
The Subject-Oriented Approach to Software
Design

and the Abstract State Machines Method

Egon Börger
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Abstract. In [32, Appendix] we have shown that the system which im-
plements the Subject-oriented approach to Business Process Modeling
(S-BPM) has a precise semantical foundation in terms of Abstract State
Machines (ASMs). The construction of an ASM model for the basic S-
BPM concepts revealed a strong relation between S-BPM and the ASM
method for software design and analysis. In this paper we investigate
this relation more closely. We use the analysis to evaluate S-BPM as an
approach to business process modeling and to suggest some challenging
practical extension of the S-BPM system.

1 Introduction

The recent book [32] on the Subject-oriented approach to Business Process
Modeling (S-BPM) contains a precise high-level definition, namely in terms of
Abstract State Machines (ASMs), of the semantics of business process models
developed using the S-BPM tool environment.1 The construction of an ASM
which rigorously describes the basic S-BPM concepts revealed an intimate re-
lation between on the one side S-BPM, whose conceptual origins go back to
Fleischmann’s software engineering book [30, Part II], and on the other side the
ASM method [26], a systems engineering method which too has been developed
in the 90’ies of the last century by a community effort building upon Gurevich’s
discovery of the notion of ASM [40] (at the time called by various names, in 1994
‘evolving algebras’, for the historical details see [11] or [26, Ch.9]).

In this paper we investigate the striking methodological and conceptual simi-
larities (Sect. 2) and some differences (Sect. 3) of these two independent develop-
ments. We propose to enhance the current S-BPM system by offering the modeler
tool support for the use of the full ASM-refinement method which generalizes
the refinement scheme S-BPM provides the software engineer with.

1 In the appendix, which is written in English, an ASM interpreter is defined for the
behavior of such business process models. The software used to transform the pdf-file
generated from latex sources into a Word document and printer-control-compatible
format produced a certain number of partly annoying, partly misleading mistakes
in the printed text. The interested reader can download the pdf-file for the correct
text from [63].



We use this analysis to evaluate S-BPM in terms of six well-known princi-
ples for reliable software development (Sect. 4), an evaluation which shows that
S-BPM provides practitioners with suitable means to precisely and faithfully
capture business scenarios and analyze, communicate and manage the resulting
models.2

What nowadays is called S-BPM is really a version tailored for the devel-
opment of business processes (BPs) of a more general subject-oriented software
engineering method and environment for the development of concurrent systems
proposed in [30, Part II] and called there SAPP/PASS: ‘Structured Analysis
of Parallel Programs’ with a subject-oriented modelling language named ‘Par-
allel Activities Specification Scheme’. We use invariably the today apparently
prevailing term S-BPM to refer to Fleischmann’s approach.

We assume the reader to have some knowledge of the basic concepts of at
least one of the S-BPM [32] or the ASM methods [26].

2 Common Features of S-BPM and the ASM Method

The S-BPM and ASM methods share their main goal, namely to reliably link
the human understanding of real-life processes to their execution by machines
via some implementing software. In fact the ASM method is introduced in [26,
p.1] by stating that

‘The method bridges the gap between the human understanding and for-
mulation of real-world problems and the deployment of their algorithmic
solutions by code-executing machines on changing platforms.’

Similarly, a recent presentation of the S-BPM approach states for the ‘trans-
formation process of model descriptions to executable ones’ [33, Sect.2, p.3-4]
that:

‘end-to-end control is what business stakeholders need to build process-
managed enterprise’ and that
‘Any mapping scheme should allow propagating the information from
a value chain perspective to a software-development perspective in a
coherent and consistent way’.

We explain in this section that as a consequence both methods share three major
methodological concerns for descriptions of (concurrent) processes:

the ground model concern (Sect. 2.1),
the refinement concern (Sect. 2.2),
the subject-orientation concern to make the executing agents and their dis-
tinct internal and external (communication) actions explicit (Sect. 2.3).

2 In [15] we showed that the OMG standard BPMN [48], the workflow patterns of
the Workflow Pattern Initiative [61] and their (academic) reference implementation
YAWL [59] fail to achieve this.



Also both come with ‘a simple scientific foundation, which adds precision to
the method’s practicality [26, p.1]’.

Although the two methods realize these three concerns differently, due to the
more focussed BPM target of the (current incarnation of the) S-BPM method
and the different definitions in the two methods of what constitutes agent behav-
ior (described by Subject Behavior Diagrams (SBDs) resp. ASMs, see Sect. 2.3),
and although their scientific foundation comes from different sources, the sim-
ilarities of the two approaches to software engineering are remarkable because
‘the ground model method for requirements capture, and the refinement method
for turning ground models by incremental steps into executable code’ form to-
gether with the concept of ASMs ‘the three constituents of the ASM method for
system design and analysis’ [26, p.13] through which the method

‘improves current industrial practice in two directions:

On the one hand by accurate high-level modeling at the level of
abstraction determined by the application domain ...
On the other hand by linking the descriptions at the successive stages
of the system development cycle in an organic and effectively main-
tainable chain of rigorous and coherent system models at stepwise
refined abstraction levels.’ [26, p.1]

2.1 Ground Model Concern

In the S-BPM literature there is no mention of the name ‘ground model’ (or
‘golden model’ as they are called in the semiconductor industry [55]) but the
ground model concern is present. The ASM ground model method [7,8,10,12,14]
is about constructing prior to code development, as specification for the code,
models which are

‘blueprints that describe the required application-content of programs
... in an abstract and precise form’ and are ‘formulated in terms of the
application domain and at a level of detailing that is determined by the
application domain’ [14, Sect.1].

