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Abstract. We define an extensible semantical framework for business process modeling
notations. Since our definition starts from scratch, it helps to faithfully link the understanding
of business processes by analysts and operators, on the process design and management side,
by IT technologists and programmers, on the implementation side, and by users, on the
application side. We illustrate the framework by a high-level operational definition of the
semantics of the BPMN standard of OMG. The definition combines the visual appeal of the
graph-based BPMN with the expressive power and simplicity of rule-based modeling and
can be applied as well to other business process modeling notations, e.g. UML 2.0 activity
diagrams.1

1 Introduction

Various standardization efforts have been undertaken to reduce the fragmentation of business
process modeling notations and tools, most notably BPMN [15], UML 2.0 activity diagrams [1] and
BPEL [2]. The main focus has been on rigorously describing the syntactical and graphical elements,
as they are used by business analysts and operators to define and control the business activities
(operations on data) and their (event or process driven and possibly resource dependent) execution
order. Less attention has been paid to an accurate semantical foundation of the underlying concepts,
which captures the interplay between data, event and control features as well as the delicate
aspects of distributed computing of cooperating resource sensitive processes. We define in this
paper a simple framework to describe in application domain terms the precise execution semantics
of business process notations, i.e. the behavior of the described processes.

In the rest of the introduction we describe the specific methodological goals we pursue with this
framework, motivate the chosen case study (BPMN) and justify the adopted method (Abstract
State Machines method).

Methodological Goals. We start from scratch, avoiding every extraneous (read: non business
process specific) technicality of the underlying computational paradigm, to faithfully capture the
understanding of business processes in such a way that it can be shared by the three parties involved
and serve as a solid basis for the communication between them: business analysts and operators,
who work on the business process design and management side, information technology specialists,
who are responsible for a faithful implementation of the designed processes, and users (suppliers
and customers). From the business process management perspective it is of utmost importance
to reach a transparent, easily maintainable business process documentation based upon such a
common understanding (see the investigation reported in [22]).

To make the framework easily extensible and to pave the way for modular and possibly changing
workflow specifications, we adopt a feature-based approach, where the meaning of workflow concepts
1 The work of the first author is supported by a Research Award from the Alexander von Humboldt
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can be defined elementwise, construct by construct. For each investigated control flow construct
we provide a dedicated set of rules, which abstractly describe the operational interpretation of the
construct.

To cope with the distributed and heterogeneous nature of the large variety of cooperating
business processes, it is crucial that the framework supports descriptions that are compatible
with various strategies to implement the described processes on different platforms for parallel
and distributed computing. This requires the underlying model of computation to support both
true concurrency (most general scheduling schemes) and heterogeneous state (most general data
structures covering the different application domain elements). For this reason we formulate our
descriptions in such a way that they achieve two goals:

separate behavior from scheduling issues,
describe behavior directly in business process terms, avoiding any form of encoding. The reason
is that the adopted framework must not force the modeler to consider elements which result
only from the chosen description language and are unrelated to the application problem.
Since most business process models are based on flowcharting techniques, we model business

processes as diagrams (read: graphs) at whose nodes activities are executed and whose arcs are
used to contain and pass the control information, that is information on execution order.2 Thus
the piecemeal definition of the behavior of single workflow constructs can be realized by nodewise
defined interpreter rules, which are naturally separated from the description of the underlying
scheduling scheme. Scheduling together with the underlying control flow determines when a par-
ticular node and rule (or an agent responsible for applying the rule) will be chosen for an execution
step.

Case Study. As a challenging case study we apply the framework to provide a transparent ac-
curate high-level definition of the execution semantics of the current BPMN standard, covering
each of its constructs so that we obtain a complete abstract interpreter for BPMN diagrams (see
Appendix 9). Although the BPMN standard document deals with the semantics of the BPMN
elements by defining “how the graphical elements will interact with each other, including condi-
tional interactions based on attributes that create behavioral variations of the elements” [15, p.2],
this part of the specification leaves numerous questions open. For example, most attributes do
not become visible in the graphical representation, although their values definitely influence the
behavioral meaning of what is graphically displayed. The rules we define for each BPMN construct
make all the attributes explicit which contribute to determining the semantics of the construct.
This needs a framework with a sufficiently rich notion of state to make the needed attribute data
available.3

Due to its natural-language character the BPMN standard document is also not free of a certain
number of ambiguities. We identify such issues and show how they can be handled in the model
we build. A summary of these issues is listed in Sect. 8.1.

For each BPMN construct we describe its behavioral meaning at a high level of abstraction and
piecemeal, by dedicated transition rules. This facilitates a quick and easy reuse of the specifications
when the standard definitions are completed (to fill in missing stipulations) or changed or extended.
We suggest to put this aspect to use to easen the work on the planned extension of BPMN to
BPMN 2.0 and to adapt the descriptions to definitions in other standards. For example, most of
the rules defined in this paper or some simple variations thereof also capture the meaning of the
corresponding concepts in UML 2.0 (see [38] for a concrete comparison based upon the workflow
patterns in [37]). We forsee that our platform and machine independent framework can be adopted
to realize the hope expressed in [37, p.25] : “Since the Activity Diagram and Business Process
Diagram are very similar and are views for the same metamodel, it is possible that they will
converge in the future”.

A revised version BPMN 1.1 [16] of BPMN 1.0 [15] has been published after the bulk of this
work had been done. The changes are minor and do not affect the framework we develop in this
2 This does not prevent the use of dedicated arcs to represent also the data flow and other associations.
3 The lack of state representation in BPMN is identified also in [28] as a deficit of the notation.
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paper. They imply different instantiations of some of the abstractions in our BPMN 1.0 model. We
therefore stick here to a model for [15].

Rational for the Method. We use the Abstract State Machine (ASM) method [12] because
it directly supports the description goals outlined above: to provide for the BPMN standard a
succinct, abstract and operational, easily extendable semantical model for the business process
practitioner, a model he can understand directly and use to reason about his design and to hand
it over to a software engineer as a binding and clear specification for a reliable and justifiably
correct implementation. For the sake of easy understandability we paraphrase the formal ASM
rules by verbal explanations, adopting Knuth’s literate programming [26] idea to the development of
specifications. Asynchronous (also called distributed) ASMs combine most general state (capturing
heterogeneous data structures) with true concurrency, thus avoiding the well-known problems of
Petri nets when it comes to describe complex state or non-local behavior in a distributed context
(see in particular the detailed analysis in [17,36] of the problems with mapping BPMN diagrams
respectively the analogous UML 2.0 activity diagrams to Petri nets).

One of the practical advantages of the ASM method derives from the fact that (asynchronous)
ASMs can be operationally understood as natural extension of (locally synchronous and globally
asynchronous [27]) Finite State Machines (namely FSMs working over abstract data). Therefore the
workflow practitioner, supported by the common graphical design tools for FSM-like notations, can
understand and use ASMs correctly as (concurrent) pseudo-code whenever there is need of an exact
reference model for discussing semantically relevant issues. There is no need for any special training,
besides the professional experience in process-oriented thinking. For the sake of completeness we
nevertheless sketch the basic ASM concepts and our notation in an appendix, see Sect. 10.

Since ASM descriptions support an intuitive operational understanding at both high and lower
levels of abstraction, the software developer can use them to introduce in a rigorously documentable
and checkable way the crucial design decisions when implementing the abstract ASM models.
Technically this is achieved using the ASM refinement concept defined in [8]. One can exploit this
to explain how general BPMN concepts are (intended to be) implemented, e.g. at the BPEL or even
lower level. In this way the ASM method allows one to add semantical precision to the comparison
and evaluation of the capabilities of different tools, as undertaken in terms of natural language
descriptions for a set of workflow patterns proposed for this purpose in [37,33].

The ASM method allows one to view interaction partners as rule executing agents (read: threads
executing specific activities), which are subject to a separately specifiable cooperation discipline in
distributed (asynchronous) runs. This supports a rigorous analysis of scheduling and concurrency
mechanisms, also in connection with concerns about resources and workload balancing, issues which
are crucial for (the implementation of) business processes. In this paper we will deal with multi-
agent aspects only were process interaction plays a role for the behavior of a BPMN process. This
is essentially via communication (messages between pools and events) or shared data, which can be
represented in the ASM framework by monitored or shared locations. Therefore due to the limited
support of interaction patterns in the current BPMN standard,4 the descriptions in this paper
will be mainly in terms of one process instance at a time, how it reacts to messages and events
determined by and to input coming from the environment (read: other participants, also called
agents). The ASM framework supports more general interaction schemes (see for example [4]).

Structure of the paper. In Sect. 2 we define the pattern for describing the semantics of workflow
constructs and instantiate it in Sect. 4- 6 to define the semantics of BPMN gateways, events and
activities, using some auxiliary concepts explained in Sect. 3. Appendix 9 summarizes the resulting
BPMN interpreter. We discuss directly related work in Sect. 7 and suggest in Sect. 8 some further
applications of our framework. Appendix 10 gives some information on the ASM method we use
throughout.
4 The BPMN standard document speaks of “different points of view” of one process by its participants,

whose interactions “are defined as a sequence of activities that represent the message exchange patterns
betweeen the entities involved” [15, p.11].
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Our target reader is either knowledgeable about BPMN and wants to dig into (some of) its
semantical intricacies, or is somebody who with the standard document at his hand tries to get a
firm grasp of the semantical content of the standard definitions. This is not an introduction for a
beginner.

