
On defining the behavior of OR-joins in business process
models

Egon Börger1 ?, Ove Sörensen2, and Bernhard Thalheim2

1 Dipartimento di Informatica, Università di Pisa, I-56125 Pisa, Italy, boerger@di.unipi.it
2 Chair for Information Systems Engineering, Department of Computer Science, University of Kiel

D-24098 Kiel, {ove, thalheim}@is.informatik.uni-kiel.de

Abstract. The recent literature on business process modeling notations contains numerous
contributions to the so-called OR-join (or inclusive merge gateway) problem. We analyze the
problem and present an approach to solve it without compromising any of the two majors
concerns that are involved: a) a clear semantical definition (design), which also clarifies
what has to be implemented to achieve the intended generality of the construct, and b)
a comprehensive set of static and dynamic analysis methods (verification of properties of
business process models using the construct). We provide a conceptually simple scheme for
dynamic OR-join synchronization policies, which can be implemented with low run-time
overhead and allow the practitioner to effectively link the design of business process models
with OR-joins to an analysis of the intended model properties. The definitions have been
experimentally validated by a graph-based simulator.3

1 Introduction

A major problem for reliable software-based system development is to guarantee that the system
does what it is supposed to do. This holds also for computer-assisted enterprise information and
management systems, where IT technologists (system designers, software engineers and program-
mers) have to understand and realize the system behaviour that is expected by business process
experts. A technical, but crucial instance of this general problem concerns the concept of OR-join.
This concept is present in various workflow and business process modeling languages and seems
to be used with different understandings in different commercial workflow systems or even worse,
for some workflow languages, differently by users of the language and by the implementation. Our
goal in this paper is to clarify the issues involved and to contribute to solving the problem by an
accurate definition that is easy to understand, can be experimentally validated, is not biased by the
underlying framework used for the definition, puts the various approaches in the literature into a
clear perspective and provides a rigorous basis for implementing various verifiable synchronization
policies for business process models with OR-joins.

The OR-join problem has various aspects which have been dealt with in numerous papers. First
of all it is a problem of semantics, in the sense that in some languages the behavioral meaning of
the OR-join is not defined in a precise enough way to exclude undesired ambiguity. Two examples
of such languages are the language of event process chains (EPCs) [1] (see for example the analysis
in [26,19]) and the current BPMN standard [8] (see for example the analysis in [9,12]). Further-
more, even if the semantics of the OR-join is mathematically well-defined, this definition may be
regarded as too complicated to support practitioners in their design work where they need a reli-
able understanding of the expected behavior of the business process models they are defining; see
for example the view expressed in [15] for the fixpoint-semantics-based definition of the semantics
of EPCs in [17,18].

The OR-join problem appears in the literature also as a verification method problem in the sense
that even where a behavioral definition is given, the computational cost of mechanically verifying
? The work of the first author is supported by a Research Award from the Alexander von Humboldt

Foundation (Humboldt Forschungspreis), hosted by the Chair for Information Systems Engineering of
the third author at the Computer Science Department of the University of Kiel/Germany.

3 The simulator has been developed by the second author and is part of his Diplom Thesis [24].

some desired properties of models based upon that definition of OR-joins may be deemed to be
too expensive, so that restrictions are imposed on the allowed process models. See for example the
OR-join treatment in the YAWL language [27], which for reasons of complexity does not consider
nested OR-joins. In [32], which seems to be a reelaboration of [31], two “problems with OR-join
semantics as defined in [27]”(quote of the title of [32, Sect.2.2]) are identified and the restriction is
eliminated, based upon the work in [30] (see also [33]). However, the general solution in [30] comes
with a computational complexity that is considered as too high by the authors of [10] and [12,
Sect.4.5.3] and motivated the proposal there of a less expensive algorithm for a more restricted
interpretation of OR-joins.

Complexity concerns seem to have motivated also the proposal in [13,14,15] to use an exper-
imentally justified recursive set of rules for defining a comprehensive class of ‘structured’ models
without OR-join problems.

What one can observe here are efforts to trade the generality of a semantically well-defined
OR-join concept for the complexity of checking properties of models containing such OR-joins,
notably the enabledness property for OR-joins. The perspective of such a dichotomy may also have
influenced the fact that many commercial workflow tools simply impose syntactic restrictions on
the OR-join, as came out of the study [22].

However, from the conceptual point of view the situation is not as bad as it appears from the
discussion in the literature, which is largely influenced by a bias towards some conventional but
unnecessarily restrictive ways of defining and verifying workflow features, in particular Petri nets
and various ad hoc extensions. Concerning verification it should be remembered that as in tradi-
tional engineering disciplines, also in software engineering verification is not limited to mechanical
(whether static or runtime) property checks. Professional reasoning to provide quality assurance in
an engineering discipline typically exploits the full range of available rigorous scientific methods,
which goes from well-founded testing of characteristic patterns through traditional mathematical
reasoning to interactive computer-assisted or—in the limit case—even fully automated proofs or
exhaustive model checking. This holds also for correctness considerations for business process mod-
els, which ultimately need to be deeply rooted in the application domain knowledge one can hardly
expect to be ever completely automated and analyzable by static analysis tools (see the notion of
ground model in [4]).

Concerning definition methods, it should be remarked that the need for application domain
based reasoning goes together with the need NOT to restrict the range of descriptive means by an
a priori imposed formal language, as too often has happend in computer science theory and seems
to happen again in the workflow and business process modeling domain (as a recent example
see the fight for Petri nets versus Pi-calculus [25], a representative for many such detrimental
battles that happened in the so called Formal Methods domain of computer science). If one wants
to be successful with high-level models, from where code can be generated using sophisticated
application-independent compilation techniques, one has to avoid the straitjacket of specific formal
languages as long as the main concerns are related to application domain problems and not to their
formal (let alone software) representation. This applies in particular to the OR-join construct as
it is used in most business process languages.

The main result of this paper is a simple, precise and unbiased definition of the OR-join scheme.
It captures the originally intended generality in a direct way and clearly shows the problems this
generality brings for the concept itself as well as for its implementations. The definition uses
only general, process-related and accurately definable notions every business analyst and system
designer understands so that it can serve as a basis for communiction when it comes to decide upon
appropriate instances of the general definition. The general purpose algorithmic language we use
allows one also to use any rigorous method whatsoever to establish specific properties of interest
for such instances. In addition we show that by our definition the various OR-join approaches in
the literature can be put into a uniform perspective. Since in doing this we will refer to most of
the relevant literature, there will be no specific Related Work section in this paper.4

4 Just before submitting the final version of this paper to the editor we found a paper [29] which also
proposes to use run-time information for defining the precise behavior of OR-joins. The authors propose

2

Our definition is based upon a framework developed recently in [7], motivated by the goal to
define a complete rigorous semantical model for the current BPMN standard [8] and its forthcoming
extension 2.0.5 We start here from scratch and recapitulate a few of the definitions from [7] that
are useful for the discussion of the OR-join construct. To graphically represent our examples we
use the BPMN notation without further explanation.

In Sect.2 we review the intuitive understanding of the OR-join as it appears from related
investigations in the literature and explain what is called the OR-join problem. In Sect. 3 we
sketch the framework that is used in Sect. 4 to define a precise semantics for the general intuitive
understanding of the OR-join. In [24] this definition is extended to the case where mutiple tokens
may occur in a cyclic diagram.

To introduce the OR-join model, we will use the technique of stepwise ASM refinement [3].
Adopting a token-based view of workflow semantics, we start out with the base case of acyclic
workflows where joins can determine their enabledness locally (this includes XOR- and AND-joins).
Next, we add OR-joins to the – still cycle-free – model where the non-local information about the
state of the entire workflow that the intuitive OR-joins semantics requires is provided by introducing
a special type of synchronization token that firing flow objects place in their downstream.