Thus ground models satisfy needs of different stakeholders, in particular the
domain experts and the software designers. First of all the domain experts (e.g.
analysts or users of BPs) need ground models for a ‘correct development and
understanding by humans of models and their relation to the application view of
the to-be-modeled BP’ [15, Sect.5].3 Correctness as used here (together with its

3 The request in [33, Sect.1,p.1] of a minimal ‘semantic distance to human understand-
ing’ for S-BPM corresponds to the request for satisfactory ground model ASMs
of a ‘direct’, coding-free relation between the basic domain elements (agents, ob-
jects, functions, properties, operations) and the corresponding ASM ground model
items [8, Sect.6.2]. The ASM ground model method satisfies this request by offering
‘The freedom to choose how to represent the basic objects and operations of the
sytem under consideration’ and by its attention to ‘distinguish between concepts
(mathematical modelling) and notation (formalization)’ [8, Sect.5].



companion concept completeness) is intrinsically not a mathematical notion, but
an epistemological relation between a model and the piece of reality the model is
intended to capture, a relation the application experts have to understand and
only they (not the software technologists) can judge.

But then also the software designers need ground models, namely as a com-
plete specification, where the completeness—every behaviorally relevant feature
is stated—makes a correct implementation of the specification reliable. The re-
liability property links these two roles of ground models. It ‘means that the
appropriateness of the models can be checked by the application domain ex-
perts, the persons who are responsible for the requirements, and can be used by
the system developers for a stepwise detailing (by provably controllable ASM
refinement steps) to executable code.’ [22, p.1923]

Therefore an approach for building satisfactory (i.e. correct, complete and
consistent) ground models requires to have solved before ‘a language and com-
munication problem between the software designers and the domain experts or
customers ... the parties who prior to coding have to come to a common under-
standing of “what to build”’ [14, Sect.2.1.1]:

‘The language in which the ground model is formulated must be appro-
priate to naturally yet accurately express the relevant features of the
given application domain and to be easily understandable by the two
parties involved.4 This includes the capability to calibrate the degree of
precision of the language to the given problem, so as to support the con-
centration on domain issues instead of issues of notation.’(ibid.)(See also
the ‘language conditions for defining ground models’ formulated ibid.,
Sect.2.3.)

To solve this problem S-BPM starts from two observations of language the-
ory [33, Sect.3, p.5]:

‘When structuring reality, humans use subjects, predicates and objects.’
‘humans use natural language structures as primary means to ensure mutual
understanding’.

Consequently S-BPM aligns BP descriptions to those three constituents of
elementary sentences in natural languages and to the coordination role of com-
munication between subjects.5 To stay close to natural language, where domain
experts formulate process requirements, BP descriptions in S-BPM express the
behavior of each subject involved in the BP (read: the agents which perform the
described behaviors) as a sequence of possibly guarded basic (‘internal’) compu-
tation or (‘external’) communication actions of the following form (their content
is discussed in Sect. 2.3):

SbpmAction(Condition, subject , action, object) =

4 The S-BPM literature speaks about ‘duality of expressiveness’ which is needed for
the description language [33, Sect.2, p.4].

5 Notably communication and coordination appear as two of the seven categories of
the Great Principles of Computing [28].



if Condition(subject) then subject Performs(action) on object

These basic S-BPM actions mutatis mutandis correspond to basic ASM tran-
sitions, even if the two methods have a different view on what is allowed, in
general, to constitute an action and on their parallel resp. sequential execu-
tion (see Sect. 2.3 and 3.1). In fact in the S-BPM interpreter the ASM rule
Behavior(subj , state)—which formalizes the execution by the subj ect of the ac-
tion (called service(state)) associated with its SID-state—has exactly the above
form, as the reader can check in [32, p.351].

In this way in S-BPM BPs are modeled using a precise language which is
understandable by both parties, domain experts (analysts/managers/users) and
software developers: it is constituted by elementary sentences which can be un-
derstood as (not formalized) natural language sentences, but nevertheless have a
precise operational meaning (modulo a precise meaning of the constituent parts).
The resulting BP ground models are as close to the intended real-world pro-
cesses (read: their intuitive application-domain-views) as are the subjects, their
actions and the objects which are chosen by the analyst (as BP model designers
are called) to appear in the ground models. Thus the S-BPM approach offers for
BPs an interesting solution to a challenge listed in [22, p.1924], namely ‘support-
ing the extraction of ground model elements from natural language descriptions
of requirements’.

The ‘abstract operational’ character of ASM ground models, which makes
them directly executable, mentally by definition as well as mechanically by ap-
propriate execution engines, has been recognized in [8, Sect.7] as crucial for
the needed ‘experimental validation of the application-domain-based semantical
correctness for ground models’ [14, p.226]. It is a key criterion also for S-BPM,
expressed as follows in [33, Sect.1, p.2]:

‘The novelty of the approach can be summarized by two key benefits,
resulting for stakeholders and organization developers:

1. Stakeholders need only to be familiar with natural language ... to
express their work behavior ...6

2. Stakeholder specifications can be processed directly without further
transformations, and thus, experienced as described’.