2 The Scheme for Workflow Interpreter Rules

Data and control, the two basic computational elements, are both present in current business
process models, although in the so-called workflow perspective the focus is on control (read: exe-
cution order) structures. In numerous business process notations this focus results in leaving the
underlying data or resource features either completely undefined or only partly or loosely specified,
so that the need is felt, when dealing with real-life business process workflows, to speak besides
control patterns [37,33] separately also about data [31] and resource [32] patterns (see also [40]).
The notion of abstract state coming with ASMs supports to not simply neglect data or resources
when speaking about control, but to tailor their specification to the needed degree of detail, hiding
what is considered as irrelevant at the intended level of abstraction but showing explicitly what is
needed. For example a product catalogue is typically shared by numerous applications; it is used
and manipulated by various processes, which may even be spread within one company over differ-
ent and possibly also geographically separated organizational units with different access rights. In
such a scenario not only the underlying data, but also their distribution and accessability within
a given structure may be of importance and in need to be addressed explicitly by a business pro-
cess description. A similar remark applies to the consideration of resources in a business process
description. However, since in many business process notations and in particular in BPMN the
consideration of resources plays no or only a minor role, we mostly disregard them here, although
the framework we develop allows one to include such features.

Therefore the attention in this paper is largely reduced to control features. Business process
control can be both internal and external, as usual in modern computing. The most common forms
of internal, typically process-defined control encountered in workflows are sequencing, iteration,
subprocess management and exception handling. They are dealt with explicitly in almost all busi-
ness process notations, including BPMN, so that we will describe them in Sect. 3 as instances of
the general workflow rule scheme defined below. In doing this we let the control stand out explicitly
but abstractly, separating it from any form of partly data-related control.5

External control comes through input, e.g. messages, timers, trigger signals or conditions. This is
about so-called monitored locations6, i.e. variables or more generally elements of memory which are
only read (not written) by the receiving agent and whose values are determined by the environment,
which can be viewed as another agent. In business process notations, external control is typically
dealt with by speaking of events, which we therefore incorporate into the workflow scheme below,
together with resource, data and internal control features.

To directly support the widely used flowcharting techniques in dealing with business process
models, we abstractly represent any business process as a graph of nodes connected by arcs, in the
mathematical sense of the term. The nodes represent the workflow objects, where activities are
performed depending on resources being available, data or control conditions to be true and events
to happen, as described by transition rules associated to nodes. These rules define the meaning of
workflow constructs. The arcs support to define the graph traversal, i.e. the order in which the
workflow objects are visited for the execution of the associated rules.

For the description we use without further mentioning the usual graph-theoretic concepts, for
example source(arc), target(arc) for source and target node of an arc, pred(node) for the (possibly

5 Counting the number of enabling tokens or considering tokens of different types in coloured Petri nets are
examples of such mixed concepts of control; they are instantiations of the abstract scheme we formulate
below.

6 Concerning external control, most of what we say about monitored locations also holds for the shared lo-
cations, whose values can be determined by both its agent and an environment. See the ASM terminology
explained in Sect. 10.
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ordered) set of source nodes of arcs that have the given node as target node, inArc(node) for the
set of arcs with node as target node, similarly succ(node) for the (possibly ordered) set of target
nodes of arcs that have the given node as source node, outArc(node) for the set of arcs with node
as source node, etc.

In general, in a given state more than one rule could be executable, even at one node. We call a
node Enabled in a state (not to be confused with the omonymous Enabledness predicate for arcs)
if at least one of its associated rules is Fireable at this node in this state. In many applications the
fireability of a rule by an agent also depends on the (degree of) availability of the needed resources,
an aspect that is included into the scheme we formulate below.

The abstract scheduling mechanism to choose at each moment an enabled node and at the
chosen node a fireable transition can be expressed by two here not furthermore specified selec-
tion functions, say selectNode and selectWorkflowTransition defined over the sets Node of nodes and
WorkflowTransition of business process transition rules. These functions, whose use is supported
by the notion of ASM (see Sect. 10), determine how to choose an enabled node respectively a
fireable workflow transition at such a node for its execution.

WorkflowTransitionInterpreter =
let node = selectNode({n | n ∈ Node and Enabled(n)})
let rule = selectWorkflowTransition({r | r ∈ WorkflowTransition and Fireable(r ,node)})

rule

Thus for every workflow construct associated to a node, its behavioral meaning is expressed
by a guarded transition rule WorkflowTransition(node) ∈ WorkflowTransition of the general
form defined below. Every such rule states upon which events and under which further conditions—
typically on the control flow, the underlying data and the availability of resources—the rule can
fire to execute the following actions:

perform specific operations on the underlying data (‘how to change the internal state’) and
control (‘where to proceed’),
possibly trigger new events (besides consuming the triggering ones),
operate on the resource space to handle (take possession of or release) resources.

In the scheme, the events and conditions in question remain abstract, the same as the opera-
tions that are performed. They can be instantiated by further detailing the guards (expressions)
respectively the submachines for the description of concrete workflow transitions.7

WorkflowTransition(node) =
if EventCond(node) and CtlCond(node)

and DataCond(node) and ResourceCond(node) then
DataOp(node)
CtlOp(node)
EventOp(node)
ResourceOp(node)

WorkflowTransition(node) represents an abstract state machine, in fact a scheme (some-
times also called a pattern) for a set of concrete machines that can be obtained by further specifying
the guards and the submachines. In the next section we illustrate such an instantiation process to
define a high-level BPMN interpreter. For explicit instantiations of the workflow patterns in [37,33]
from a few ASM workflow patterns see [10].

7 We remind the reader that by the synchronous parallelism of single-agent ASMs, in each step all ap-
plicable rules are executed simultaneously, starting from the same state to produce together the next
state.
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3 Framework for BPMN Execution Model

In this section we instantiate WorkflowTransitionInterpreter to a schema for an execution
model for BPMN diagrams. It is based upon the standard for the Business Process Modeling
Notation (BPMN) as defined in [15]. In some cases we first formulate a general understanding
of the concept in question and then explain how it can be adapted to the specific use as defined
in BPMN. This is not to replace the BPMN standard, but only to provide a companion to it
that explains the intended execution semantics in a rigorous high-level way and points out where
attention has to be paid to the possibility of different interpretations of the standard document, due
to ambiguities or underspecification. We mention here only those parts of the standard document
that directly refer to the semantic behavioral interpretation of the constructs under investigation.
In particular, besides what is explained in Sect. 3.1 we use numerous elements of the metamodel
without further explanations, refering for their definition to the standard document.

3.1 Business Process Diagram Elements

We summarize here some of the elements which are common to every business process diagram:
flow objects of various types residing at nodes connected by arcs, tokens used to represent control
flow, a best practice normal form for such diagrams, etc. In a full formalization one would have to
present these elements as part of a BPMN metamodel.

The graph interpretation graph(process) of a BPMN business process diagram specifies the
nodes of this diagram as standing for three types of so-called flow objects, namely activities, events
and gateways. We represent them as elements of three disjoint sets:

Node = Activity ∪ Event ∪Gateway

To define the behavioral meaning of each BPMN flow object one may find in a node, we instan-
tiate in the WorkflowTransition(node) scheme the guard expressions and the submachines
to capture the verbal explanations produced in the standard document for each of the three flow
object types. Each object type needs a specific instantiation type on can roughly describe as follows.

To interpret the elements of the set Event we have to instantiate in particular the event con-
ditions in the guard and the event operations in the body of WorkflowTransition(node).
The instantiation of EventCond(node) interprets the cause (‘trigger’) of an event happening at
the node; the instantiation of EventOp(node) interpretes the result (‘impact’) of the events
(on producing other events and consuming the given ones) at this node.
The interpretation of the elements of the set Gateway involves instantiating the guard expres-
sions CtlCond(node) and the submachines CtlOp(node) of WorkflowTransition(node).
Accompanying instantiations of DataCond(node) and DataOp(node) reflect what is needed
in cases where also state information is involved to determine how the gateway controls the
convergence or divergence of the otherwise sequential control flow.
The interpretation of the elements of Activity involves instantiating the guard expressions
DataCond(node) and the submachines DataOp(node) of WorkflowTransition(node). For
so-called non-atomic activities, which involve subprocesses and possibly iterations over them,
we will see a simultaneous instantiation also of the CtlCond(node) guards and of the subma-
chines CtlOp(node) to determine the next activity.

Thus an instance of WorkflowTransitionInterpreter for BPMN diagrams is defined by
instantiating a) the particular underlying scheduling mechanism (i.e. the functions selectNode and
selectWorkflowTransition) and b) WorkflowTransition(node) for each type of node. The result of
such an instantiation yields a BPMN interpreter pattern, which can be instantiated to an interpreter
for a particular business process diagram by further instantiating the WorkflowTransition(node)
scheme for each concrete node of the diagram. This implies instantiations of the diagram related
abstractions used by WorkflowTransition(node), as for example various attribute values. We
deal with such items below as location instances, the way it is known from the object-oriented
programming paradigm.
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Arcs The arcs as classified into three groups, standing for the sequence flow (control flow), the
message flow (data flow through monitored locations) and the associations.