As next refinement step we consider cyclic workflows. They are BPMN standard conform, but
their semantics is underspecified. This underspecification is due to the underlying synchronization
problem. One has to expand on the BPMN standard if one wants to account for this. As a first step
we desynchronize cyclic control flow by associating a token set to each cyclic token. This approach
is extended in [24] to the case where multiple tokens may occur within a cycle. Essentially two new
types of flow objects are added to describe barrier-like behaviour, used to create cleanly nested
structures inside a workflow that synchronize control flow between multiple cycle-iterations and
can be proved to be free from deadlocks. For the experimental validation of these extensions and
of the definitions in this paper the second author has developed a simulator that can visualize the
execution of BPMN workflows [24].

The reader who is acquainted with the problem may go immediately to Sect. 4 and consult
Sect. 3 only should the need be felt.

2 Analysis of OR-Join Requirements

In this section we try to review the intuitions behind the OR-join concept. The literature offers a
variety of interpretations of the OR-join as a control flow construct where different computation
paths are synchronized in a way that depends on runtime conditions and ranges from the XOR
(select exclusively exactly one) to the AND-join (synchronize all) behavior.

To start we quote two typical descriptions. The first one is the BPMN standard document
description, which uses the naming Inclusive Gateway used as a Merge:

If there are multiple incoming Sequence Flow, one or more of them will be used to continue
the flow of the Process. That is, Process flow SHALL continue when the signals (tokens)
arrive from all of the incoming Sequence Flow that are expecting a signal based on the
upstream structure of the Process . . . Some of the incoming Sequence Flow will not have
signals and the pattern of which Sequence Flow will have signals may change for different
instantiations of the Process. [8, p.81]

The standard document leaves it open how to determine when an incoming sequence flow
(read: an arc leading to the OR-join node) is “expecting a signal based on the upstream structure

for this purpose a global history log on all consumed or produced tokens. Our model works with a less
expensive and simpler run-time information structure, which is tailored to the synchronization problem
of OR-joins. In [29] only rather special cyclic workflow diagrams can be proved to be without deadlocks.

5 The attribute business happens to be part of the established nomenclature, although the processes
described by the BPMN as well as the OR-join problem are of general nature and not restricted to
modeling business applications.

3

of the Process”, except for the indication that this is a process instance feature and therefore data-
dependent and runtime-defined. Also the notion of upstream structure is not further described
(except for calling loops downstream activities, see below).

In [20] one can find an analysis, carried out in terms of EPCs, of some natural definitions
for which paths an OR-join should wait for to complete their computation. In the presence of a
parenthesis structure, which links the incoming arcs of the OR-join one-to-one to the outgoing arcs
of a preceding OR-split, it appears to be natural to require the OR-join to synchronize the threads
on all and only those paths that have been activated at that OR-split (see the Occam-like OR-join
semantics in Sect. 4.2.). If there is no such underlying syntactical graph structure, one could ask
the OR-join node to take a special action for one completing thread (e.g. the first one if there is
any) and then wait for the others to complete6, or to react upon each path completion (en bloc
for multiple simultaneous completions or choosing among them one after the other, as happens in
the Multi-Merge pattern interpretation in [22]), or in the limit case to behave as the AND-join.

A similar (possibly intended) specification hole is found in the description of the workflow
pattern analogue of the OR-join in [28], called there synchronizing merge:

A point in the workflow process where multiple paths converge into one single thread. If
more than one path is taken, synchronization of the active threads needs to take place. If
only one path is taken, the alternative branches should reconverge without synchronization.
It is an assumption of this pattern that a branch that has already been activated, cannot
be activated again while the merge is still waiting for other branches to complete.

Nothing is said to explain when a “path is taken” or a “branch has been activated” except for the
further clarification that there is a notion of a round in which other (all?) branches are expected
“to complete” (how? normally? abruptly due to some failure?). For details see the critical analysis
in [5].

The common feature of the above two and other descriptions in the literature seems to be that
some synchronization is to be performed7 and that this should happen only for currently active
threads. The debated question is how to determine whether a thread is (potentially?) active. In [32,
Sect.2.1] the attempt is made to answer this question on the basis of the following more detailed
definition of what there is called the informal semantics of an OR-join.

An OR-join task is enabled at a marking iff at least one of its input conditions is marked and
it is not possible to reach a marking that still marks all currently marked input conditions
(possibly with fewer tokens) and at least one that is currently unmarked. If it is possible
to place tokens in the unmarked input conditions of an OR-join in the markings reachable
from the current marking, then the OR-join task should not be enabled and wait until
either more input conditions are marked or until it is no longer posible to mark more input
conditions.

This description reveals what some authors call the non-local nature of the OR-join semantics.
More accurately one should speak about the non-local character of means needed to determine,
for this interpretation of the construct, whether or not an OR-join is enabled: it does not suffice
to check for tokens in its incoming (or somehow nearby) arcs, as done to establish enabledness of
transitions in Petri net and coloured Petri net workflow descriptions, but one has to evaluate some
global markings, namely all those reachable from the current marking, in order to check whether
some of them enable an additional incoming arc of the OR-join without disabling any of the ones
already enabled in the current marking. Since it can turn out to be difficult to implement efficient
algorithms for such an evaluation, some workflow systems and some authors prefer to restrict the
semantics of OR-joins in order to obtain simple means of checking the enabledness condition.
6 This is a form of the so-called Discriminator pattern in [28].
7 Therefore the naming OR-join is rather misleading: synchronization has much more to do with AND

(logical conjunction) than with OR (logical disjunction). The fact that a certain runtime variation is
involved in establishing which threads are to be synchronized is closer to choice and non-determinism
than to disjunction. In this sense synchronizing merge or simply synchronization are more appropriate
names.

4

We advocate to separate the two different concerns involved. We first provide in Sect. 4 a simple
precise definition of the desired intuitive meaning of the OR-join, without making any restrictive
assumptions and without inventing for the purpose yet another workflow language [27,35,23] (how
often a new one [21]?) or extension of Petri nets [32,33,34]. Our definition reflects the global features
of the intended synchronization in a direct way, avoiding the well-known problems, discussed for
example in [12], one has with Petri net based formulations of the semantics of business process
models. These problems are due to the local nature of what a Petri net transition can do and
have motivated various extensions of Petri nets and related verification techniques to cope with
OR-join and cancellation features in business process models, see for example [35,33,34]. Only
after a clear definition one should use whatever scientific or mathematical means are available to
decide upon and to analyze instances of the general definition and to establish or check properties
of models with OR-joins. Obviously this includes, but is not restricted to, mechanical checks of
the enabledness condition by existing tool sets. We believe that the need to solve the challenging
correctness problem when modeling business processes makes it compulsory to have an easy to
understand definition of the OR-join behavior and its properties, even more if it is felt that tricky
and difficult algorithms to compute such properties are unavoidable.

3 The Modeling Framework

In this section we borrow from [7] that part of the business process modeling framework that
allows one to capture the intuition of the OR-join by a concise and clear definition. For the sake of
definiteness we use for the discussion of workflow constructs a BPMN-based terminology, without
making conceptually or methodologically restricted assumptions so that our results can be applied
to other business process model notations as well.