The ASM ground model method realizes the ground model concern in a sim-
ilar way, but tailored for a more general system engineering setting, using the
more comprehensive notion of ASM compared to S-BPM’s SBDs as they are
used to describe the behavior of BP subjects, see below. Not to repeat for an
explanation of this difference what has been described in various articles on the
theme [7,8,10,12,14] we invite the reader to read the systematic epistemological
discussion of the method in [14]. We limit ourselves here to point to a typical
ASM ground model ‘at work’ S-BPM experts may be interested in, namely the

6 Obviously such a natural language expression of the work behavior has to be suffi-
ciently precise, in particular to avoid misunderstandings that may arise from cultural
differences among the stakeholders.



interpreter model for SBDs in [32, Ch.12 and Appendix] (see also [63]). It il-
lustrates the characteristic properties of ASM ground models by exhibiting the
direct, strikingly simple and easy to grasp correspondence between the S-BPM
concepts and their mathematical, operational formalization by ASMs.

Scientific Foundation. The just mentioned ASM ground model for an SBD-
interpreter constitutes the mathematical part of the scientific foundation of S-
BPM. The epistemological part of its foundation is rooted in language theory.
The ASM method has its simple scientific foundation directly in mathematical
logic and its epistemological roots in a generalized Church-Turing thesis (see
Sect. 2.3).

2.2 Refinement Concern

In S-BPM the specification of the processes which constitute a BP model is
done in two steps. For each process its SBD (also called PASS graph) describes
only the sequence in which the executing subject performs its basic actions. The
detailed content of these actions is specified by refinements which describe ‘the
local variables of a process and the operations and functions defined on the local
variables’ [30, p.206].

Four types of operations and functions are considered, reflecting the classifica-
tion of actions described in more detail in Sect. 2.3. Two types of communication
are specified by describing a) the parameters of the communicated messages and
b):

for to-be-received messages the state change they yield, i.e. their ‘effect ...
on the values of the local variables, depending on the values of the message
parameters and the current values of the loca variables’ (ibid.)7

for to-be-sent messages the definition of their content depending on the cur-
rent state, i.e. ‘how the values of the message parameters are obtained from
the values of the local variables’ (ibid.)8

So-called internal operations are specified by describing their update effect on
the current state (here the values of the local variables), where one is allowed
to use so-called internal functions (whose applications in the current version
of S-BPM are not distinguished any more as separate kind of operations), that
is mathematical (side-effect-free), in ASM terminology dynamic functions (i.e.
functions whose result for given arguments depends on the current state).

To define these specifications and their implementation in S-BPM the ap-
proach ‘is open for the integration of existing and proved development meth-
ods’ [30, p.199] and in particular ‘all the object oriented concepts can be ap-
plied’ (ibid., p.206). These two programming-practice inspired refinement types

7 This is described in the S-BPM interpreter model by the RecordLocally subma-
chine of Async(Receive) and Sync(Receive) [32, p.367-368].

8 This is described in the S-BPM interpreter model by the functions composeMsg and
msgData of the PrepareMsgSend submachine [32, p.361].



in S-BPM (Pass graph refinement and its implementation) are instances of the
concept of ASM refinement.

The ASM refinement method was conceived in the context of modelling the
semantics of ISO Prolog by ASMs [4,5,6,17] (surveyed in [7]), when I was chal-
lenged by Michael Hanus to also develop an ASM for the Warren Abstract Ma-
chine (WAM)—an early virtual machine whose optimization techniques changed
the performance of Prolog to a degree that made practical applications feasible—
and to prove the compilation of ISO Prolog to WAM code to be correct. The
challenge was solved by refining the Prolog interpreter model in 12 proven to be
correct refinement steps to a WAM interpreter model [23,24,25]. The adopted
refinement concept (which has been implemented in KIV for a machine verifica-
tion of the WAM correctness proof [53,54,50,51,52]) is described in detail in [13].
It

supports sequences of refinement steps whose length depends on the com-
plexity of the to be described system, and
links the refinement steps in a documented and precise way so that their
correctness can be objectively verified.9

Since the ASM refinement notion is in essence more general than the programming-
focussed one used in S-BPM, we discuss the details in Sect. 3.2.

2.3 Subject-Orientation Concern

In this section we elucidate for the S-BPM and ASM methods the feature which
gave the name to S-BPM and is emphasized in the comparative analysis in [30,
Ch.5], [32, Ch.14],[33, Sect.4] as distinctive with respect to traditional system
description methods, namely the primary role of agents (called subjects) which
execute step by step two distinct kinds of actions following the ‘program’ (be-
havioral description) each agent is associated with: communications (‘external’
actions) and ‘internal’ actions on corresponding objects.

Agents. Subjects are placed into the center of S-BPM process descriptions as
the ‘active elements’ of a process which ‘execute functions offered by the passive
elements’ (i.e. objects of abstract data types) [30, p.199] and have to be identified
as first elements of any process description: ‘start with identifying the involved
subjects and after that define the behaviour specifications of acting parties’ [33,
Sect.3, p.8]. The ASM method shares this view: in the list of the six ‘Fundamental
Questions to be Asked’ when during requirements capture one starts to construct
an ASM ground model the first question is:

Who are the system agents and what are their relations? [26, p.88]

9 It is an important aspect for certifiability that these verifications are documented
to become repeatable by mathematical ‘experiment’ (read: proof checking). See
Sect. 3.3.