The sequence flow arcs, indicating the order in which activities are performed in a process,
will be interpreted by instantiating CtlCond(node) in the guard and CtlOp(node) in the body of
BPMN instances of rules of form WorkflowTransition(node).

The message flow arcs define the senders and receivers of messages. In the ASM framework
incoming messages represent the content of dedicated monitored locations. Sender and receiver
are called participants in BPMN, in the ASM framework agents with message writing respectively
reading rights.

Arcs representing associations are used for various purposes which in this paper can be mostly
disregarded (except for their use for compensation discussed below)8.

In the following, unless otherwise stated, by arc we always mean a sequence flow arc and use Arc
to denote the set of these arcs. Many nodes in a BPMN diagram have only (at most) one incoming
and (at most) one outgoing arc (see the BPMN best practice normal form below). In such cases, if
from the context the node in question is clear, we write in resp. out instead of inArc(node) = {in}
resp. outArc(node) = {out}.

3.2 Token-Based Sequence Flow Interpretation

We mathematically represent the token-based BPMN interpretation of control flow [15, p.35] (se-
quence flow in BPMN terminology) by associating tokens—elements of a set Token—to arcs, using
a dynamic function token(arc).9 A token is characterized by the process ID of the process in-
stance pi to which it belongs (via its creation at the start of the process instance) so that one
can distinguish tokens belonging to different instances of one process p. Thus we write tokenpi to
represent the current token marking in the process diagram instance of the process instance pi a
token belongs to, so that tokenpi(arc) denotes the multiset of tokens belonging to process instance
pi and currently residing on arc. Usually we suppress the parameter pi , assuming that it is clear
from the context.10

token : Arc → Multiset(Token)

In the token based approach to control, for a rule at a target node of incoming arcs to become
fireable some (maybe all) arcs must be enabled by tokens being available at the arcs. This condition

8 Association arcs in BPMN may associate semantically irrelevant additional textual or graphical informa-
tion on “non-Flow Objects” to flow objects, for example so-called artifacts that provide non-functional
information and “do not directly affect the execution of the Process” [15, Sect.11.12 p.182]. Association
arcs may also associate processes such as compensation handlers. A typical example is a compensation
intermediate event that “does not have an outgoing Sequence Flow, but instead has an outgoing directed
Association” (ibid. p.133) to the target compensation activity, which is considered as being “outside the
Normal Flow of the Process” (ibid. p.124). Therefore its execution effect can be disregarded for describ-
ing the semantics of BPMN—except the “flow from an Intermediate Event attached to the boundary
of an activity, until the flow merges back into the Normal Flow” (ibid. p.182), which will be discussed
below. Association arcs may also represent the data flow among processes, namely when they are used
to describe conditions or operations on data that are involved in the activity or control flow described
by the underlying flow object, as for example input/output associated to an activity (see Sect. 6). In
the ASM framework these arcs point to monitored resp. derived locations, i.e. locations whose value is
only read but not written resp. defined by a given scheme (see Sect. 10).

9 We deliberately avoid introducing yet another category of graph items, like the so-called places in Petri
nets, whose only role would be to hold these tokens.

10 This treatment is in accordance with the fact that in many applications only one type of unit control
token is considered, as for example in standard Petri nets. In a previous version of this paper we
considered the possibility to parameterize tokens by an additional Type parameter, like the colours
introduced for tokens in coloured Petri nets. However, this leads to add a data structure role to tokens
whose intended BPMN use is to describe only “how Sequence Flow proceeds within a Process” [15,
p.35].
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is usually required to be an atomic quantity formula stating that the number of tokens belonging
to one process instance pi and currently associated to in (read: the cardinality of tokenpi(in),
denoted | tokenpi(in) |) is at least the quantity inQty(in) required for incoming tokens at this
arc.11 A different relation could be required, which would come up to a different specification of
the predicate Enabled .

Enabled(in) = (| tokenpi(in) |≥ inQty(in) forsome pi)

Correspondingly the control operation CtlOp of a workflow usually consists of two parts,
one describing how many tokens are Consumed on which incoming arcs and one describing how
many tokens are Produced on which outgoing arcs, indicated by using an analogous abstract
function outQty . We use macros to encapsulate the details. They are defined first for consuming
resp. producing tokens on a given arc and then generalized for producing or consuming tokens on
a given set of arcs.

Consume(t , in) = Delete(t , inQty(in), token(in))
Produce(t , out) = Insert(t , outQty(out), token(out))
Pass(t , in, out) =

Consume(t , in)
Produce(t , out)

In various places the BPMN standard document alludes to structural relations between the
consumed incoming and the produced outgoing tokens. To express this we use an abstract function
firingToken(A), which is assumed to select for each element a of an ordered set A of incoming arcs
tokens from tokenpi(a) that enable a, all belonging to the same process instance pi and ready to
be Consumed. For the sake of exposition we make the usual assumption that inQty(in) = 1, so
that we can use the following sequence notation:

firingToken([a1, . . . , an ]) = [t1, . . . , tn ]

to denote that ti is the token selected to be fired on arc ai . We write firingToken(in) = t instead
of firingToken({in}) = [t ].

If one considers, as seems to be very often the case, only (multiple occurrences of) indistin-
guishable tokens, all belonging to one process instance, instead of mentioning the single tokens one
can simplify the notation by parameterizing the macros only by the arcs:

Consume(in) = Delete(inQty(in), token(in))
Produce(out) = Insert(outQty(out), token(out))
ConsumeAll(X ) = forall x ∈ X Consume(x )
ProduceAll(Y ) = forall y ∈ Y Produce(y)

Remark. This use of macros allows one to adapt the abstract token model to different instan-
tiations by a concrete token model. For example, if a token is defined by two attributes, namely
the process instance pi it belongs to and the arc where it is positioned, as seems to be popular
in implementations, then it suffices to refine the macro for Passing a token t from in to out by
updating the second token component, namely from its current position value in to its new value
out :

Pass(t , in, out) = (pos(t) := out)

The use of abstract Delete and Insert operations instead of directly updating token(a, t) serves
to make the macros usable in a concurrent context, where multiple agents may want to simultane-
ously operate on the tokens on an arc. Note that it is also consistent with the special case that in
a transition with both Delete(in, t) and Insert(out , t) one may have in = out , so that the two
operations are not considered as inconsistent, but their cumulative effect is considered.
11 The function inQty generalizes the startQuantity attribute for activities in the BPMN standard.
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Four Instantiation Levels Summarizing the preceding discussion one sees that the structure
of our model provides four levels of abstraction to separate different concerns, among them the
distinction between process and process instances.

At the first level, in WorkflowTransitionInterpreter, scheduling is separated (via func-
tions selectNode and selectWorkflowTransition) from behavior (via rules in WorkflowTransition).
At the second level, different constructs are behaviorally separated from each other by defining
a machine pattern for each construct type—here gateways, events and activities—instantiating
appropriately the components of the abstract machine WorkflowTransition(node) as in-
tended for each type.
At the third level, a concrete business process is defined by instantiating the per node globally
defined rule pattern WorkflowTransition(node) for each concrete diagram node.
At the fourth level, instances of a concrete business process are defined by instantiating the
attributes and the token function as instance locations belonging to the process instance. In
object-oriented programming terms one can explain the last two steps as adding to static class
locations (the global process attributes) dynamic instance locations (the attribute instantia-
tions).

BPMN Token Model The BPMN standard document uses a more elaborate concept of tokens,
though it claims to do this only “to facilitate the discussion” of “how Sequence Flow proceeds
within a Process”. The main idea is expressed as follows:

The behavior of the Process can be described by tracking the path(s) of the Token through
the Process. A Token will have a unique identity, called a TokenId set, that can be used to
distinguish multiple Tokens that may exist because of concurrent Process instances or the
dividing of the Token for parallel processing within a single Process instance. The parallel
dividing of a Token creates a lower level of the TokenId set. The set of all levels of TokenId
will identify a Token. [15, p.35]

The standard document imposes no further conditions on how to realize this token traceability
at gateways, activities, etc., but uses it for example for the tracing of structured elements in the
mapping from BPMN to BPEL (op.cit.pg.192 sqq.). For the sake of completeness we illustrate here
one simple structure-based formalization of the idea of tokens as a hierarchy of sets at different
levels, which enables the designer to convey non-local information between gateways.12

The goal is to directly reflect the use of tokens for tracing the sequence flow through starting,
splitting, joining, calling (or returning from), iterating, ending processes, instantiating multiple
instances of an activity or otherwise relating different computation paths. At the first level one has
(a finite multiset of occurrences of) say one basic token origin(p), containing among other data
the information on the process ID of the process p upon whose start the token has been created.
These tokens are simply passed at all nodes with only one incoming and one outgoing arc (see the
remark on tokens at intermediate events at the end of Sect. 5). When it comes to “the dividing
of the Token for parallel processing within a single Process instance”, the considered (multiset of
occurrences of the) token t is Consumed and Produces the (multiset of the desired number of
occurrences of) next-level tokens par(t , p(i),m), one for each of the m parallel processes p(i) in
question for 0 < i < m . When (the considered number of occurrences of) these tokens arrive
on the arcs leading to the associated (if any) join node, (the multisets of) their occurrences are
Consumed and the (desired number of occurrences of the) parent token t is (re-) Produced.