3.1 Abstract State Machines

We use for our descriptions Abstract State Machines(ASMs), an extension of Finite State Machines
by a concept of most general state and of synchronous parallelism for state transformations. Per
step an arbitrary number of simultaneous updates is allowed, which are described by finitely many
rules that at each ‘step’ are executed simultaneously (synchronous parallelism). The form of the
rules is as follows:

if cond then Updates

where Updates stands for a set of function updates f (t1, . . . , fn) := t built from expressions ti , t
and an n-ary function symbol f . Equivalently one can use the graphical or textual FSM notation
depicted in Fig. 1, where i , j1, . . . , jn are internal (control) states as known from FSMs.

n

cond 1

cond nrule

1rule

i

j

jn

1

if ctl state = i then
if cond1 then

rule1

ctl state := j1
· · ·

if condn then
rulen

ctl state := jn

Fig. 1. Viewing (control state) ASM rules as generalized FSM instructions

Since the mathematical definition of the semantics of ASMs supports their intuitive understand-
ing as pseudo-code working over abstract data types, we abstain from repeating the definition here

5

and refer the interested reader for this to the AsmBook [6]. To define the various interpretations of
the OR-join as different instantiations of one abstract model we make use of the ASM refinement
method defined in [3].

3.2 Business Process Diagrams

As common in the field, we mathematically represent any business process as a graph. The nodes
represent the workflow objects, where activities are performed depending on a) resources being
available, b) data or control conditions to be true and c) events to happen, as described by transition
rules associated to nodes. These rules define the meaning of the corresponding workflow constructs.
The arcs define the graph traversal, i.e. the order in which the workflow objects are visited for the
execution of the associated rules.

We freely use the usual graph-theoretic concepts, for example source(arc), target(arc) for source
and target node of an arc, pred(node) for the set of source nodes of arcs that have the given node
as target node, inArc(node) for the set of arcs with node as target node, similarly succ(node) for
the set of target nodes of arcs that have the given node as source node, outArc(node) for the set
of arcs with node as source node, etc.

All the workflow transition rules, associated to nodes to describe the meaning of the workflow
construct associated to this node, take the following form (usually instantiated by additional pa-
rameters). They state upon which events and under which further conditions on the control flow,
the underlying data and the availability of resources, the rule can fire to perform specific operations
on the underlying data (‘how to change the internal state’) and control (‘where to proceed’), to
possibly trigger new events (besides consuming the triggering ones) and to operate on the resource
space to take possession of the needed (or to release not any more needed) resources.

WorkflowTransition(node) =
if EventCond(node) and CtlCond(node)

and DataCond(node) and ResourceCond(node) then
DataOp(node)
CtlOp(node)
EventOp(node)
ResourceOp(node)

A workflow or business process modeling language interpreter is a set of such rules, covering all
language constructs, together with a scheduler to choose at each moment a node where a rule can
be fired, which is the case when its guard is true in the current state. In this way one can define
for example the semantics of the BPMN standard by an interpreter with rules (more precisely rule
schemes) for each BPMN flow object (activities, events, gateways) [7]. For the discussion of the
OR-join problem we can focus the discussion on gateways only (see Sect. 3.4). Furthermore, for
this discussion events and resources play no role and therefore will not be mentioned any more.

3.3 Token-Based Sequence Flow Interpretation

Although the BPMN standard document declares to use the token-based interpretation of control
flow only for illustrative purposes [8, p.35], for the sake of definiteness we represent it math-
ematically by associating tokens—elements of a set Token—to arcs, using a dynamic function
token(arc).8 A token typically includes information on (the processID of) the process instance to
which it belongs. Typically token(arc) denotes a multiset of tokens currently residing on arc.

token : Arc → Multiset(Token)

8 We deliberately avoid introducing yet another category of graph items, like the so-called places in Petri
nets, whose only role would be to hold these tokens.

6

In the token based approach to control, for a rule at a target node of incoming arcs to become
fireable some (maybe all) arcs must be enabled. This condition is typically required to be an atomic
quantity formula stating that the number of tokens currently associated to in (read: the cardinality
of token(in), denoted | token(in) |) is at least the input quantity inQty(in) required at this arc.

Enabled(in) = (| token(in) |≥ inQty(in))

Correspondingly the control operation CtlOp of a workflow usually consists of two parts,
one describing how many tokens are Consumed on which incoming arcs and one describing which
tokens are Produced on which outgoing arcs in a quantity as indicated by a function outQty(out).
We use macros to describe consuming resp. producing tokens on a given arc and then generalize
them to produce or consume all elements of a given set. We also define the most frequent case where
tokens are simply Passed from an incoming to an outgoing arc. outQty(out) denotes the number
of tokens one wants to be produced on arc out . In many applications inQty(in), outQty(out) are
assumed to take the default value 1.

Consume(t , in) = Delete(t , inQty(in), token(in))
Produce(t , out) = Insert(t , outQty(out), token(out))
Pass(t , in, out) =

Delete(t , inQty(in), token(in))
Insert(t , outQty(out), token(out))

The macro is easily generalized to sets of pairs of tokens and arcs:

ConsumeAll(X) = forall x ∈ X Consume(x)
ProduceAll(Y) = forall y ∈ Y Produce(y)

Remark This use of macros allows one to easily adapt the abstract token model to its exten-
sions, like the ones we use in Sect. 4, and to different instantiations by a concrete token model. For
example, if a token is simply defined as a pair (proc(t), pos(t)) of the process instance it belongs to
and the arc where it is positioned, then it suffices to refine the macro for Passing a token t from
in to out by updating the second token component, namely from its current position value in to
its new value out :

Pass(in, out , t) = (pos(t) := out)

The use of abstract Delete and Insert operations instead of directly updating token(a) serves to
make the macros usable in a concurrent context, where multiple agents may want to simultaneously
operate on the tokens on an arc. Note that it is also consistent with the special case that in a
transition with both Delete(in, t) and Insert(out , t) one may have in = out .

3.4 Gateway Nodes

Gateways are used to describe the splitting (divergence) or merging (convergence) of control flow
in the sense that tokens can ‘be merged together on input and/or split apart on output’ [8, p.68].
Both splitting and merging come usually in two forms, which are related to the propositional
operators and and or, namely a) to create parallel or synchronize multiple actions and b) to select
(one or more) among some alternative actions. For the sake of a clear separation of the different
merge/split features and without loss of generality, we start from the BPMN best practice normal
form assumption whereby each gateway performs only one of the two possible functions, either
divergence or convergence of multiple control flow. It is easy to show that each BPMN process can
be transformed into a semantically equivalent BPMN Best Practice Normal Form.

BPMN Best Practice Normal Form. [8, p.69] Only gateways have multiple incoming or
multiple outgoing arcs and furthermore they never have both multiple incoming and multiple
outgoing arcs.

7

For the sake of illustration we formulate and explain now the two AND gateway node rule
specializations of the general WorkflowTransition rule scheme, to prepare the reader for the
discussion of the OR-join gateway rule in the next section. Since the focus of the OR-join analysis is
on token-based control, we skip here and for the AND-join below the formulation of the not control
related conditions and operations, like the DataOp(node), which in BPMN is an AssignOperation
performed at each outgoing arc.

To fire an AND-split node requires—besides the node-specific conditions on data, events and
resources—that Enabled holds for its unique incoming arc in. Upon firing, the rule in particular
Consumes the prescribed number of tokens and Produces on each of the finitely many outgo-
ing arcs (elements of outArc(node)) the prescribed number of tokens. These outgoing tokens are
typically viewed as triggering parallel subprocesses, which may be required to be synchronized
later within the process where they have been generated. For this reason, tokens produced at split
gateways are often assumed to carry some information about the origin and maybe also about their
brothers and sisters with whose descendants they may have to be synchronized at a later stage.
This is the case in BPMN where tokens serve the purpose of “dividing of the Token for parallel
processing within a single Process instance” [8, p.35]. We describe this by an abstract function
andSplitToken whose values may depend on the incoming token and the outgoing arc. We will use
this function below for the discussion of the OR-join gateway rule, where for the sake of definiteness
we represent the function concretely as follows, concatenating the incoming token with the chosen
arc to record the information about the path the token went through at this split node:

andSplitToken(t , o) = t .o

We also take here the view of BPMN where the prescribed quantity for consuming or producing
tokens on incoming respectively outgoing arcs of AND and OR gateways is 1. To express that upon
firing the AndSplitGateTransition one has to select on the unique incoming arc in one of its
token(in) to be Consumed we use a function firingToken({in}). For later reference we use this
function as defined on non-empty subsets of inArc(node).