This corresponds to the fact that by its very definition an ASM is a family
of pairs (a,Pgm(a)) of different agents, belonging to a set (that may change
at runtime), and the (possibly dynamically associated) programs Pgm(a) each
agent executes [26, Def.6.1.1].10 S-BPM has the same definition: ‘An S-BPM
process ... is defined by a set of subjects each equipped with a diagram, called
the subject behavior diagram (SBD) and describing the behavior of its subject
in the process.’ [32, p.348] In both definitions we see multiple agents whose
behavior is to execute the (sequential) program currently associated with them.
Since this happens in a concurrent context, S-BPM and the ASM method both
classify the basic ‘actions’ an agent can perform in a program step by their role
for information exchange among the agents, as we are going to explain now.

Classification of Agent Actions. In S-BPM the ‘actions’ agents perform
when executing their program are of two kinds, to ‘exchange information and
invoke operations’ [30, p.372]. Information exchange is understood as sending
or receiving messages. The information exchange actions are named ‘external’
because they involve besides the executing subject also other, ‘external’ sub-
jects. The invoked other operations are understood as agent-‘internal’ (read:
communication-free) computations on given objects [30, p.205].

Similarly the ASM method explicitly separates agent-internal operations
from external data exchange operations (communication) with other cooperating
agents, namely through the so-called classification of locations (i.e. containers of
abstract data). Agent-internal operations come in the form of read/writes of so-
called controlled locations which are performed under the complete and exclusive
control of the executing agent. Data exchange (communication with cooperating
agents) comes in the two forms of a) reading so-called monitored locations that
are written by the cooperating agents (an abstract form of receiving messages
sent by other agents) and b) writing so-called output locations to be read by the
cooperating agents (an abstract form of sending messages to other agents).

In the interaction view of an S-BPM subject behavior diagram each internal
or communication action counts as one step of the corresponding subject , namely
to perform what is called the service associated with the subject in the given
state. In the detailed (refined) interpreter view of the subject as defined in [32,
Appendix, Sect.3] this ‘abstract’ interaction-view-step usually is rather complex
since it is constituted by the sequence of ‘detailed-view-steps’ performed by the
subject to execute the underlying internal or communication action— more pre-
cisely in the S-BPM interpreter it is the sequence of the Start and all Perform
steps made by the subject to execute its Behavior(subject ,SID state), otherwise
stated the sequence of detailed steps subject performs from the moment when it
enters the SID state corresponding to the action (read: the associated service)
until the moment when it exits that state to enter the SID state ′ corresponding
to the next action, see [32, p.351].

10 To name the agent can be omitted (only) in the special case where a single ASM is
contemplated (which may interact with an environment that is considered as run by
one other agent).



The ASM method started out to provide in full generality the means to ab-
stract into one single-agent step an entire internal computation which may be
needed to perform an action in a given state. Therefore one has to separately de-
scribe the interaction the considered agent may have with the cooperating agents
in its environment to perform the action, namely receiving data from cooperating
agents before it starts the abstract step and sending data to cooperating agents
after (probably as a result of) the abstract step. The agent’s sending interac-
tions are collectively incorporated into its one abstract step, namely as updates
of all corresponding output locations; this is without loss of generality given the
parallel nature of a single ASM step which performs simultaneously an entire
set of location updates. Analogously the agent’s receiving interactions directly
preceding (and probably influencing) its abstract step are collectively described
by a separate so-called ‘environment’ step which precedes the agent’s abstract
step and is assumed to be executed by another agent representing the environ-
ment of the considered agent; this environment step performs simultaneously all
the relevant updates of the corresponding monitored locations, thus completing
the definition of the state in which the considered agent performs (the internal
part of) its abstract step (see the formal definition in [26, Def.2.4.22, p.75]).

The difference in the technical S-BPM/ASM realization of the identical con-
cept of distinguishing internal and external ‘actions’ is a result of the different
origins of the two methods. The motivating target of S-BPM was to incorpo-
rate in an explicit and practically feasible way into the software engineering
techniques of the time the missing high-level concept of communication between
process agents, in particular for developing BPs where communication is funda-
mental to control the actions of the cooperating agents. Therefore it was nat-
ural to develop an orthogonal communication concept (inspired by CCS [47]
and CSP [42]) which is compatible with the principal (at the time prevailingly
object-oriented) programming concepts and their implementation so that it can
be integrated in a modular way into any practical software engineering method.
This led to the interesting input-pool-based S-BPM notion of a synchronous or
asynchronous communication (send or receive) ‘step’ as pendant to and à la pari
with any internal computation ‘step’. The notion of an ASM the development of
the ASM method started from grew out of an epistemological concern, namely to
sharpen the Church-Turing thesis for ‘an alternative computation model which
explicitly recognizes finiteness of computers’ [38,39] (see [11],[26, Ch.9] for the
historical details). Therefore it was natural to abstract for the definition of what
constitutes an ASM step from any particular form of communication mechanism
and to represent a communication (receive or send) action abstractly the same
way as any other basic computational action, namely as reading the value of an
abstract ‘memory location’ resp. as updating (writing) it—clearly at the price of
having to define an appropriate practical communication model where needed,
a task Fleischmann accomplished for S-BPM with his input-pool concept. This
concept provides an interesting contribution to the challenge listed in [22, p.1923]
to develop ‘practically useful patterns for communication and synchronization
of multi-agent ASMs, in particular supporting omnipresent calling structures



(like RPC, RMI and related middleware constructs) and web service interaction
patterns.’11

Behavior of Agents. In S-BPM the behavior of a single agent is represented
by a graph of the Finite State Machine (FSM) flowchart type (called SBD or
PASS graph) which ‘describes the sequences in which a process sends messages,
receives messages and executes functions and operations’ [30, p.207]. This cor-
responds exactly to the so-called control-state ASMs [26, Sect.2.2.6] and their
FSM-flowchart like graphical display12 so that not surprisingly the high-level S-
BPM interpreter in [32, Appendix, Sect.7] for the execution of SBDs is defined
as a control-state ASM.