In the same manner one can also distinguish tokens andSplitToken(t , i ,m) for AND-split gate-
ways, orSplitToken(t , i ,m) for OR-split gateways, multInstToken(t , i) or multInstToken(t , i ,m) for
multi-instances of a (sub)process, etc. One can also parameterize the tokens by the nodes where
they are produced or let m be a dynamic function of the parameters of the considered diagram node
(gateway instance). Using a tree structure for the representation of such token functions allows the

12 For another possibility one can use in dynamic contexts, where there is no possibility to refer to static
structural net information, see the remark in Sect. 4 on relating OR-split and OR-joins.
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workflow designer to define in a simple, intuitive and precise way any desired notion of “parallel”
paths. It also supports a computationally inexpensive definition of a process to be Completed when
all its tokens have been consumed, since the relation between a token and the process ID of the
process p where it has been created is given by the notion of origin(p) in the token set T (p).

3.3 BPMN Best Practice Normal Form

For purely expository purposes, but without loss of generality, we assume BPMN graphs to be in
(or to have been equivalently transformed into) the following normal form, in [15] called ‘modeling
covenience’:

BPMN Best Practice Normal Form. [15, p.69] Disregarding arcs leading to exception and
compensation nodes, only gateways have multiple incoming or multiple outgoing arcs. Except
so-called complex gateways, gateways never have both multiple incoming and multiple outgoing
arcs.

Justification. We outline the proof idea for some characteristic cases; the remaining cases will
be considered at the places where the normal form is used to shorten the descriptions. An AND (also
called conjunctive or parallel) gateway with n incoming and m outgoing arcs can be transformed
into a standard equivalent graph consisting of a parallel AND-Join gateway with n incoming and
one outgoing arc, which is incoming arc to a parallel AND-Split gateway with m outgoing arcs.
A so-called uncontrolled node with n incoming and m outgoing arcs can be shown to be standard
equivalent to an OR-Join gateway with n incoming arcs connected by one outgoing arc to a new
node which is connected to an AND-Split gateway with m outgoing arcs. If one is interested in a
completely carried out formal description of the behavior of all BPMN constructs, one has to add
to the behavioral descriptions we give in this paper a description of the transformation of arbitrary
BPMN diagrams into diagrams in BPMN Best Practice Normal Form. This is a simple exercise.

4 BPMN Execution Model for Gateway Nodes

Gateways are used to describe the convergence (merging) or divergence (splitting) of control flow
in the sense that tokens can ‘be merged together on input and/or split apart on output’ [15, p.68].
Both merging and splitting come in BPMN in two forms, which are considered to be related to the
propositional operators and and or, namely

to create parallel actions or to synchronize multiple actions,
to select (one or more) among some alternative actions.

For the conjunctive case the BPMN terminology is ‘forking’ (‘dividing of a path into two or
more parallel paths, also known as an AND Split’) [15, p.110] respectively ‘parallel joining’ (AND-
Join). For the disjunctive case the BPMN standard distinguishes two forms of split, depending
on whether the decision among the alternatives is exclusive (called XOR-Split) or not (called
OR-Split, this case is also called ‘inclusive’). For the exclusive case a further distinction is made
depending on whether the decision is ‘data-based’ or ‘event-based’. These distinctions are captured
in the instantiations of WorkflowTransition(node) for gateway nodes below by corresponding
EventCond(node) and DataCond(node) guards, which represent these further gateway fireability
conditions, besides the mere sequence flow enabledness.

The BPMN standard views gateways as ‘a collection of Gates’ that are associated one-to-one
to outgoing sequence flow arcs of the gateway, ‘one Gate for each outgoing Sequence Flow of the
Gateway’ [15, p.68]. The sequence flow arcs are required to come with an expression that describes
the condition under which the corresponding gate can be taken.13 Since this distinction is not
needed for a description of the gateway behavior, we abstract from it in our model and represent
13 The merge behavior of an OR gateway is represented by having multiple incoming sequence flow, as

formalized by CtlCond below, but only one gate (with its associated sequence flow condition set to None,
realizing that the condition is always true).
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gates simply by the outgoing sequence flow arcs to which they are associated. Nevertheless, for the
sake of a clear exposition of the different split/merge features, we start from the BPMN best practice
normal form assumption whereby each gateway performs only one of the two possible functions,
either divergence or convergence of multiple sequence flow. For the special case of gateways without
incoming arcs or without outgoing arcs, which play the role of start or end events, see the remarks
at the end of the section on start and end events. The gateway pattern definition we present in
Sect. 4.6 for the so-called complex gates (combinations of simple decision/merge) makes no normal
form assumption, so that its scheme shows ho to describe gateways that are not in normal form.
From a definition of the complex case one can easily derive a definition of the simple cases, as we
will see below.

4.1 AND-Split (Fork) Gateway Nodes

By the normal form assumption, every AND-split gateway node has one incoming arc in and finitely
many outgoing arcs. Therefore CtlCond(node) is simply Enabled(in). CtlOp(node) means to
Consume(t , in) for some enabling token t chosen from token(in) and to Produce on each outgoing
arc o the (required number of) andSplitToken(t , o) (belonging to the same process instance as t),
which in the case of unit tokens are simply occurences of t .

In BPMN DataOp(node) captures multiple assignments that may be ‘performed when the
Gate is selected’ [15, Table 9.30 p.86] (read: when the associated rule is fired). We denote these
assignments by sets assignments(o) associated to the outgoing arcs o (read: gates).

Thus the WorkflowTransition(node) scheme is instantiated for any and-split (fork) gate-
way node as follows:

AndSplitGateTransition(node) = WorkflowTransition(node)
where

CtlCond(node) = Enabled(in)
CtlOp(node) =

let t = firingToken(in)
Consume(t , in)
ProduceAll({(andSplitToken(t , o), o) | o ∈ outArc(node)})

DataOp(node) = //performed for each selected gate
forall o ∈ outArc(node) forall i ∈ assignments(o) Assign(toi , fromi)

This is still a scheme, since for each particular diagram node for example the source and target
expressions toi , fromi for the associated assignments have still to be instantiated.

4.2 AND-Join (Synchronization) Gateway Nodes

By the normal form assumption, every AND-join gateway node has finitely many incoming and
one outgoing arc. Each incoming arc is required to be Enabled , so that CtlCond(node) is simply
the conjunction of these enabledness conditions. CtlOp(node) means to Consume firing tokens
(in the requested quantity) from all incoming arcs and to Produce (the considered number of)
andJoinTokens on the outgoing arc, whose values depend on the incoming tokens. DataOp(node)
captures multiple assignments as in the case of AND-split gateways.14

Remark. If AND-join nodes n ′ are structural companions of preceding AND-split nodes n,
the tokens tj = andSplitToken(t , oj ) produced at the outgoing arc oj of n will be consumed
at the corresponding arc inj incoming n ′, so that at the arc outgoing n ′ the original token t
will be produced. Such a structured relation between splits and joins is however not prescribed
by the BPMN standard, so that for the standard the functions andSplitToken and andJoinToken
remain abstract (read: not furthermore specified, i.e. freely interpretable by every standard conform
implementation).
14 If our understanding of the BPMN standard document is correct, the standard does not forsee

event-based or data-based versions for AND-join transitions, so that the conditions EventCond(node)
andDataCond(node) and the EventOp can be skipped (or set to true resp. skip for AND-joins).
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AndJoinGateTransition(node) = WorkflowTransition(node)
where

CtlCond(node) = forall in ∈ inArc(node) Enabled(in)
CtlOp(node) =

let [in1, . . . , inn ] = inArc(node)
let [t1, . . . , tn ] = firingToken(inArc(node))

ConsumeAll({(tj , inj )) | 1 ≤ j ≤ n})
Produce(andJoinToken({t1, . . . , tn}), out)

DataOp(node) = forall i ∈ assignments(out) Assign(toi , fromi)

4.3 OR-Split Gateway Nodes

An OR-split node is structurally similar to an AND-split node in the sense that by the normal form
assumption it has one incoming and finitely many outgoing arcs, but semantically it is different
since instead of producing tokens on every outgoing arc, this may happen only on a subset of them.

The chosen alternative depends on certain conditions OrSplitCond(o) to be satisfied that are
associated to outgoing arcs o. In BPMN the choice among these alternatives is based either upon
process-data-involving GateCond itions that evaluate to true (data-based case) or upon GateEvents
that are Triggered (event-based case). Further variants considered in BPMN depend upon whether
at each moment exactly one alternative is chosen (the exclusive case) or whether more than one of
the alternative paths can be taken (so-called inclusive case).

We formulate the choice among the alternatives by an abstract function selectProduce(node),
which is constrained to select at each invocation a non-empty subset of arcs outgoing node that
satisfy the OrSplitCond ition. If there is no such set, the rule cannot be fired.