AndSplitGateTransition(node) = WorkflowTransition(node)
where

let {in} = inArc(node)
CtlCond(node) = Enabled(in)
CtlOp(node) =

let t = firingToken({in})
Consume(t , in)
ProduceAll({(andSplitToken(t , o), o) | o ∈ outArc(node)})

Frequently splitting a computation into finitely many branches comes with a later join of
these branches (or even more branches that may be due to further intermediate splits). To fire an
AND-join node requires—besides the node-specific conditions on data, events and resources—that
Enabled holds for each of its finitely many incoming arcs in ∈ inArc(node). Upon firing, the gateway
Consumes the prescribed number (here 1) of the tokens on every incoming arc and Produces on
its unique outgoing arc out the prescribed number (here 1) of tokens. Since a join node typically
has a synchronization purpose, the relation between the incoming token and the outgoing token
often reflects this feature. We formulate this dependence by a function andSplitToken whose values
depend on the incoming tokens. The function firingToken chooses here a set of tokens, containing
one token from token(in) for each incoming arc in.

AndJoinGateTransition(node) = WorkflowTransition(node)
where

CtlCond(node) = forall in ∈ inArc(node) Enabled(in)
CtlOp(node) =

let {in1, . . . , inn} = inArc(node)
let {t1, . . . , tn} = firingToken(inArc(node))

8

ConsumeAll({(ti , ini)) | 1 ≤ i ≤ n})
Produce(andJoinToken({t1, . . . , tn}), out)

The reader will have noticed that we did not specify the firing tokens by let ti = firingToken(ini),
becuase tis would mean that one can select the tokens on the incoming arcs independently from
each other. Instead the function firingToken typically will select “matching tokens” with respect
to a to be defined matching condition.

4 OR-Join Definition

In this section we use the framework explained in Sect. 3 to define a precise semantics for the general
supposedly intuitive understanding of the OR-join. We first define in Sect. 4.1 the OR-split gateway
rule along the lines of the AND-split gateway rule, but adding a mechanism to describe how to
choose among alternative subsets of outgoing arcs (instead of selecting the entire set outArc(node)).
We then adapt this selection mechanism to describe the synchronization features of the OR-join
rule. To separate two different concerns related to the OR-join problem we split the discussion into
two parts, one for acyclic graphs (Sect. 4.2) and one for graphs with cycles (Sect. 4.3).

4.1 OR-Split Gateway Rule

An OR-split is similar to the AND-split, but instead of producing tokens on every outgoing arc,
this may happen only on a non-empty subset of them. The chosen alternative depends on certain
conditions OrSplitCond(o) to be satisfied that are associated to outgoing arcs o. For example in
the BPMN standard, OrSplitCond(o) is an associated GateCond(o) or a GateEvent(o). We reflect
this choice among the various alternatives by an abstract function selectProduce(node), which is
constrained to select at each invocation a non-empty subset of arcs outgoing node that satisfy the
OrSplitCond ition. The BPMN standard document for example imposes default gates to guarantee
for a valid process that every call of this function yields a non empty set. A special version of
this interpretation of OR-split nodes is to additionally require that with each selection a singleton
set (exclusive choice) is determined, whether based upon an event or a data condition, e.g. by
trying the alternatives out in an a priori fixed manner (in BPMN called data-based or event-based
XOR-split). However, by the nature of their role these selection functions often are not static
(compile-time definable), but dynamic functions, whose values depend on the runtime state. We
will exploit this in the next section for the description of the OR-join behavior.

Constraints for selectProduce

selectProduce(node) 6= ∅
selectProduce(node) ⊆ {out ∈ outArc(node) | OrSplitCond(out)}9

This leads to the following instantiation of the WorkflowTransition(node) scheme for OR-
split gateway nodes. The involvement of process data or gate events for the decision upon the
alternatives is formalized by letting DataCond and EventCond in the rule guard and their related
operations in the rule body depend on the parameter O for the chosen set of alternatives. As in the
AND-split rule we use a function, here orSplitToken, to express the type of tokens to be produced
on outgoing arcs. in denotes the unique incoming arc.

OrSplitGateTransition(node) = WorkflowTransition(node)
where

let {in} = inArc(node)
let O = selectProduce(node) in

9 Instead of requiring this constraint once and for all for each such selection function, one could
include the condition as part of DataCond(node,O) and EventCond(node,O) in the guard of
OrSplitGateTransition.

9

CtlCond(node) = Enabled(in)
CtlOp(node,O) =

let t = firingToken({in})
Consume(t , in)
ProduceAll({(orSplitToken(t , o), o) | o ∈ O})

Since AndSplitGateTransition is an instance of OrSplitGateTransition, namely with
the selection function required to yield the entire set outArc(node), we speak in the following only
of split nodes when we mean an AND split or OR split gateway at a node; similarly for join nodes
with correspondingly specialized synchronization condition.

4.2 OR-Join for Cycle-Free Models

In this section the graphs are assumed to be acyclic. For simplicity of exposition but without
loss of generality we add here and in the next section to the BPMN Best Practice Normal Form
assumption the Unique Start Node Assumption that each graph has exactly one start node.10

Thus every node in the graph is connected to the start node by a path.
Sometimes it is claimed that “the non-locality of OR-joins can even raise problems to the effect

that it is impossible to define a formal semantics . . . that is fully compliant with the informal
semantics” [15, p.6], but as the authors of [10] point out, the problem is not in the definition
of what they call the OR-join firing rule, but in a) the definition of when this rule should be
considered as enabled and b) in finding efficient algorithms to compute this enabledness property.
In fact, to describe the OR-join gate transition rule it suffices to adapt to a function selectConsume

the mechanism used above to describe via selectProduce the (decisions taken about the) possible
alternatives when firing an OR-split transition rule.

We explicitly separate the two distinct features one has to consider for the constraints to impose
on such a selectConsume function: the enabledness condition for each selected arc and the synchro-
nization condition that the selected arcs are exactly the ones to synchronize. We represent the undis-
puted convential token constraint as part of the control condition in the OrJoinGateTransition
rule below, namely that the selected arcs are all enabled and that there is at least one enabled arc.
What is disputed in the literature is the synchronization constraint for selectConsume functions.
Before investigating it we formulate the transition rule for an abstract OR-join semantics, which
leaves the various synchronization options open as additional constraints to be put on selectConsume .
Thus selectConsume(node) plays the role of an interface for triggering for a set of to-be-synchronized
incoming arcs the execution of the rule at the given node, with the usual effect.