3 Differences between S-BPM and the ASM Method

In this section we discuss three major differences between the S-BPM and the
ASM method. They concern the notion of state and state change (update) by
actions of agents (Sect. 3.1), the notion of refinement of models (Sect. 3.2) and
the verification concern which helps in the ASM method to increase the sys-
tem reliability and to reduce the amount of experimental system validations
(Sect. 4). Through these features the ASM method offers the practitioner ad-
ditional possibilities for certifiably correct design of software-intensive systems,
although we see no reason why they could not be included into S-BPM, as we
are going to suggest, to increase the degree of reliability of S-BPM-designed BPs
by certifiable correctness.

3.1 Notion of State and State Change

State. As we have seen in Sect. 2.2, S-BPM shares the traditional programming
view of states: ‘the values of all local variables define ... the local state of a
process’ [30, p.206]. In contrast, ‘the notion of ASM states is the classical notion
of mathematical structures where data come as abstract objects, i.e. as elements
of sets (also called domains or universes, one for each category of data) which
are equipped with basic operations (partial functions in the mathematical sense)
and predicates (attributes or relations).’[26, p.29] In logic these structures, which
have been formulated as a concept by Tarski [58] to define the semantics of first

11 The various theoretical communication concepts surveyed in [41] appear to have
been defined to suit parallel and so-called interactive forms of the ASM thesis and
seem to have had no practical impact.

12 Control-state ASMs have been introduced in [10] as ‘a particularly frequent class
of ASMs which represent a normal form for UML activity diagrams and allow the
designer to define machines which below the main control structure of finite state
machines provide synchronous parallelism and the possibility of manipulating data
structures.’ [26, p.44]



order logic formulae, are also called Tarski structures.13 The relevant fact for the
modelling activity is that the sets and functions which form the state of an ASM
can be chosen in direct correspondence with the to-be-modelled items of the
application domain, tailored with ‘the greatest possible freedom of language’ [8,
Sect. 5] to the intended level of abstraction of the model and ‘avoiding the formal
system straitjacket’ (ibid.). Thus ASM states realize an advice from a great
authority: ‘Data in the first instance represent abstractions of real phenomena
and are preferably formulated as abstract structures not necessarily realized in
common programming languages.’ [62, p.10]

To provide a characteristic example we can refer to the abstract elements
and functions which appear in the ASM model for S-BPM [32, Appendix] as
part of the interpreter state, like all the SBD-graph structure related items, the
services associated with SID-states and their completion predicate Completed ,
inputPool with its related functions, the different sets providing Alternatives
together with their select ion functions, message related functions to composeMsg
from msgData, etc.

Also the object oriented slightly more complex version of the programming
view of states as defined above, which comes with the suggestion to use object
oriented techniques for the specification of PASS graph refinements [30, p.210],
is an instance of the ASM notion of state since ‘the instantiation of a relation or
function to an object o can be described by the process of parameterization of,
say, f to the function o.f , which to each x assigns the value f (o, x ).’[26, p.29]14

State Change. The most general kind of a basic action to change a structure
or algebra (i.e. a set of functions) appears to be that of a function update, i.e.
change the value of a function at given arguments, which has the following form:

f (t1, . . . , tn) := t

Such updates, executed by an agent (denoted by self) under appropriate condi-
tions which guard the application of ASM rules:

AsmRuleself (Condition,Updates) = if Condition then Updates

are exactly what constitutes the basic action of an ASM agent in a state, where
f is an arbitrary n-ary function symbol15 and t1, . . . , tn are arbitrary terms
(expressions) at whose values in the current state the new value of the function
(which will be the value of the successor state of the current state) is set to
the value of t in the current state (if the indicated condition under which this
action is requested to be performed is true in the current state). Given the

13 If predicates are considered to be canonically represented by their characteristic
functions, a Tarski structure becomes what is called an algebra. Viewed this way an
ASM state is a set of functions or Parnas tables [49,9].

14 Recently this parameterization facility for ASM states has been exploited to define
a general ambient concept in terms of ASMs [16].

15 0-ary functions f , i.e. where n = 0, are the variables of programming.



abstract nature of the functions and objects (elements of the universe) which
constitute an ASM state one can express updates at any level of abstraction,
using corresponding functions f and expressions ti , t of given complexity or level
of abstraction.

This lifts variable assignment to destructive assignment at any level of ab-
straction and thus supports abstract operational modelling (providing what is
nowadays often called execution semantics of a system). A typical use is illus-
trated by the abstract yet precise definition of the two communication actions
ComAct ∈ {Send ,Receive} of S-BPM agents by the interpreter submachines
Async(ComAct) and Sync(ComAct) in [32, Appendix,3.3.,3.4].

Expressivity Question. Due to its original epistemological goal the definition
of ASMs had to solve an expressivity issue for the proposed simple algorithmic
language, namely to guarantee that this language provides whatever may be
needed to ‘directly’ (coding-free and thus without extraneous overhead) model
any computational system. This is what the ASM thesis [38,39] was about and
explains why a) the states of ASMs have to be Tarski structures and why b)
differently from their static nature in mathematics and logic here these structures
must be treated as updatable by basic actions of ASM agents, namely by (a set
of simultaneous)16 updates.