Constraints for selectProduce

selectProduce(node) 6= ∅
selectProduce(node) ⊆ {out ∈ outArc(node) | OrSplitCond(out)}15

This leads to the following instantiation of the WorkflowTransition(node) scheme for or-
split gateway nodes. The involvement of process data or gate events for the decision upon the
alternatives is formalized by letting DataCond and EventCond in the rule guard and their related
operations in the rule body depend on the parameter O for the chosen set of alternatives. As done
for AND-split nodes, we use an abstract function orSplitToken to describe the tokens Produced
on the outgoing arc; in general their values depend on the incoming tokens.

OrSplitGateTransition(node) =
let O = selectProduce(node) in WorkflowTransition(node,O)

where
CtlCond(node) = Enabled(in)
CtlOp(node,O) =

let t = firingToken(in)
Consume(t , in)
ProduceAll({(orSplitToken(t , o), o) | o ∈ O})

DataOp(node,O) = forall o ∈ O forall i ∈ assignments(o) Assign(toi , fromi)

From OrSplitGateTransition also AndSplitGateTransition can be defined by requiring
the selection function to select the full set of all outgoing arcs.

15 Instead of requiring this constraint once and for all for each such selection function, one could
include the condition as part of DataCond(node,O) resp. EventCond(node,O) in the guard of
OrSplitGateTransition.
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4.4 OR-Join Gateway Nodes

As for AND-join gateway nodes, by the normal form assumption, every OR-join gateway node has
finitely many incoming and one outgoing arc. Before proceeding to deal with the different cases
the BPMN standard names explicitly (exclusive and data-based or event-based inclusive OR), we
formulate a general scheme from which the BPMN instances can be derived.

For OR-join nodes one has to specify what happens if the enabledness condition is satisfied
simultaneously for more than one incoming arc. Should all the enabling tokens from all enabled
incoming arcs be consumed? Or only tokens from one enabled arc? Or from some but maybe not all
of them? Furthermore, where should the decision about this be made, locally by the transition rule
or globally by the scheduler which chooses the combination? Or should assumptions on the runs
be made so that undesired combinations are excluded (or proved to be impossible for a specific
business process)? More importantly one also has to clarify whether firing should wait for other
incoming arcs to get enabled and in case for which ones.

To express the choice of incoming arcs where tokens are consumed we use an abstract selection
function selectConsume : it is required to select a non-empty set of enabled incoming arcs, whose
enabling tokens are consumed in one transition, if there are some enabled incoming arcs; oth-
erwise it is considered to yield the empty set for the given argument (so that the rule which is
governed by the selection via the CtlCond(node) is not fireable). In this way we explicitly separate
the two distinct features considered in the literature for OR-joins: the enabledness condition for
each selected arc and the synchronization condition that the selected arcs are exactly the ones to
synchronize. The convential token constraints are represented as part of the control condition in
the OrJoinGateTransition rule below, namely that the selected arcs are all enabled and that
there is at least one enabled arc. What is disputed in the literature and not specified in the BPMN
standard is the synchronization constraint for selectConsume functions. Therefore we formulate the
transition rule for an abstract OR-join semantics, which leaves the various synchronization options
open as additional constraints to be put on selectConsume . As a result selectConsume(node) plays
the role of an interface for triggering for a set of to-be-synchronized incoming arcs the execution
of the rule at the given node.

This leads to the following instantiation of the WorkflowTransition(node) scheme for or-
join gateway nodes. To abstractly describe the tokens Produced on the outgoing arc we use a
function orJoinToken whose values depend on the tokens on the selected incoming arcs.

OrJoinGateTransition(node) =
let I = selectConsume(node) in WorkflowTransition(node, I )

where
CtlCond(node, I ) = (I 6= ∅ and forall j ∈ I Enabled(j ))
CtlOp(node, I ) =

Produce(orJoinToken(firingToken(I )), out)
ConsumeAll({(tj , inj ) | 1 ≤ j ≤ n}) where

[t1, . . . , tn ] = firingToken(I )
[in1, . . . , inn ] = I

DataOp(node) = forall i ∈ assignments(out) Assign(toi , fromi)

NB. Clearly AndJoinGateTransition, in BPMN called the merge use of an AND-gateway,
can be defined as a special case of the merge use of an OR-gateway OrJoinGateTransition,
namely by requiring the selection function to always yield either the empty set or the set of all
incoming arcs.

Remark on relating OR-Split and OR-Joins The discussion of “problems with OR-joins”
has received much attention in the literature, in particular in connection with EPCs (Event driven
Process Chains) and Petri nets (see for example [25,42] and the references there). In fact, to know
how to define the choice function selectConsume is a critical issue also for (implementations of) the
BPMN standard. The BPMN standard document seems to foresee that the function is dynamic so
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that it does not depend only on the (static) diagram structure. In fact the following is required:
“Process flow SHALL continue when the signals (Tokens) arrive from all of the incoming Sequence
Flow that are expecting a signal based on the upstream structure of the Process . . . Some of the
incoming Sequence Flow will not have signals and the pattern of which Sequence Flow will have
signals may change for different instantiations of the Process.” [15, p.80] Generally it is claimed in
the literature that the “non-locality leads to serious problems when the formal semantics of the OR-
join has to be defined” [24, p.3]. The discussion of and the importance attached to these “problems”
in the literature is partly influenced by a weakness of the underlying Petri-net computation model,
which has well-known problems when dealing with non-local (in particular if dynamic) properties.16

In reality the issue is more a question of process design style, where modeling and verification of
desired process behavior go hand in hand via modular (componentwise) definitions and reasoning
schemes, which are not in need of imposing static structural conditions (see [5]). It is only to a
minor extent a question of defining the semantics of OR-joins. In fact, in the ASM framework one
can succinctly describe various ways to dynamically relate the tokens produced by an OR-Split
node to the ones consumed by an associated OR-Join node. See [14].

4.5 BPMN Instances of Gateway Rules

In BPMN gateways are classified into exclusive (XOR), inclusive (OR), parallel (AND) and com-
plex. The case of complex gateways is treated below.

An AND gateway of BPMN can be used in two ways. When it is used ‘to create parallel flow’,
it has the behavior of AndSplitGateTransition, where each outgoing arc represents a gate
(without loss of generality we assume the BPMN Best Practice Normal Form, i.e. a gateway with
one incoming arc). The so-called merge use of the AND gateway of BPMN ‘to synchronize parallel
flow’ has the behavior of AndJoinGateTransition.

The data-based XOR and the OR gateway of BPMN, when ‘acting only as a Merge’, both
have only one gate without an associated GateCond or GateEvent ; the event-based XOR is for-
bidden by the standard to act only as a Merge. Thus those two gateway uses are an instance of
OrJoinGateTransition where selectConsume is restricted to yield either an empty set (in which
case the rule cannot fire) or

for XOR a singleton set,
for OR a subset of the incoming arcs with associated tokens ‘that have been produced up-
stream’ [15, p.80]17.

This satisfies the standard document requirement for XOR that in case of multiple incoming
flow, the incoming flow which in a step of the gateway has not be chosen ‘will be used to continue
the flow of the Process (as if there were no Gateway)’; similarly for OR [15, p.75].

When acting as a split into alternatives, the XOR (in its two versions data-based and event-
based) and the OR gateway of BPMN are both an instance of OrSplitGateTransition where
selectProduce is restricted to yield one of the following:

For the data-based XOR a singleton set consisting of the first out ∈ outArc(node), in the given
order of gates, satisfying GateCond(out). If our understanding of BPMN is correct then in this
case DataCond(node,O) = GateCond(out) and EventCond(node,O) = true.
For the event-based XOR a singleton set O consisting of the first out ∈ outArc(node), in the
given order of gates, satisfying GateEvent(out). If our understanding of BPMN is correct then
in this case EventCond(node,O) = GateEvent(out) and DataCond(node,O) = true.
For OR a non-empty subset of the outgoing arcs.

16 Similar problems have been identified in [36] for the mapping of UML 2.0 activity diagrams to Petri
nets.

17 The BPMN document provides no indications for determining this subset, which has a synchronization
role.
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4.6 Gateway Pattern (Complex Gateway Nodes)

Instead of defining the preceding cases separately one after the other, one could define once and
for all one general gateway pattern that covers the above cases as well as what in BPMN are
called complex gateway nodes, namely by appropriate configurations of the pattern abstractions.
This essentially comes up to define two general machines Consume and Produce determining the
(possibly multiple) incoming respectively outgoing arcs where tokens are consumed and produced.
The abstract function patternToken determines which tokens are produced on each outgoing arc in
relation to the firingTokens on the incoming arcs I . As shown above it can be refined for specific
gateway nodes, for example for OR-split/join gateways to orSplit/JoinToken, for AND-split/join
gateways to andSplit/JoinToken, etc.