OrJoinGateTransition(node) = WorkflowTransition(node)
where

let I = selectConsume(node) in
CtlCond(node, I) = (I 6= ∅ and forall i ∈ I Enabled(i))
CtlOp(node, I) =

Produce(orJoinToken(firingToken(I)), out)
ConsumeAll({(ti , ini) | 1 ≤ i ≤ n}) where
{t1, . . . , tn} = firingToken(I)
{in1, . . . , inn} = I

The selectConsume function in the OrJoinGateTransition serves to express on which arcs
one has to wait for tokens of the indicated type from the to-be-synchronized threads [28], in terms
of the BPMN standard document on which arcs we “are expecting a signal based on the upstream
structure of the Process” [8, p.81]. The real question is first of all which synchronization condition

10 To a graph with multiple nodes that can be used for starting a sequence flow, one can add a split gateway
that splits to the multiple start nodes from a new unique starting node. This can be an AND-split or an
OR-split, depending on the interpretation of the use of multiple start nodes. In BPMN it is disjunctive
for start events and conjunctive for implicit start nodes.

10

one wants to impose as constraint on the selectConsume function,11 and then which means we have
to compute values of the function once it is defined (read: the enabledness condition for OR-join
rule instances).

It is surprising to see that the workflow and business process oriented literature on the theme
deals with this issue without ever refering to well known and sophisticated techniques to handle
synchronization problems in distributed computing. This may be another theme where “business
process modelers can learn from programmers” [15].

We try in the following to investigate some variations of the OrJoinGateTransition rule
proposed in the literature to put them into a unified perspective. We hope that by doing this
the sometimes hidden assumptions or motivations of those proposals become clear and can be
evaluated for an informed decision on the intended OR-join synchronization behavior.

“Informal semantics” of OR-join We start with an analysis of the proposal quoted in Sect. 2
for what is called the informal semantics of the OR-join. The literature contains some sophisticated
algorithms to compute the OR-join enabledness property for this interpretation of the OR-join,
see for example [10] which improves on [31]. It comes down to determine (why restricted to static
analysis means?) all computation paths that may lead to enabling additional arcs entering this
node. One can specify this requirement in an accurate way by providing some additional (in an
optimized version not really expensive to produce) runtime information on what is of concern,
namely for which potential synchronization requests a join gateway node may still have to handle
the synchronization.

Since by the unique start node assumption we know that synchronization requests are produced
only at split gateway nodes, we can capture the requirement for the “informal” OR-join semantics
in our model by “informing” all synchronization points, which are reachable from a split node, as
soon as possible about tokens that may have to be synchronized at the join node and to keep this
information up to date during subsequent decision points. The latter may exclude some of the—up
to this decision point possible—paths for a token. This comes up to send an advance notice, for
each token created at a split node, to all reachable join nodes and to maintain this information up
to date until the token arrives at the synchronization point or takes a path from where that point
cannot be reached. This can be described in the model by the following refinement:

add in the split and join node transition rules synchronization analogues to the token production
and consumption submachines in CtlOp,
add in the join node rules the intended synchronization counterpart CtlCondSync(node, I) to
the CtlCond(node, I), checking whether for each synchronization token an enabling token is
present.

Here are the details of this refinement step.

Split gate transition refinement Let node be a split node and out any arc outgoing node
where a token t enabling the unique incoming arc in Produces a token t .out . This starts a
new computation path at out that may need to be synchronized with other computation paths
started simultaneously at this node (or with some final segment of some computation paths
started upstream, i.e. at nodes from where node can be reached12). We place an additional
synchronizer copy of t .out on each reachable arc that enters a join node, more precisely for
each path that starts with out and leads to an arc a entering a join node, we place a syn-
chronizer copy of t .out on a. We denote the set of these join arcs by AllJoinArc(out) and
record the synchronizer token copy placed there in a location syncToken(arc). This allows us

11 Although this question is in no way related to the meaning of OR as expressing some alternatives for
firing the join rule, we keep the name selectConsume , instead of (for example) synchronize, to show that
different interpretations of this function correspond to different choices made for the synchronization
discipline at OR-joins.

12 This complication is needed as long as it is allowed to synchronize computation paths started at different
split nodes, as for example in the BPMN standard [8]. It is avoided for example in Occam-like OR-join
interpretations discussed below.

11

to define analogues Produce(All)Sync of Produce(All) to handle the placement of syn-
chronizer tokens. By calling a corresponding submachine ConsumeSyncAll we also delete
the synchronization copy of the fired t for each o ∈ outArc(node) from each i ∈ AllJoinArc(o).
This reflects that once t is fired, the request for its potential synchronization is replaced by
a request for potential synchronization of the children token Produced by (firing the rule
triggered by) t , and only those. The refined rule is formulated below in Sect. 4.3.
Join gate transition refinement Let node be a join node. CtlOp is refined as for split nodes
by adding the ConsumeSyncAll and ProduceSyncAll submachines, called upon appropri-
ate sets of tokens to a) consume the synchronization tokens that, once the to-be-synchronized
tokens have been fired, have served their purpose, and to b) produce new synchronization to-
kens for the tokens the join produces. In addition we refine the CtlCond(node, I) by adding
the intended synchronization condition CtlCondSync. In the case of the informal OR-join se-
mantics we are formalizing here, CtlCondSync expresses that I is a synchronization family at
node, which means a set of incoming arcs with non-empty syncToken sets such that all other
incoming arcs (i.e. those not in I) have empty syncToken set (read: are arcs where no token is
still announced for synchronization so that no token will arrive any more (from upstream) to
enable such an arc).

The definition of the macros Produce, Consume and their extensions to sets can be copied for
synchronization tokens by replacing token with syncToken.13 The quantity functions inQty , outQty
are skipped because by assumption at split or join rules, on each involved arc only 1 token is
consumed or produced.

ProduceSync(t , in) = Insert(t , syncToken(in))
ConsumeSync(t , in) = Delete(t , syncToken(in))
ProduceSyncAll(Y) = forall y ∈ Y ProduceSync(y)
ConsumeSyncAll(X) = forall x ∈ X ConsumeSync(x)

For split gate transition rules the CtlOp(node) submachine is refined by adding the fol-
lowing two submachines. We use the instance of the functions orSplitToken and andSplitToken
explained already above, namely the trace notation t .out , to record the start at out of a computa-
tion path triggered by t , a path which is (potentially) to be synchronized with other computation
paths started at the same node (or upstream) so that the same t .out is placed into syncToken.

ProduceSyncAll({(t .o, i) | i ∈ AllJoinArc(o), o ∈ O})
ConsumeSyncAll({(t , i) | i ∈ AllJoinArc(o) forsome o ∈ outArc(node)})

For join gate transition rules the CtlOp(node) submachine is refined by a refinement of
the function firingToken(I) and by adding the following two submachines.

ProduceSyncAll({(joinToken(t1, . . . , tn), in) | in ∈ AllJoinArc(out)})
ConsumeSyncAll({(ti , in) | in ∈ AllJoinArc(out), 1 ≤ i ≤ n} ∪ {(ti , ini) | 1 ≤ i ≤ n})

firingToken(I) is refined to select among the enabling and synchronization tokens on arcs in I
a maximal common token prefix t such that the following condition holds:

forall 1 ≤ i ≤ n ti = t .resti ∈ token(ini) ∩ syncToken(ini).

Correspondingly we refine orJoinToken resp. andJoinToken to joinToken(t1, . . . , tn) = t .
The synchronization counterpart CtlCondSync(node, I) added as conjunct to CtlCond(node, I)

expresses that all the selected arcs are involved in a potentially forthcoming synchronization, but
no other incoming arc.

CtlCondSync(node, I) =
forall i ∈ I syncToken(i) 6= ∅ and forall i ∈ inArc(node) \ I syncToken(i) = ∅

13 The reader who knows the ASM refinement method [3] knows that one could avoid this repetition by
parameterizing the macros by a function tok , which can then be instantiated to token or syncToken.
Similarly for an instantiation of FireForAll(rule,Z) for rule = Produce,Consume, etc.