By its focus on modelling BPs by sets of SBDs each of which is described
by constructs that are close to sentences of natural language, S-BPM derives
the guarantee to be expressive enough for modelling any desired BP from the
expressivity of natural language. The price paid is the focus of ground mod-
els on the level of abstraction of (sets of) SBDs which are reached by system
decomposition (using data flow diagram techniques) until every communicating
subject has become explicit,17 as will become clearer in the next section where
we compare the programming-oriented S-BPM refinement concept explained in
Sect. 2.2 with the more general ASM refinement notion.

A positive return is the ease with which an S-BPM model can be trans-
formed into a precise (though verbose) natural language text, essentially by
paraphrasing each SbpmAction in every SBD of the model by the obvious cor-
responding natural language sentence. Given the similarity between ASM rules
and SbpmActions, in a similar way such a transformation can also be defined

16 The synchronous parallelism of single-agent actions in the ASM-computation model,
which differs from the sequential-program view of actions of S-BPM agents, provides
‘a rather useful instrument for high-level design to locally describe a global state
change, namely as obtained in one step through executing a set of updates’ and ‘a
convenient way to abstract from sequentiality where it is irrelevant for an intended
design’ [8, p.30].

17 This interesting termination criterion for the ‘decomposition of a system into
processes’—the first of the two major system development steps in the S-BPM
method—is a consequence of the communication focus (read: subject orientation):
‘Finally all processes and shared objects, the messages exchanged between processes
and the shared objects they use, are identified.’ [30, p.204 and Ch.10]



for ASM models, as has been illustrated in [20]. There the contributing authors
of the book [34] had been asked to formulate in natural language a precise and
complete set of requirements for a small case study by first defining a formal
specification which captures the given informal requirements and then retrans-
lating this specification into natural language. For S-BPM a converter has been
written which transforms S-BPM models into natural language texts [31] (see
also [56]). Although we believe that the methodological better way to explain
and document ASMs (and also S-SBM models) is to use a literate modeling style
in the spirit of Knuth’s literate programming [45], it could nevertheless be useful
to write a similar Asm2NatLang converter to facilitate the integration of ASMs
into natural language S-BPM documents for users who are not familiar with
symbolic mathematical notations.

3.2 Refinement Concept

The conceptual distance between an SBD (PASS graph) to its refinement, which
represents an operational specification of the communication and internal ac-
tions the subject performs in the SBD, is not very large. The next step (which
we consider as another refinement step) consists in the coding of this specifica-
tion where the S-BPM method adopts ‘methods which are common in standard
sequential programming’ [30, p.296]. Therefore alltogether the ‘semantic gap’ be-
tween a user model (ground model PASS graph) for a BP and its code is judged
not to be very large. In fact it is claimed that ‘Once the interaction patterns
among actors (subjects) have been refined in terms of exchange of messages,
suitable program code can be generated automatically’ [33, Sect.1, p.2]; this has
to be understood cum grano salis, probably meant to hold for ‘the standard part
of the code’ [30, p.295] resp. for code meaning method headers.

This does not solve the problem in case the distance between a ground model
and the code is too large to be bridged in one or two steps in such a way
that a human can understand the refinement and verify its correctness. Such a
situation was at the origin of the ASM refinement method [13] and is typical
for its successful applications. Mentioning a few examples should suffice here to
illustrate the practical relevance of the ASM refinement notion.

The historically first example is the Prolog-to-WAM compiler verification
mentioned in Sect. 2.2 where we needed 12 refinement steps to explain Warren’s
ideas and to prove the main theorem. The refinement correctness proofs have
later been machine verified using the KIV system [53,54]. Interestingly enough
to enable the KIV machine to finish its proof, for one of the optimizations in
the WAM an additional refinement step had to be introduced into the hand-
written proof developed to convince ourselves and our peers. The elaboration of
the method for the Occam/Transputer parallel computation model (with non-
determinism) yielded 17 natural refinement steps [18] to explain the rationale
and prove the correctness of the standard (INMOS) compilation scheme.

Another real-life example to be mentioned (among many others concerning
architectures, control software, protocols, algorithms, etc. and surveyed in [26,
Ch.9]) is the stepwise refinement of ASM interpreters for Java and the JVM,



using both horizontal and vertical refinement steps. These models have been
used to verify various properties of interest for the language and its virtual
machine, like type safety, compiler correctness, soundness and correctness of the
bytecode verifier, soundness of thread synchronization, etc. The reader can find
the details in the JBook [57]. That the method could be applied also to C# [19]
and .NET CLR [35,37,36] should not come as a surprise.

A natural place to integrate into S-BPM the ASM refinement method is where
one has to code complex internal actions of a subject. It is still a challenge to pro-
vide tool support for the ASM refinement method, in particular in combination
with verifications of refinement correctness, e.g. building upon the implemen-
tation of the ASM refinement concept in [50] which has later been extended
and been used for numerous other verification projects, see www.informatik.uni-
augsburg.de/swt/projects/. Some first steps in this direction seem to appear in
the area of software product lines where feature-based modeling is linked to the
stepwise validation and verification of properties [60,44,3,27].