GateTransitionPattern(node) =
let I = selectConsume(node)
let O = selectProduce(node) in

WorkflowTransition(node, I ,O)
where

CtlCond(node, I ) = (I 6= ∅ and forall in ∈ I Enabled(in))
CtlOp(node, I ,O) =

ProduceAll({(patternToken(firingToken(I ), o), o) | o ∈ O})
ConsumeAll({(tj , inj ) | 1 ≤ j ≤ n}) where

[t1, . . . , tn ] = firingToken(I )
[in1, . . . , inn ] = I

DataOp(node,O) = forall o ∈ O forall i ∈ assignments(o) Assign(toi , fromi)

From this GateTransitionPattern(node) machine one can define the machines above for the
various simple gateway nodes. For AND-joins selectConsume chooses all incoming arcs, whereas for
OR-joins it chooses exactly (exclusive case) or at least one (inclusive cases). Similarly selectProduce

chooses all the outgoing arcs for AND-split gateways and exactly one (exclusive case) or at least
one outgoing arc (inclusive case) for OR-split nodes, whether data-based or event-based.

Remark. As mentioned already above, the BPMN standard document allows gateway nodes
to be without incoming or without outgoing arc. To such nodes the general stipulations on BPMN
constructs without incoming or without outgoing arc in relation to start or end events apply, which
are captured in our model as described in the two remarks at the end of the sections on start and
end events below.

5 BPMN Execution Model for Event Nodes

Events in BPMN can be of three types, namely Start, Intermediate and End events, intended
to “affect the sequencing or timing of activities of a process” [15, Sect.9.3]. Thus BPMN events
correspond to internal states of Finite State Machines (or more generally control states of control-
state ASMs [7], see Sect. 10), which start/end such machines and manage their intermediate control
states. So the set Event is a disjoint union of three subsets we are going to describe now.

Event = StartEvent ∪ IntermEvent ∪ EndEvent

5.1 Start Events

A start event has no incoming arc (‘no Sequence flow can connect to a Start Event’).18 Its role
is to indicate ‘where a particular Process will start’. Therefore a start event, when Triggered—
a monitored predicate representing that the event “ “happens” during the course of a business
process” [15, Sect.9.3]— generates a token (more generally: the required quantity of tokens) on an
outgoing arc. This is expressed by the transition rule StartEventTransition(node, e) defined

18 For one exception to this discipline see below.

15



below, an instance of WorkflowTransition(node) where data and control conditions and data
operations are set to empty since they are unrelated to how start events are defined in BPMN.

By trigger(node) we indicate the set of types of (possibly multiple) event triggers that may
be associated to node, each single one of which can be one of the following: a message, a timer, a
condition (in the BPMN document termed a rule), a link or none. The BPMN standard document
leaves it open how to choose a single one out of a multiple event associated to a node in case two
or more events are triggered there simultaneously. This means that the non-deterministic choice
behavior is not furthermore constrained, so that we use the ASM choose operator to select a single
event trigger and thereby a rule StartEventTransition(node, e) for execution, each of which
is parameterized by a particular event e ∈ trigger(node).19 This reflects the standard requirement
that “Each Start Event is an independent event. That is, a Process Instance SHALL be generated
when the Start Event is triggered.” [15, p.36]20

StartEventTransition(node) =
choose e ∈ trigger(node) StartEventTransition(node, e)

By the best practice normal form we can assume that there is exactly one outgoing arc out ,
namely after replacing possibly multiple outgoing arcs by one outging arc, which enters an and-
split gateway with multiple outgoing arcs. This captures that by the BPMN standard document
“Multiple Sequence Flow MAY originate from a Start Event. For each Sequence Flow that has
the Start Event as a source, a new parallel path SHALL be generated . . . Each path will have a
separate unique Token that will traverse the Sequence Flow.” [15, Sect.9.3.2 p.38-39] Therefore a
StartEventTransition(node, e) rule fires when the EventCond(node) is true that e is Triggered .
It yields as event EventOp(node, e) to ConsumEvent(e) and

StartEventTransition(node, e) rule yields as CtlOp(node) to Produce a startToken on
out . The produced token is supposed to contain the information needed for “tracking the path(s) of
the Token through the Process” [15, p.35]. Since this information is not furthermore specified by the
standard document, in our model it is kept abstract in terms of an abstract function startToken(e).
Traditionally it is supposed to contain at least an identifier for the just startede process instance.

StartEventTransition(node, e) =
if Triggered(e) then Produce(startToken(e), out)

ConsumEvent(e)

Remark to event consumption in the start rule. If the intention of the standard document
is that not only the chosen triggered event but all triggered events are consumed, it suffices to
replace ConsumEvent(e) by the following rule:

forall e ′ ∈ trigger(node) if Triggered(e ′) then ConsumEvent(e ′)

.
The definition of Triggered(e) is given by Table 9.4 in [15].
The submachine ConsumEvent(e) is defined depending on the type of event e. Messages and

timers represent (values of) monitored locations with a predetermined consumption procedure.
The standard document leaves it open whether upon firing a transition triggered by an incoming
message, that message is consumed or not.21 Similarly it is not specified whether a timer event is
automatically consumed once its time has passed (precisely or with some delay). Therefore for the
BPMN 1.0 standard, for these two cases the submachine ConsumEvent remains abstract, it has
to be specified by the intended consumption discipline of each system instance.

The same holds for events of type None or Rule.
19 An alternative would be to use a (possibly local and dynamic) selection function selectEvent which each

time chooses an event out of the set trigger(node).
20 See also the remark below.
21 This is an important issue to clarify, since a same message may be incoming to different events in a

diagram.
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Events e of type Link are used “for connecting the end (Result) of one Process to the start
(Trigger) of another” [15, Sect.9.3.2 pg.37]. In accordance with the interpretation of a Link Interme-
diate Event as so-called “Off-Page connector” or “Go To” object [15, Sect.9.3.4 p.48] we represent
such links as special sequence flow arcs, connecting source(link) (“one Process”) to target(link)
(“another Process”, in the BPMN standard denoted by the attribute ProcessRef (node)) with token
defined for some linkToken(link). Therefore Triggered(e) for such a start event means Enabled(link)
and the ConsumEvent submachine deletes linkToken(link), which has been produced before on
this link arc at the source(link), as result of a corresponding end event or link event at the source
link of a paired intermediate event (see below). Thus we have the following definition for start
events e of type Link (we write link for the connecting arc corresponding to the type Link):

if type(e) = Link then
Triggered(e) = Enabled(link)
ConsumEvent(link) = Consume(linkToken(link), link)

There is one special case where a start event e can have a virtual incoming arc inarc(e), namely
“when a Start Event is used in an Expanded Sub-Process and is attached to the boundary of that
Sub-Process”. In this case “a Sequence Flow from the higher-level Process MAY connect to the
Start Event in lieu of connecting to the actual boundary of the Sub-Process” [15, Sect.9.3.2 pg.
38]. This can be captured by treating such a connection as a special arc inarc(e) incoming the
start event e, which is enabled by the higher-level Process via appropriate subProcTokens so that it
suffices to include into the definition of Triggered(e) for such events the condition Enabled(inarc(e))
and to include into ConsumEvent(e) an update to Consume(subProcToken(e), inarc(e)).

Remark on processes without start event. There is a special case that applies to various
BPMN constructs, namely items that have no incoming arc (sequence flow) and belong to a process
without start event. They are required by the standard document to be activated (performed) when
their process is instantiated. For the sake of exposition, to avoid having to deal separately for each
item with this special case, we assume without loss of generality that each process has a (virtual)
start event and that all the items without incoming sequence flow included in the process are
connected to the start event by an arc so that their performance is triggered when the start node is
triggered by the instantiation of the process. One could argue in favor of including this assumption
into the BPMN Best Practice Normal Form.

Remark on multiple start events. For a later version of the standard it is contemplated
that there may be “a dependence for more than one Event to happen before a Process can start”
such that “a correlation mechanism will be required so that different triggered Start Events will
apply to the same process instance.” [15, p.36-37] For such an extension it suffices to replace in
StartEventTransition the non-deterministically chosen event by a set of CorrelatedEvents as
follows:

MultipleStartEventTransition(node) =
choose E ⊆ CorrelatedEvent(node)

MultipleStartEventTransition(node,E )
MultipleStartEventTransition(node,E ) =

if forall e ∈ E Triggered(e) then
Produce(startToken(e), out)
forall e ∈ E ConsumEvent(e)

Remark The instantiation mechanism of BPMN using an event-based gateway with its at-
tribute ”instantiate” set to ”true” is covered by the semantics as defined here for start events.

5.2 End Events

End events have no outgoing arc (“no Sequence Flow can connect from an End Event”). “An End
Event MAY have multiple incoming Sequence Flow. The Flow MAY come from either alternative or
parallel paths... If parallel Sequence Flow target the End Event, then the Tokens will be consumed
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as they arrive” [15, Sect.9.3.3 p.42,40]. This means that also for describing the behavior of end
event nodes we can assume without loss of generality the best practice normal form, meaning here
that there is exactly one incoming arc in—namely after replacing possibly multiple incoming arcs
by one arc that is incoming from a new or-join gateway, which in turn is entered by multiple
arcs (equipped with appropriate associated token type). Thus an end event transition fires if the
CtlCond is satisfied, here if the incoming arc is Enabled ; as CtlOp it will Consume(in) the firing
token. BPMN forsees for end events also a possible EventOperation, namely to EmitResult of
having reached this end event of the process instance to which the end event node belongs, which
is assumed to be encoded into the firing token. We use a function res(node) to denote the result
defined at a given node.