12

O

A1

A2

A3

A4

O

O

O

O

B1

B2

B5

B4

B3
O

O

C4

C3

C2

D1

D3

D2

D4

O

O

O

Split 1

Split 2

Split 3

Split 4

Join 1

Join 2

Join 3

Split 5

Join 4

Join 5

Fig. 2. Acyclic OR splits and joins

Illustration by Example Fig. 2 illustrates the preceding definition. Here are some typical cases.
Case 1: at split1 only one token is produced, a token entering A2. Then the arcs entering join1,

join3, join4, join5 on the path from A1 to End1 and only those receive synchronization tokens,
so that the rule at these join nodes can fire immediately when the token coming from A2 arrives,
since no further synchronization has to take place.

Case 2: at split1 only two tokens are produced, one entering A1 and one entering A2. Subcase
2.i (i=1,2): at split2 only one token is produced, namely to enter Bi . Then synchronization tokens
are produced on the path from A2 to End1 as in case 1. The additional synchronization tokens
produced at join3, join4, join5 on the two paths from A1 to End1 have three effects. They prevent
the rule at join3 from firing until in case 2.1 the decision to produce a token to enter activity B1
(and not B2) has been taken (whereby the synchronization token is deleted from the arc connecting
B2 with join3 as well as from the arcs entering join4 and join5 on the path from B2 to End1),
or in case 2.2 until the token produced at the exit from B2 has arrived to be synchronized with
the token coming from A2. At join5 two potential synchronizations are required when a token
leaves split1 to enter A1, one on the arc exiting D1 and one on the arc exiting join4. The first of
these two synchronization requests holds in case 2.1 until the token produced upon exiting split2
to enter B1 arrives at join5, in case 2.2 until the decision to produce a token to enter activity B2
(and not B1) has been taken. Symmetrically for the second synchronization request. At join4 still
no synchronization is necessary since the synchronization tokens produced there between exiting
split1 and entering join3 are deleted upon entering join3 and by assumption no (synchronization)
token is produced on paths going through A3 or A4.

The other possible cases are analogous.
Remark on cancellation. To include the consideration of cancellation regions [30,33] in a business
process diagram it suffices to update, in addition to a cancellation action that takes place at a node,
syncToken at all synchronization points that are downstream a node in the cancellation region of
node.

Variations of OR-join semantics Neither the literature nor the BPMN standard clarify sat-
isfactorily what are the required properties for the OR-join semantics. This implies that there is
no binding contract against which one could verify the correctness of a rigorous definition for the
semantics of the OR-join. It also implies that it is not clear how to define that a concrete BPMN

13

diagram is actually well-specified. Instead, there are some variations of the OR-join semantics we
are going to shortly characterize here.

In the above description of the “informal semantics” for the OR-join, every potential synchro-
nization token is dismissed from syncToken(node) whenever a runtime choice made in a transition
upstream node exludes a path. Therefore CtlCondSync(node, selectConsume(node)) becomes true
only when all these decisions have been taken. One could replace this cautious approach by a defi-
nition of an eager synchronization model, where at a join node only synchronization requests from
the next preceding split node are taken, as for example in a situation where nested synchronizations
are not needed. Our model can easily be adapted to this case, namely by refining the AllJoinArc
function to a function NextJoinArc(o) that yields the set of all next arcs downstream o that en-
ter a join node. In the same way one can treat other forms of “scope controlled” synchronization
schemes, e.g. the Occam-like interpretation sketched below.

In a similar way one can adapt our model by refining CtlCondSync(node, I) to describe syn-
chronization schemes with timeout conditions or similar runtime features.

The very special interpretation of OR-joins by the Synchronizing Merge pattern [28] needs
neither sychronization tokens nor a CtlCondSync, since every token on any single incoming arc is
enough to fire the rule. To describe this as an instance of the OrJoinGateTransition(node) it
suffices to refine selectConsume(node) to yield singleton sets.

Occam-like OR-join semantics An OR-join semantics in the style of the parallel program-
ming language Occam and its Transputer implementation [11,16] has for each split node a well-
defined synchronization node sync(node) where all the processes triggered by a token t at node
are synchronized before one can proceed with the next task after sync(node), so that in particular
selectConsume(sync(node)) = inArc(sync(node)). This also yields a well-structured discipline for
nested synchronizations, which makes the synchronization method explained for acyclic graphs
work also in the presence of parallel subprocesses created by parallel processes. Since sync(node)
is known at design time, the production of synchronization tokens is reduced to send from a split
node each produced token t .o to its corresponding synchronization arc sync(o); the synchronization
token consumption is reduced to consume at join nodes these tokens once all to be synchronized
processes are ready for their synchronization.

4.3 OR-Join for Models with Cycles

In a non-Occam like OR-join semantics one has the problem to define whether and how the syn-
chronization of “upstream” started processes should be combined with the synchronization of
“downstream” started processes, e.g. iterations, since such cases are not excluded by the informal
and similarly unstructured interpretations of the OR-join semantics. This problem has triggered
various research efforts. It is mentioned also in the BPMN standard document, where however no
indication about the intended solutions is provided:

Incoming Sequence Flow that have a source that is a downstream activity (that is, is part
of a loop) will be treated differently than those that have an upstream source. They will
be considered as part of a different set of Sequence Flow from those Sequence Flow that
have a source that is an upstream activity. [8, p.82]

Thinking of tokens in terms of up-/downstream does not solve the problem of cyclic workflows.
According to the definition of “upstream” in the BPMN standard [8, p.25], a node is “upstream”
regarding some other node, if there is a path in the workflow from the first to the second node.
The BPMN standard gives no definition for “downstream”, but seems to implicitly refer to the
inverse of “upstream” whenever “downstream” is mentioned. Thus in cyclic workflows, two flow
objects can easily be upstream (or downstream) regarding each other in both directions. Therefore
this property cannot be used as a discriminator for synchronization. Instead, we will individually
group each token that can potentially exhibit cyclic behaviour.

Some further structure is needed to appropriately deal with cyclic workflows.

14

Token Sets To speak about the synchronization of tokens in cycles needs the ability to express
that certain tokens belong together, whereas others do not. To express such a concept we introduce
token sets, i.e. sets of tokens which are viewed as a coherent group when a join fires. We will use
the token sets to assign new token sets to tokens at paths that have later to be synchronized and
to distinguish tokens in cycles by appropriately assigned token sets. In this section we prepare the
needed purely syntactical refinement, which is used in the next section to handle the problem of
cycles.

We will make sure that each token t is a member of exactly one token set tokenSet(t). We
assume that upon a start event a token set tokenSet(t) is generated for the start token t . When
new tokens t ′ appear during the computation, their tokenSet(t ′) has to be defined, as happens in
particular in the join rules. In the purely syntactical refinement defined in this section, the new
tokens are declared to belong to the same token set as the firing tokens.

We also have to refine the concept of Enabledness to guarantee that each time only tokens of
one token set ts are considered.