3.3 Verification Concern

The presentation of the ASM method quoted at the beginning of Sect. 2 continues
as follows:

‘It covers within a single conceptual framework both design and analy-
sis, for procedural single-agent and for asynchronous multiple-agent dis-
tributed systems. The means of analysis comprise as methods to support
and justify the reliability of software both verification, by reasoning tech-
niques, and experimental validation, through simulation and testing.’ [26,
1]

This shows how much the ASM method cares about both, verification by
proving model properties and validation by simulation and testing of models.
However it turned out to be an advantage for their use in systems engineering to
pragmatically separate these two activites from the modeling (design) activity [8,
Sect.4,5], differently from what do other methods (notably the conceptually very
close B-method [1,2]) which link design and verification (definition and proof)
to always go together.

The ASM method allows one to validate and/or verify properties of models
at any level of abstraction since by their definition

ASMs are mathematical objects so that they satisfy the rigour needed to
enter a mathematical or machine supported proof,
ASMs are conceptually executable, due to their operational character, and
have been made mechanically executable by various tools.18

Verification cannot replace validation, but as early design-error detection tech-
nique it can considerably reduce the amount of testing and error correction after
the system is built.

18 See [26, Ch.8] for a survey of various ASM verification and validation tools and [29]
for the more recent CoreASM execution engine.



The SAPP/PASS approach shares the validation and verification concern.
For ‘checking whether a process is correct’ two aspects are distinguished [30,
p.312, Sect.16.3]:

A system must have certain properties, e.g. livelock free, deadlock
free which are independent of the application. This is implicit cor-
rectness.19

A specified system must do what a designer has intended. This is
explicit correctness.

Both aspects are reported to have been supported by prototypical Prolog-based
validation tools providing for each system modeled in PASS a sort of expert
system which ‘allow(s) the behavior of a process system to be analysed and can
determine whether a system does what it was intended to do’ (ibid., p.321).

However this verification concern seems not to be supported by the present S-
BPM tool set, although the validation concern is, namely by a testing mechanism
that allows one to feed concrete values for messages and function arguments and
values into the system to run BP scenarios prior to coding method bodies20.

We suggest to integrate into the current S-BPM system the possibility to

formulate application-specific BP properties of interest to the user or man-
ager, presumably ground model properties which go beyond the usual graph-
theoretic properties like liveness, fairness, deadlock fredom, etc.,
prove such properties for the ground model as well as their preservation
through ASM refinement steps of internal actions,
document the properties and their verifications so that they can be checked
(also by third parties like certification bodies) and used to certify the cor-
rectness of the BP implementation.

This could be realized for any of the reasoning techniques the ASM method
allows one to apply for the mathematical verification of system properties, at
different levels of precision and under various assumptions, e.g. [14, Sect.1]

outline of a proof idea or proof sketch whereby the designers communicate
and document their design idea,
mathematical proof in the traditional meaning of the term whereby a design
idea can be justified as correct and its rationale be explained in detail,
formalized proof within a particular logic calculus,
computer-checked (automated or interactive) proof.

Each technique comes with a different amount of tool support21 and of effort
and cost to be paid for the verification and provides a different level of objective,
content-based ‘certification’ of the professional quality of the analysed system.

19 We have pointed out in [15, 4.2] that for BPs ‘implicit correctness’ properties are
less interesting than the ones for ‘explicit correctness’ which typically are ground
model properties to be preserved through refinement steps.

20 This is exactly the method used in the Falko project at Siemens to validate the ASM
ground model for the given scenarios, see [21]

21 [26, 9.4.3] surveys some tool supported ASM verifications.



4 Evaluation of S-BPM

In this section we evaluate S-BPM as an approach to BPM (Sect. 4.2) us-
ing six classical evaluation criteria for practical software engineering methods
(Sect. 4.1).

4.1 The Evaluation Criteria

The three major purposes of business process (BP) descriptions are the design
and analysis, the implementation and the use of models of BPs. For each purpose
pursued by the various BP stakeholders the models play a specific role, namely
to serve a) as conceptual models (in particular for high-level development-for-
change and management support), b) as specification of software requirements
that are implemented by executable models and c) as user model for process
execution, monitoring and management. This is reflected in the following six
criteria (paraphrased from [15, Sect.5]) a satisfactory BPM system must satisfy:

Ground Model Support. Provide support for a correct development and un-
derstanding by humans of models and their relation to the application view
of the to-be-modeled BP, which is informally described by the process re-
quirements. This human-centered property is often neglected although it is
the most critical one for software development systems in general22 and in
particular for BPM systems. It is crucial to support such an understanding
for both model design and use because these models serve for the communi-
cation between

the BP expert, who has to explain the real-world BP that is to be im-
plemented,
the IT expert who needs a precise specification of the coding goal,
the BP user who applies or manages the implemented process and needs
to understand for his interaction with the system that his process view
corresponds to what the code does.

Refinement Support. Provide support for faithful implementations of models
via systematic, controlled (experimentally validatable and/or mathemati-
cally verifiable) refinements. This model-centered property is methodolog-
ically speaking the simpler one to achieve because an enormous wealth of
established refinement, transformation and compilation methods can be used
for this—if the construction of satisfactory (precise, correct, complete and
minimal) ground models is supported the implementation can start from.

Change Management. Provide support for effective change management of
models. This involves the interaction between machines and humans who
have to understand and evaluate machine executions for BP (ground or re-
fined) models, bringing in again conceptual (ground model and refinement)
concerns when it comes to adapt the system to evolutionary changes.