EndEventTransition(node) =
if Enabled(in) then

Consume(firingToken(in), in)
EmitResult(firingToken(in), res(node),node)

The type of result and its effect are defined in [15, Table 9.6]. We formalize this by a submachine
EmitResult. It Sends messages for results of type Message, where Send denotes an abstract
message sending mechanism (which assumes the receiver information to be retrievable from the
message). In case of Error, Cancel or Compensation type, via EmitResult an intermediate event
is Triggered to catch the error, cancel the transaction or compensate a previous action. We denote
this intermediate event, which is associated in the diagram to the considered node and the type of
result , by targetIntermEv(result ,node).22 The node to which targetIntermEv belongs is denoted by
targetIntermEvNode(res,node). In the Cancel case also “A Transaction Protocol Cancel message
should be sent to any Entities involved in the Transaction” [15, Sect.9.3.3 Table 9.6], formalized
below as a Callback to listener(cancel ,node). Receiving such a message is presumably supposed
to have as effect to trigger a corresponding intermediate cancel event (see [15, p.60]).

A result of type Link is intended to connect the end of the current process to the start of the
target process. This leads us to the end event counterpart of the formalization explained above for
start events of type Link: an end event node of type Link is the source(link) of the interpretation
of link as a special sequence flow arc, where by the rule WorkflowTransition(source(link)) the
linkTokens, needed to make the link Enabled , are Produced. As we will see below this may also
happen at the source link of a paired intermediate event node of type Link. These tokens will then
be consumed by the rule WorkflowTransition(target(link)) at target(link), e.g. a connected
start event node of type Link whose incoming arc has been Enabled . We use the same technique
to describe that, in case the result type is None and node is a subprocess end node, “the flow goes
back to its Parent Process”: we Produce appropriate tokens on the targetArc(node), which is
supposed to lead back to the node where to return in the parent(p) process.

For a result of type Terminate we use a submachine DeleteAllTokens that ends all activities
in the current process instance, including all multiple instances of activities, by deleting the tokens
from the arcs leading to such activities. To denote these activities we use a set Activity(p) which
we assume to a) contain all activities contained in process instance p and b) to be dynamically
updated by all running instances of multiple instances within p. In defining DeleteAllTokens
we also reflect the fact that tokens are viewed in the BPMN standard as belonging to the process
in which they are created—“an End event consumes a Token that had been generated from a Start
Event within the same level of Process” [15, Sect.9.3.3 p.40]. Therefore we delete not all tokens,
but only all tokens belonging to the given process p, denoted by a set TokenSet(p).

For the Multiple result type we write MultipleResult(node) for the set of single results that are
associated to the node: for each of them the EmitResult action is taken.

22 In case of Error this intermediate event is supposed to be within what is called the Event Context, in
case of Cancel it is assumed to be attached to the boundary of the Transaction Sub-Process where the
Cancel event occurs.
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EmitResult(t , result ,node) =
if type(result) = Message then Send(mssg(node, t))
if type(result) ∈ {Error ,Cancel ,Compensation} then

Triggered(targetIntermEv(result ,node)) := true // trigger intermediate event
Insert(exc(t), excType(targetIntermEvNode(result ,node))))

if type(result) = Cancel then
Callback(mssg(cancel , exc(t),node), listener(cancel ,node))

if type(result) = Link then Produce(linkToken(result), result)
if type(result) = Terminate then DeleteAllTokens(process(t))
if type(result) = None and IsSubprocessEnd(node) then

Produce(returnToken(targetArc(node), t), targetArc(node))
if type(result) = Multiple then

forall r ∈ MultipleResult(node) EmitResult(t , r ,node)
where

Callback(m,L) = forall l ∈ L Send(m, l)
DeleteAllTokens(p) = forall act ∈ Activity(p)

forall a ∈ inArc(act) forall t ∈ TokenSet(p) Empty(token(a, t))

This concludes the description of end events in BPMN, since “Flow Objects that do not have
any outgoing Sequence Flow” but are not declared as end events are treated the same way as end
events. In fact “a Token entering a path-ending Flow Object will be consumed when the processing
performed by the object is completed (i.e., when the path has completed), as if the Token had then
gone on to reach an End Event.” [15, Sect.9.3.3 pg.40-41]. This is captured by the CtlOp(node)
submachine executed by the WorkflowTransition(node) rule for the corresponding node to
Consume(in) when Enabled(in).

Remark on tokens at start/end events. The standard document explains tokens at end
events as follows:

. . . an End Event consumes a Token that had been generated from a Start Event within
the same level of Process. If parallel Sequence Flow target the End Event, then the Tokens
will be consumed as they arrive. [15, p.40]

Such a constraint on the tokens that are Produced at a start event to be Consumed at end
events in possibly parallel paths of the same process level comes up to a specification of the abstract
functions denoting the specific tokens associated to the arc outgoing start events respectively the
arc incoming end events.

Remark on Process Completion. For a process to be Completed it is required that “all the
tokens that were generated within the Process must be consumed by an End Event”, except for
subprocesses which “can be stopped prior to normal completion through exception Intermediate
Events” (ibid.). There is also the special case of a process without end events. In this case, “when
all Tokens for a given instance of the Process are consumed, then the process will reach a state of
being completed” (ibid., p.41). It is also stipulated that “all Flow Objects that do not have any
outgoing Sequence Flow . . . mark the end of a path in the Process. However, the process MUST
NOT end until all parallel paths have completed” (ibid., p.40), without providing a definition of
“parallel path”. This issue should be clarified in the standard document. For some of the BPMN
constructs there is a precise definition of what it means to be Completed, see for example the case
of task nodes below.

5.3 Intermediate Events

In BPMN intermediate event nodes are used in two different ways: to represent exception or com-
pensation handling (Exception Flow Case) or to represent what is called Normal Flow (Normal
Flow Case). In the first case the intermediate event e is placed on the boundary of the task or
sub-process to which the exception or compensation may apply. targetAct(e) denotes the activity
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to whose boundary e is attached and for which it “is used to signify an exception or compen-
sation” [15, Sect.9.3.4 Table 9.9]. We denote such events as BoundaryEvents. They do not have
any ingoing arc (“MUST NOT be target for Sequence Flow”), but typically have one outgoing
arc denoted again by out (“MUST be a source for Sequence Flow; it can have one (and only one)
outgoing Sequence Flow”, except for intermediate events of type Compensation which “MAY have
an outgoing Association”) [15, Sect.9.3.4 p.47]. In the Normal Flow Case the intermediate event
occurs “in the main flow” of the process (not on the boundary of its diagram) and has a) exactly
one outgoing arc,23 b) exactly one ingoing arc if it is of type None, Error or Compensation and at
most one ingoing arc if it is of type Message, Timer, Rule or Link.

The behavioral meaning of an intermediate event also depends on the associated event type,
called trigger [15, Sect.9.3.4 Table 9.8]. As for start events, we use trigger(node) to indicate the
set of types of (possibly multiple) event triggers that may be associated to node. For intermediate
events, in addition to the types we saw for start events, there are three (trigger) types that are
present also for end events, namely Error, Cancel and Compensation. Following Table 9.8 and the
specification of the Activity Boundary Conditions in op.cit., intermediate events of type Error,
Compensation, Rule, Message or Timer can be used in both the Normal Flow and the Exception
Flow case, whereas intermediate events of type None or Link are used only for Normal Flow and
intermediate events of type Cancel or Multiple only for BoundaryEvents.

If two or more event triggers are Triggered simultaneously at an intermediate event node, since
“only one of them will be required”, one of them will be chosen, the same as established for start
event nodes. (As we will see below, for intermediate events type Multiple is allowed to occur only
on the boundary of an activity.)

IntermEventTransition(node) =
choose e ∈ trigger(node) IntermEventTransition(node, e)

It remains therefore to define IntermEventTransition(node, e) for each type of event e and
depending on whether e is a BoundaryEv(e) or not.

In each case, the rule checks that the event is Triggered . The definition of Triggered(e) given
for start events in Table 9.4 of [15] is extended in Table 9.8 for intermediate events to include
the types Error, Cancel and Compensation. An intermediate event of type Cancel is by definition
in [15, Sect.9.3.4 Table 9.8] a BoundaryEvent of a transaction subprocess and Triggered by an end
event of type Cancel or a Callback message received during the execution of the transaction.
Similarly an intermediate event of type Error or Compensation can be Triggered in particular
as the result of an end event of corresponding type, see the definition of EmitResult for end
events. The EventOp(node) will ConsumEvent(e), which is defined as for start events adding
for the three event types Error, Cancel and Compensation appropriate clauses (typically the update
Triggered(e) := false).

In the Normal Flow Case where BoundaryEv(e) is false, the rule guard contains also the
CtlCond that the incoming arc—where the activity was waiting for the intermediate event to
happen—is Enabled . Correspondingly there is a CtlOp(node) to Consume(in). Where the se-
quence flow will continue depends on the type of event.

In case of an intermediate event of type Link , the considered node is the source link node of a
paired intermediate event and as such has to Produce(linkToken(link), link), read: the appropriate
link token(s) on the link—which is interpreted in our model as a special arc that leads to the target
link node of the paired intermediate event, as explained above for start and end events.