Enabled(in, ts) = (| token(in) ∩ ts |≥ inQty(in))

Similarly we impose on firingToken that each time only tokens belonging to one token set are
selected.

if firingToken(node) = {t1, . . . , tn} then forall 1 ≤ i ≤ n tokenSet(ti) = tokenSet(t1)

This leads to the following refinement of the AND-join rule:

AndJoinGateTransition(node) = WorkflowTransition(node)
where

let {in1, . . . , inn} = inArc(node)
let {t1, . . . , tn} = firingToken(inArc(node))
let ts = tokenSet(t1)

CtlCond(node) = forall in ∈ inArc(node) Enabled(in, ts)
CtlOp(node) =

ConsumeAll({(ti , ini) | 1 ≤ i ≤ n})
Produce(andJoinToken({t1, . . . , tn}), out)
tokenSet(andJoinToken({t1, . . . , tn})) := ts
ConsumeSyncAll({(ti , in)|in ∈ AllJoinArc(out), 1 ≤ i ≤ n} ∪ {(ti , ini) | 1 ≤ i ≤ n})
ProduceSyncAll({(andJoinToken(t1, . . . , tn), in)|in ∈ AllJoinArc(out)})

Synchronization at an OR-join only happens among tokens of the same token set. We therefore
refine the synchronization part of the control condition as follows, where ts is the given token set:

CtlCondSync(node, I , ts) =
forall i ∈ I syncToken(i) ∩ ts 6= ∅ and forall i ∈ inArc(node) \ I syncToken(i) ∩ ts = ∅

With these preparations we can now refine the Or-join to work only on tokens of the token set
underlying the to-be-fired tokens on the selected arcs:

OrJoinGateTransition(node) = WorkflowTransition(node)
where

let I = {in1, . . . , inn} = selectConsume(node)
let {t1, . . . , tn} = firingToken(I)
let ts = tokenSet(t1) in

CtlCond(node) = (I 6= ∅ and forall i ∈ I Enabled(i , ts) and CtlCondSync(node, I , ts))
CtlOp(node) =

Produce(orJoinToken(firingToken(I)), out)
tokenSet(orJoinToken(firingToken(I))) := ts
ConsumeAll({(ti , ini) | 1 ≤ i ≤ n})
ConsumeSyncAll({(ti , in)|in ∈ AllJoinArc(out), 1 ≤ i ≤ n} ∪ {(ti , ini) | 1 ≤ i ≤ n})
ProduceSyncAll({(orJoinToken(t1, . . . , tn), in)|in ∈ AllJoinArc(out)})

15

Obviously this refinement is purely incremental (conservative). Therefore the refined model is
backwards compatible with the previous one. We are now ready to assign new token sets to tokens
at paths that have later to be synchronized and to distinguish tokens in cycles by appropriately
assigned token sets.

Breaking the Cycles We use token sets to create tokens that can be distinguished from other
tokens in a process instance. This happens at the outgoing arcs of splits that are part of a cycle.
We make here the assumption, which is released in the furthermore refined model in [24], that for
each cycle and token set, in each path in that cycle there is at each moment at most one token of
that token set. Here is the definition of cycle we are using, where the upper index + denotes the
transitive closure:

cycle(a) :⇔ source(a) ∈ succ+(target(a))

We modify the OrSplitGateTransition to create on its outgoing cyclic arcs tokens that
belong to a new (completely fresh) token set. The new token sets are assumed to be created by
a function genTokenset , so that for each chosen outgoing arc which is part of a cycle a different
token set is created. As a consequence tokens belonging to such a set cannot be synchronized with
any other token; however, to exit a cycle XOR-joins can be used.

OrSplitGateTransition(node) = WorkflowTransition(node)
where

let {in} = inArc(node)

let O = selectProduce(node)
let t = firingToken({in})

CtlCond(node) = Enabled(in, tokenSet(t))
CtlOp(node,O) =

Consume(t , in)
ConsumeSyncAll({(t , i) | i ∈ AllJoinArc(o) forsome o ∈ outArc(node)})
ProduceSyncAll({(orSplitToken(t , o), i) | i ∈ AllJoinArc(o), o ∈ O})
forall o ∈ O

if cycle(o)
Produce(orSplitToken(t , o), o)
tokenSet(orSplitToken(t , o)) := genTokenset(t , o)

else
Produce(orSplitToken(t , o), o)
tokenSet(orSplitToken(t , o)) := tokenSet(t)

We apply the same changes to the AndSplitGateTransition submachine. Since token sets
can no longer pass splits if the outgoing token might return to the split, AllJoinArc need no longer
refer to all reachable incoming edges of joins. Rather, we need it to refer to those incoming edges of
joins that are reachable without creating a new token set. Because we use AllJoinArc to block joins
with synchronization tokens, this modification translates the independence of cycles that we gained
by creating new token sets at the cyclic edges of splits to the blocking discipline. The definition of
AllJoinArc(o) is refined to refer to exactly those incoming edges of joins in the workflow that are
reachable from target(o) via a path that contains no outgoing cyclic edge of a split.

The refined model is again a conservative extension of the previous one and thus “backwards-
compatible” with the BPMN standard. In fact, in the acyclic case, the token set created by the
start event will be the only one that is active in a process instance. Because all tokens belong to
this token set, the refined ASM behaves just like the one in the last section. If there are cycles,
the behaviour is ‘defined’ in [8] by some examples of cyclic workflows with a suggested mapping
to BPEL.

16

OAssemble Configure Test 1 X

Test 2

O

X

Package

Fig. 3. Production Example from the BPMN Standard

The workflow depicted in Fig. 3 is the most complex cyclic example in the standard. The
reader will identify the split nodes by their unique incoming arc and the join nodes by their unique
outgoing arc. Note that all the splits are XOR-splits, so there is only one token in the cycle at any
given time and the intuitive semantics of the workflow is quite obvious. In our model, tokens can
enter the cycle because the join leading to the “Configure Product” task can only be reached from
outside of the cycle (starting it), or via cyclic edges of splits (from inside the cycle). This means
that the only incoming edge of the initial join that contains a synchronization token corresponding
to a token that just triggered the “Assemble Components” is the one on which the very same token
was placed after it triggered“Assemble Components”. In a similar manner, the first join is enabled
when “Test Level 1” determines that “Test Level 2” need not be conducted and the control flow
loops directly back to that join.

The BPMN standard allows what is named “Infinite Loop” [8, p.200], better called “Closed
Loop”. A closed loop is a cycle without any split. Tokens that enter a closed loop are forever lost
to the rest of the workflow. In our model, this leads to a deadlock, because each token entering the
closed loop will have a synchronization copy of itself placed on the incoming edge of the initial join
that loops back from the cycle. It is hard to imagine a sensible real-world example that contains a
closed loop (the BPMN standard document admits this). Banning closed loops from workflows is
thus not a serious restriction, especially since infinitely looping cycles are still possible as long as
they are not closed.

This model for OR-joins is furthermore refined in [24], extending the refinement technique
introduced here for synchronization tokens, to the more general case where multiple tokens can be
present in a cycle with multiple entry and exits points. The following properties are proved:

Acyclicl workflow diagrams are deadlock free.
Workflow diagrams with cycles, but without sync-splits or sync-joins and without closed loops,
are deadlock free.
A class of stratified workflows is defined which is proved to be free of deadlocks (if there are
nor closed loops).
An algorithm is defined for arbitrary workflow diagrams such that if the algorithm yields output
“deadlock free”, then the workflow has no deadlocks.
Acyclic workflow diagrams terminate and each flow object fires at most once.
Progress in deadlock free cyclic workflow diagrams.

A simulator has been derived from the model presented here, which makes the specification
executable.

17

5 Concluding Remarks

Based upon the definitions provided in this paper for various OR-join semantics, one can apply
any rigorous technique to the validation and verification of business process diagrams containing
OR-joins. For example the simulator developed in [24] for the visualization of BPMN workflows
has been used for the validation of the definitions in this paper; as a verification example one finds
there also a proof that stratified workflows are deadlock free. There is no limitation to tool sets
of specific modeling frameworks. One can use the definitions to design business process diagram
schemes and their instantiations in parallel with proving properties of interest for them, using
the feature-based approach illustrated in [2] and choosing appropriate tools to support theorem
proving, model checking, static analysis etc.

References

1. A.-W.Scheer. Business Process Engineering: Reference Models for Industrial Enterprises. Springer-
Verlag, New York, 1994.