22 See the discussion in [14] for the verified software challenge [43] originally proposed
by Hoare.



Abstraction Provide support for abstraction to help the practitioner in two
respects:

in the daily challenge to develop abstract models (ground models and
their stepwise refinements) out of concrete, real-life problem situations.
This implies, in particular, the availability in the modeling language of
a rich enough set of abstract data types (sets of objects with operations
defined on them) to use so that one can

• express the application-domain phenomena to be modeled (objects
and actions) at the conceptual level without the detour of language-
dependent encodings;

• refine the abstractions in a controlled manner by more detailed op-
erations on more specific data structures.

to develop coherent definitions of different system views (control-flow
view, data flow view, communication view, view of the actors, etc.).

Modularization. Provide support for modularization through rigorous abstract
behavioral interfaces to support structured system compositions into easy-to-
change components.23 For BPM it is particularly important that modeling-
for-change is supported at all three major stakeholders levels: at the Ground
Model and Change Management support levels because it is the BP users
and managers who drive the evolutionary adaptation of BP models, at the
Refinement support level because the high-level model changes have to be
propagated (read: compiled) faithfully to the implementing code.

Practical Foundation. Come with a precise foundation a practitioner can
work with, i.e. understand and rely upon when questions come up about
the behavioral meaning of constructs used by the tool.

4.2 Applying the Criteria to S-BPM

In this section we recapitulate what has been said showing that S-BPM [32]
and its tool [46] support correct development and understanding, faithful im-
plementation and effective management of BP models via practical abstraction
and modularization mechanisms which are defined on the basis of a fundamental
epistemological and mathematically stable foundation.

S-BPM satisfies the Ground Model criterion, as shown in Sect. 2.1.
In Sect. 2.2 we have explained to which extent S-BPM satisfies the Refinement

criterion and in Sect. 3.2 how it can be enhanced to satisfy the full Refinement
criterion. Modulo the same remark S-BPM satisfies the Abstraction criterion.

The Change Management criterion is satisfied by S-BPM via its technique
to decompose BPs into sets of SBDs, for which in turn modeling for change is
supported by two model extension schemes which allow the modeler to smoothly

23 These two features, abstraction and modularization, also appear in the Design sec-
tion of Great Principles Category Narrative in [28] listed under simplicity as one of
the five ‘driving concerns’ of software design and used to ‘overcome the apparent
complexity of applications’.



integrate into a given SBD some new (whether normal or interrupt) behavior [32,
Appendix, Sect.6].

To satisfy the Modularization criterion S-BPM contributes in various ways.
Besides the just mentioned constructs for extending normal or interrupt be-
havior actions can be atomic or composed. In particular structured alternative
actions are available. To accurately model alternative (whether asynchronous
or synchronous) communication actions it is sufficient to use an appropriate
selection function and the traditional iteration construct to loop through the
offered alternatives [32, Appendix, Sect.3.1]. For alternative internal actions a
structured split-join mechanism is used which allows the modeler to have the se-
lection simply as non-deterministic choice or to condition the choice by static or
dynamic possibly data-related criteria (ibid., Sect.4). Further modular composi-
tion constructs include the rigorously defined use of macros, of a normalization to
interaction views of SBDs and support for process hierarchies (networks) (ibid.,
Sect.5).

Notably the model itself which defines the semantics of these features is
formulated in a modular way using stepwise ASM refinement (ibid.).

Last but not least S-BPM has a Practical Foundation via the accurate defi-
nition of its semantics using the language of ASMs—a mathematically precise,
wide-spectrum action description language which uses rules of the the same form
as guarded basic SBD actions (see Sect. 2.1) and thus is familiar to all BP stake-
holders.
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In C. Beierle and L. Plümer, editors, Logic Programming: Formal Methods and
Practical Applications, volume 11 of Studies in Computer Science and Artificial
Intelligence, chapter 2, pages 20–90. North-Holland, 1995.

26. E. Börger and R. F. Stärk. Abstract State Machines. A Method for High-Level
System Design and Analysis. Springer, 2003.

27. B. Delaware, W. Cook, and D. Batory. Product lines of theorems. In Proc.OOPSLA
2011, Portland, October 2011.

28. P. J. Denning and C. Martell. Great principles of computing.
http://cs.gmu.edu/cne/pjd/GP/GP-site/welcome.html (consulted July 26,
2011), 2007.

29. R. Farahbod et al. The CoreASM Project. http://www.coreasm.org.
30. A. Fleischmann. Distributed Systems: Software Design and Implementation.

Springer-Verlag, 1994.
31. A. Fleischmann. Sbpm2NatLang converter. e-mail of September 8 to Egon Börger,

2011.
32. A. Fleischmann, W. Schmidt, C. Stary, S. Obermeier, and E. Börger. Subjektorien-

tiertes Prozessmanagement. Hanser-Verlag, München, 2011. See [63] for a correct
version of the appendix.

33. A. Fleischmann and C. Stary. Whom to talk to? A stakeholder perspective on
business process development. Universal Access in the Information Society, pages
1–26, June 2011. DOI 10.1007/s10209-011-0236-x.

34. M. Frappier and H. Habrias, editors. Software Specification Methods: An Overview
Using a Case Study. HERMES Sc. Publ., Paris, 2006.

35. N. G. Fruja. Type Safety of C# and .NET CLR. PhD thesis, ETH Zürich, 2006.
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