node)
seq

if CancelRemainingInstances(node) then
forall a ∈ RunningInnerAct(node)

CANCEL(a)
EXIT(a,node)

else await forall a ∈ RunningInnerAct(node)
Completed(a) or Terminated(a)

EXIT(node)
LAUNCHINNERACT(node) =

if enabledInnerAct(node) 6= /0 then
let e = selectEnabledInnerAct(node)(EnabledInnerAct(node))

ACTIVITYBEHAVIOR(e)
INSERT(e,RunningInnerAct(node))
DELETE(e,EnabledInnerAct(node))

CALLACTIVITYBEHAVIOR(node) =
ACTIVITYENTRY(node, Instance(activity(reference(node))),node)

where STARTEXEC(a,node) =
choose n ∈ {n ∈ StartEvent(a) | trigger(n) = None}
TriggerOccursa(None,n) := true
INSERT(a,ActiveProcInst(activity(reference(node)))))

42 Egon Börger and Ove Sörensen

STANDARDLOOPBEHAVIOR(node) = ACTIVITYBEHAVIOR(node) where
STARTEXEC(a,node) =

let i = inputs(currInputSet(node))
if testBefore(node) = true then

while loopCond(a,node) ACTIVATE(body(a,node), i)
if testBefore(node) = false then

until loopCond(node) ACTIVATE(body(a,node), i)
seq if Completed(a,node) then EXIT(a,node)

Completed(a,node) ={
not loopCond(a,node) if testBefore(node) = true
loopCond(a,node) if testBefore(node) = false

MULTINSTLOOPBEHAVIOR = ACTIVITYBEHAVIOR(node) where
STARTEXEC(a,node) =

while MiCompletionCond(a,node) = false
if isSequential(node) then

LAUNCHINSTANCE(node) // run first instance until completion
step // creation of further instances

while loopCardinality(node)>| ActiveInnerAct(a,node) |
LAUNCHINSTANCE(a,node) // run next instance until completion

else // parallel case: new instances created at activation time
while loopCardinality(node)>| ActiveInnerAct(a,node) |

if ActivationTime(node) then // run one more instance
LAUNCHINSTANCE(a,node)

step
forall a ∈ ActiveInnerAct(a,node) CANCEL(a)
EXIT(a,node) // NB with refined PUSHOUTPUT

LAUNCHINSTANCE(a,n) =
let act = new Instance(innerAct(n)){

ACTIVATE(act)
INSERT(act,ActiveInnerAct(a,n))

step await Completed(act) EMITEVENT(n)
EMITEVENT(n) =

THROW(noneBehaviorEventRef (n),n) if behavior(n) = None
THROW(oneBehaviorEventRef (n),n) if behavior(n) = One

and | Instance(innerAct(n)) |= 1
forall e ∈ ComplexBehaviorDefinition

THROW(e,n) if behavior(n) = Complex

7.3 Event Behavior

STARTEVENTBEHAVIOR(node) = FLOWNODEBEHAVIOR(node)
where // normal case without parallel multiple trigger

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 43

EventCond(node) = ParallelMultiple 6∈ trigger(node) and
forsome e ∈ trigger(node) TriggerOccurs(e,node)

EVENTOP(node) =
choose e ∈ {e ∈ trigger(node) | TriggerOccurs(e,node)}

CONSUME(triggerOccurence(e))
CTLOP(node) =

let P = new Instance(process(node))
forall o ∈ outArcP(nodeP) PRODUCE(startTokenP(node,o),o)

STARTEVENTPARMULTBEHAVIOR(node) = FLOWNODEBEHAVIOR(node)
where // case with parallel multiple triggers

EventCond(node) = ParallelMultiple ∈ trigger(node) and
forall e ∈ trigger(node)\{ParallelMultiple}

TriggerOccurs(e,node)
EVENTOP(node) =

forall e ∈ trigger(node)\{ParallelMultiple}
CONSUME(triggerOccurence(e))

CTLOP(node) =
let P = new Instance(process(node))
forall o ∈ outArcP(nodeP) PRODUCE(startTokenP(node,o),o)

ENDEVENTBEHAVIOR(node) = FLOWNODEBEHAVIOR(node) where
CtlCond(node) = forsome in ∈ inArc(node) Enabled(in)
CTLOP(node) = choose in ∈ {in ∈ inArc(node) | Enabled(in)}

CONSUME(firingToken(in), in)
if Multiple 6∈ resultType(node) // normal case without multiple results
then let {res}= resultType(node) in EMITRESULT(res,node)
else forall res ∈ resultType(node)\{Multiple}

EMITRESULT(res,node)

INTERMEDIATETHROWEVENTBEHAVIOR(node) =
FLOWNODEBEHAVIOR(node) where

CtlCond(node) = forsome in ∈ inArc(node) Enabled(in)
CTLOP(node) = choose in ∈ {in ∈ inArc(node) | Enabled(in)}

CONSUME(firingToken(in), in)
PRODUCEALL(outArc(node))

EVENTOP(node) =
if Multiple 6∈ trigger(node) // case with only one trigger

then let {t}= trigger(node) in SETEVENTTRIGGER(t,node)
else forall t ∈ trigger(node)\{Multiple} SETEVENTTRIGGER(t,node)