2. D. Batory and E. Börger. Modularizing theorems for software product lines: The Jbook case study.
J. Universal Computer Science, 14(12):2059–2082, 2008. Extended abstract “Coupling Design and
Verification in Software Product Lines” of FoIKS 2008 Keynote in: S. Hartmann and G. Kern-Isberner
(Eds): FoIKS 2008 (Proc. of The Fifth International Symposium on Foundations of Information and
Knowledge Systems), Springer LNCS 4932, p.1–4, 2008.

3. E. Börger. The ASM refinement method. Formal Aspects of Computing, 15:237–257, 2003.
4. E. Börger. Construction and analysis of ground models and their refinements as a foundation for

validating computer based systems. Formal Aspects of Computing, 19:225–241, 2007.
5. E. Börger. Modeling workflow patterns from first principles. In C. Parent, K.-D. Schewe, V. Storey,

and B. Thalheim, editors, Conceptual Modeling–ER 2007, volume 4801 of Lecture Notes in Computer
Science, pages 1–20. Springer-Verlag, 2007.

6. E. Börger and R. F. Stärk. Abstract State Machines. A Method for High-Level System Design and
Analysis. Springer, 2003.

7. E. Börger and B. Thalheim. A method for verifiable and validatable business process modeling. In
E. Börger and A. Cisternino, editors, Advances in Software Engineering, volume 5316 of LNCS, pages
59–115. Springer-Verlag, 2008.

8. BPMI.org. Business Process Modeling Notation Specification. dtc/2006-02-01 at
http://www.omg.org/technology/documents/spec catalog.htm, 2006.

9. R. M. Dijkman, M. Dumas, and C. Ouyang. Formal semantics and automated analysis of BPMN
process models. Technical Report 5969, Queensland University of Technology, Brisbane, January
2007.

10. M. Dumas, A. Grosskopf, T. Hettel, and M. Wynn. Semantics of BPMN process models with or-joins.
In R. Meersman and Z. T. et al., editors, OTM 2007 Part I, volume 4803 of Lecture Notes in Computer
Science, pages 41–58. Springer, 2007.

11. I. Graham. The Transputer Handbook. Prentice-Hall, 1990.
12. A. Grosskopf. xBPMN. Formal control flow specification of a BPMN based process execution language.

Master’s thesis, HPI at Universität Potsdam, July 2007. pages 1-142.
13. V. Gruhn and R. Laue. Einfache EPK-Semantik durch praxistaugliche Stilregeln. In

Geschäftsprozessmanagement mit ereignisgesteuerten Prozessketten, pages 176–189, 2005.
14. V. Gruhn and R. Laue. How style checking can improve business process models. In Proc. 8th

International Conference on Enterprise Information Systems (ICEIS 2006), Paphos (Cyprus), May
2006.

15. V. Gruhn and R. Laue. What business process modelers can learn from programmers. Science of
Computer Programming, 65:4–13, 2007.

16. INMOS. Transputer Implementation of Occam – Communication Process Architecture. Prentice-Hall,
Englewood Cliffs, NJ, 1989.

17. E. Kindler. On the semantics of EPCs: A framework for resolving the vicious circle. In J.Desel,
B. Pernici, and M.Weske, editors, Proceedings of 2nd International Conference on Business Process
Management, volume 3080 of LNCS, pages 82–97. Springer-Verlag, 2004.

18. E. Kindler. On the semantics of EPCs: resolving the vicious circle. Data and Knowledge Engineering,
56:23–40, 2005.

18

19. J. Mendling, M. Moser, G. Neumann, H. Verbeek, B. Dongen, and W. van der Aalst. A quantitative
analysis of faulty EPCs in the SAP reference model. Technical Report BPM-06-08, BPMcenter.org,
2006.

20. P. Rittgen. Modified EPCs and their formal semantics. Technical Report 99/19, Institut für Informa-
tionssyteme, Universität Koblenz-Landau, 1999.

21. N. Russel, A. ter Hofstede, W. M. P. van der Aalst, and D. Edmond. newyAWL: Achieving compre-
hensive patterns support in workflow for the contro-flow, data and resource perspectives. BPM-07-05
at BPMcenter.org, 2007.

22. N. Russel, A. ter Hofstede, W. M. P. van der Aalst, and N. Mulyar. Workflow control-flow patterns:
a revised view. BPM-06-22 at http://is.tm.tue.nl/staff/wvdaalst/BPMcenter/, July 2006.

23. N. Russel, A. H. M. ter Hofstede, and W. M. P. van der Aalst. newYAWL: Specifying a workflow
reference language using coloured Petri nets. Eighth Workshop and Tutorial on Practical Use of
Coloured Petri Nets and the CPN Tools, Aarhus, Denmark,, October 2007.

24. O. Sörensen. Semantics of joins in cyclic BPMN workflows. Master’s thesis, University of Kiel,
forthcoming 2008. www.is.informatik.uni-kiel/˜ thalheim/ASM/MetaProgrammingASM.

25. W. van der Aalst. Pi calculus versus Petri nets: Let us eat “humble pie” rather than inflate the “Pi
hype”. http://is.tm.tue.nl/research/patterns/download/pi-hype.pdf. downloaded February 2008.

26. W. van der Aalst, J. Desel, and E. Kindler. On the semantics of EPCs: A vicious circle. In M. Rump
and F. G. Nüttgens, editors, Proc. of the EPK 2002: Business Process Management using EPCs, pages
71–80, Trier, 2002. Gesellschaft für Informatik.

27. W. van der Aalst and A. ter Hofstede. YAWL: Yet another workflow language. Information Systems,
30(4):245–275, 2005.

28. W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow patterns. Distributed
and Parallel Databases, 14(3):5–51, July 2003.

29. K. van Hee, O. Oanea, A. Serebrenik, N. Sidorova, and M. Voorhoeve. History-based joins: Semantics,
soundness and implementation. In S. Dustdar, J. L. Fiadeiro, and A. Seth, editors, BPM 2006, volume
4102 of LNCS, pages 225–240. Springer-Verlag, 2006.

30. M. Wynn. Semantics, Verification, and Implementation of Workflows with Cancellation Regions and
OR-Joins. PhD thesis, Queensland University of Technology, November 2006.

31. M. Wynn, D. Edmond, W. van der Aalst, and A. ter Hofstede. Achieving a general, formal and
decidable approach to the OR-join in workflow using reset nets. In Application and Theory of Petri
Nets 2005, volume 3536 of LNCS, pages 423–443. Springer, 2005.

32. M. Wynn, W. van der Aalst, A. ter Hofstede, and D. Edmond. Synchronisation and cancellation in
workflows based on reset nets. Technical Report BPM-06-26, BPMcenter.org, 2006.

33. M. Wynn, W. van der Aalst, A. ter Hofstede, and D. Edmond. Verifying workflows with cancellation
regions and OR-joins: an approach based on reset nets and reachability analysis. In S. Dustdar, J. L.
Fiadeiro, and A. P. Seth, editors, Business Process management BPM 2006, volume 4102 of LNCS,
pages 389–394. Springer-Verlag, 2006. Previous versions edited as BPM-06-16 and BPM-06-12.

34. M. Wynn, H. M. W. Verbeek, W. van der Aalst, A. ter Hofstede, and D. Edmond. Reduction rules
for reset workflow nets. Technical Report BPM-06-25, BPMcenter.org, 2006.

35. M. Wynn, H. M. W. Verbeek, W. van der Aalst, A. ter Hofstede, and D. Edmond. Reduction rules
for YAWL workflow nets with cancellation regions and OR-joins. Technical Report BPM-06-24, BPM-
center.org, 2006.

19