SETEVENTTRIGGER(t,n) =

44 Egon Börger and Ove Sörensen

forall m ∈MessageFlow with sender(m) = node
SEND(payload(m),receiver(m)) if t = Message

BROADCAST(signalRef (n),receivers(signalRef (n),n)) if t = Signal
Triggered(targetLink(n)) := true if t = Link
THROW(escalation,n) if t = Escalation
THROW((compensation,actRef (node)),node) if t =

Compensation

INTERMEDIATECATCHEVENTBEHAVIOR(node) =
FLOWNODEBEHAVIOR(node) where

CtlCond(node) = forsome in ∈ inArc(node) Enabled(in)
EventCond(node) =

(ParallelMultiple 6∈ trigger(node) // only one trigger required to occur
and forsome t ∈ trigger(node) TriggerOccurs(t,node))

or
(ParallelMultiple ∈ trigger(node) // all triggers required to occur

and forall t ∈ trigger(node) TriggerOccurs(t,node))
EVENTOP(node) =

let TriggOcc = {t ∈ trigger(node) | TriggerOccurs(t,node))}
if ParallelMultiple 6∈ trigger(node) then

choose t ∈ TriggOcc CONSUME(triggerOccurence(t))
else forall t ∈ TriggOcc CONSUME(triggerOccurence(t))

CTLOP(node) = choose in ∈ {in ∈ inArc(node) | Enabled(in)}
CONSUME(firingToken(in), in)
PRODUCEALL(outArc(node))

TriggerOccurs(t,node) =
forsome m ∈Message Received(m,node) if t = Message
TimerCondition(node) = true if t = Timer
EventExpression(node) = true if t = Conditional
Triggered(sourceLink(node)) = true if t = Link

BOUNDARYEVENTBEHAVIOR(node) = FLOWNODEBEHAVIOR(node) where
EventCond(node) =

(ParallelMultiple 6∈ trigger(node) // only one trigger required to occur
and forsome t ∈ trigger(node) TriggerOccurs(t,node))

or
(ParallelMultiple ∈ trigger(node) // all triggers required to occur

and forall t ∈ trigger(node) TriggerOccurs(t,node))
EVENTOP(node) =

let TriggOcc = {t ∈ trigger(node) | TriggerOccurs(t,node))}
if ParallelMultiple 6∈ trigger(node) then choose t ∈ TriggOcc

CONSUME(triggerOccurence(t))
if t = Compensate then

ACTIVATE(compensation(attachedTo(node)))
else forall t ∈ TriggOcc

CONSUME(triggerOccurence(t))

BPMN Core Modeling Concepts: Inheritance-Based Execution Semantics 45

if Compensate ∈ TriggOcc then
ACTIVATE(compensation(attachedTo(node)))

CTLOP(node) =
PRODUCEALL(outArc(node))
if cancelActivity(attachedTo(node)) then INTERRUPT(attachedTo(node))

TriggerOccurs(t,node) =

forsome m ∈Message Received(m,node) if t = Message
TimerCondition(node) = true if t = Timer
EventExpression(node) = true if t = Conditional
forsome n node ∈ receivers(signalRef (n),n)

and Arrived(signalRef (n),node) if t = Signal
triggerOccurence(t) = (Completed,a) and Completed(a) if t = Compensate
Caught(t,node)

if t ∈ {Escalation,Error,Cancel}

References

[Altenhofen and Börger(2009)] Altenhofen M, Börger E (2009) Concurrent abstract state ma-
chines and +CAL programs. In: Corradini A, Montanari U (eds) WADT 2008, Springer, LNCS,
vol 5486, pp 1–17

[Börger and Craig(2009)] Börger E, Craig I (2009) Modeling an operating system kernel. In:
Diekert V, Weicker K, Weicker N (eds) Informatik als Dialog zwischen Theorie und Anwen-
dung, Vieweg+Teubner, Wiesbaden, pp 199–216

[Börger and Stärk(2003)] Börger E, Stärk RF (2003) Abstract State Machines. A Method for
High-Level System Design and Analysis. Springer

[Börger and Thalheim(2008)] Börger E, Thalheim B (2008) A method for verifiable and validat-
able business process modeling. In: Börger E, Cisternino A (eds) Advances in Software Engi-
neering, LNCS, vol 5316, Springer-Verlag, pp 59–115

[OmgBpmn(2006)] OmgBpmn (2006) Business Process Modeling Notation Specification v.1.0.
dtc/2006-02-01 at http://www.omg.org/technology/documents/spec catalog.htm

[OmgBpmn(2009)] OmgBpmn (2009) Business Process Modeling Notation (BPMN). FTF beta 1
for version 2.0. http://www.omg.org/spec/BPMN/2.0, dtc/2009-08-14

[Voelzer(2010a)] Voelzer H (2010a) A new semantics for the inclusive converging gateway in safe
processes. Manuscript (submitted)

[Voelzer(2010b)] Voelzer H (2010b) Personal communication
[Wei(2010)] Wei W (2010) A translation from BPMN to Event-B. Manuscript