Case type(e) = None is meant to simply “indicate some state of change in the process”, so that
the CtlOp will also Produce an appropriate number and type of tokens on the outgoing arc.
The same happens in case of an intermediate event of type Message or Timer.

An intermediate event of type Error or Compensation or Rule within the main flow is intended
to “change the Normal Flow into an Exception or Compensation Flow”, so that the error or
compensation is Thrown, which means that the corresponding next enclosing BoundaryEvent
23 Except source link intermediate events, which therefore receive a special treatment in rule

IntermEventTransition(node, e) below.
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occurrence (which we denote by a function targetIntermEv similar to the one used already in
EmitResult above) is Triggered to handle (catch or forward) the exception, error (corresponding
to the ErrorCode if any) or compensation. In addition the information on the token that triggered
the event is stored in the targetIntermEv by inserting it into a set excType, which is used when
the boundary intermediate event is triggered.

In the Exception Case where BoundaryEv(e) is true, if the activity to whose boundary the
intermediate event is attached is active,24 the sequence flow is requested to “change the Normal
Flow into an Exception Flow” and to TryToCatch the exception respectively perform the com-
pensation. If there is no match for the exception, it is rethrown to the next enclosing corresponding
intermediate BoundaryEvent. If the match succeeds, the out arc (which we interprete in our model
as an association arc in case of a compensation) leads in the diagram to an exception handling
or compensation or cancelling activity and the CtlOp(node) action consists in making this arc
Enabled by an operation Produce(out).

Every intermediate event of type Compensation attached to the boundary of an activity is
assumed by BPMN to catch the compensation (read: to satisfy ExcMatch) since “the object of the
activity that needs to be compensated . . . will provide the Id necessary to match the compensation
event with the event that “threw” the compensation”. For transactions the following is required:

When a Transaction is cancelled, then the activities inside the Transaction will be subjected
to the cancellation actions, which could include rolling back the process and compensation
for specific activities . . . A Cancel Intermediate Event, attached to the boundary of the
activity, will direct the flow after the Transaction has been rolled back and all compensation
has been completed. [15, p.60]

The standard document does not specify the exact behavior of transactions25 and refers for this
as an open issue to an Annex D (ibid.), but this annex seems to have been removed and not be
accessible any more. We therefore formulate only the cited statement and leave it as an open issue
how the cancellation activities (roll back and/or compensation) are determined and their execution
controlled.

IntermEventTransition(node, e) =
if Triggered(e) then

if not BoundaryEv(e) then
if Enabled(in) then let t = firingToken(in)

ConsumEvent(e)
Consume(t , in)
if type(e) = Link then Produce(linkToken(link), link)
if type(e) = None then Produce(t , out)
if type(e) = Message then

if NormalFlowCont(mssg(node), process(t))
then Produce(t , out)
else Throw(exc(mssg(node)), targetIntermEv(node))

if type(e) = Timer then Produce(timerToken(t), out)
if type(e) ∈ {Error ,Compensation,Rule} then Throw(e, targetIntermEv(e))

if BoundaryEv(e) then

24 The boundary creates what is called the Event Context. “The Event Context will respond to specific
Triggers to interrupt the activity and redirect the flow through the Intermediate Event. The Event
Context will only respond if it is active (running) at the time of the Trigger. If the activity has completed,
then the Trigger may occur with no response.” [15, Sect.10.2.2 p.131]

25 Also the descriptions in Table.8.3 (p.15), Table 8.3 (p.25) and Table B.50 (p.271, related to the at-
tributes introduced in Table 9.13 (p.56)) are incomplete, as is the description of the group concept
introduced informally in Sect.9.7.4 (p.95-97). The latter permits a transaction to span over more than
one process, without clarifying the conditions for this by more than the statement that “at the end of
a successful Transaction Sub-Process . . . the transaction protocol must verify that all the participants
have successfully completed their end of the Transaction” (p.61).
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if active(targetAct(e)) then
ConsumEvent(e)
if type(e) = Timer then Insert(timerEv(e), excType(node))
if type(e) = Rule then Insert(ruleEv(e), excType(node))
if type(e) = Message then Insert(mssgEv(e), excType(node))
if type(e) = Cancel then choose exc ∈ excType(node) in

if Completed(Cancellation(e, exc)) then Produce(excToken(e, exc), out)
else TryToCatch(e,node)

where
TryToCatch(ev ,node) =

if ExcMatch(ev) then Produce(out(ev))
else TrytoCatch(ev , targetIntermEv(node, ev))

Completed(Cancellation(e)) =
RolledBack(targetAct(e)) and Completed(Compensation(targetAct(e)))

Remark. For intermediate events of type Message, Timer, Rule or Link the BPMN standard
allows the event to be without incoming arc and to “always be ready to accept the Event Triggers
while the Process in which they are contained is active” [15, Sect.9.3.4 p.48]. In this case we
understand the IntermEventTransition(node, e) rule as being written without Consume(t , in)
and with the guard Enabled(in) replaced by active(targetAct(e)). ExcMatch(e) is assumed to be
true for each Triggered event of type Timer, Message or Rule.

The above formalization captures that an intermediate event on the boundary of a process
which contains an externally executed task can be triggered by the execution of that task. In fact
the atomicity of tasks does not imply their zero-time execution.26

Remark on token passing. Differently from gateway nodes, where the consumed and the
produced tokens may carry different information, and differently from start or end event nodes
where tokens are only produced or only consumed, for intermediate event nodes a typical assump-
tion is that tokens are simply passed. A similar remark applies to all nodes with only one incoming
and one outgoing arc (see for example the activity nodes below).

6 BPMN Execution Model for Activity Nodes

Activities are divided into two types, atomic activities (tasks) and compound ones (subprocesses).
Both tasks and subprocesses can contain iterative components of different loopType, namely so-
called standard loops (while, until) or multiInstance loops (for each); for subprocesses this includes
also so-called ad-hoc processes. For purely expository purposes, to avoid repetitions, we therefore
slightly deviate from the classification in the standard document and put these iterative tasks or
subprocesses into a third category of say iterative processes (IterProc), without changing any of
their standard attributes. Therefore we have the following split of Activity into three subsets:

Activity = Task ∪ SubProcess ∪ IterProc
IterProc = Loop ∪MultiInstance ∪AdHoc

The notion of atomicity is the one known from information systems, meaning that the task
in question “is not broken down to a finer level of Process Model detail” [15, Sect.9.4.3 p.62];
it does not imply the 0-time-execution view that is traditionally associated with the notion of
atomicity. Typically the action underlying the given task is intended to represent that within the
given business process “an end-user and/or an application are used to perform the Task when it is
executed” (ibid.), so that atomicity refers to the fact that as part of a business process the task is
viewed as a unit process and not “defined as a flow of other activities”(ibid.p.53), though it may and
usually will take its execution time without this time being furthermore analyzed in the workflow
26 The Petri net model for tasks in [17] is built upon the assumption that “the occurrence of the exception

may only interrupt the normal flow at the point when it is ready to execute the task”. But this seems
to be an over-simplification of exceptions triggered by tasks.
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diagram.27 We reflect this notion of atomicity by using in the definition of TaskTransition(task)
below the sequentiality operator seq for structuring ASMs (see [12, Ch.4]). This operator turns a
low-level sequential execution view of two machines M followed by N into a high-level atomic view
of one machine M seq N , exactly as required by the BPMN understanding of task execution.

Besides being “defined as a flow of other activities” to achieve modularity of the process de-
sign, compound subprocesses are also used to a) create a context for exception handling and
compensation (in a transactional context) “that applies to a group of activities”, b) for a compact
representation of parallel activities and c) for process instantiation, as will be discussed below.

Every activity comes with finitely many (possibly zero) associated so-called InputSets and
OutputSets, which define the data requirements for input to and output from the activity. When
these sets are present, at least one input must be defined “to allow the activity to be performed” and
“at the completion of the activity, only one of the OutputSets may be produced”, the choice being
up to the implementation—but respecting the so-called IORules, expressions that “may indicate a
relationship between an OutputSet and an InputSet that started the activity” [15, Sect.9.4.3 Table
9.10].

6.1 Task Nodes

In this section we consider only tasks that are not marked as iterative; tasks and subprocesses
marked as Loop or MultInstance are considered below.

For the sake of simplicity of exposition in the following description we assume also for tasks
the BPMN Best Practice Normal Form for sequence flow connections, namely that tasks have (at
most) one incoming arc and (at most) one outgoing arc. In fact, multiple incoming flow, which may
be from alternative or from parallel paths,28 can be taken care of by adding a preceding OR-Join
respectively AND-Join gateway node; multiple outgoing flow can be taken care of by adding a
following AND-Split gateway, so that “a separate parallel path is being created for each Flow” [15,
p.67-68].

Thus in case incoming and/or outgoing arcs are present, the TaskTransition(task) rule
has as CtlCond(task) the guard Enabled(in) and as CtlOp(task) the machines Consume(in)
and/or Produce(out). By including in the definition below these control parts into square brack-
ets we indicate that they may not be there, depending on whether the considered task node has
incoming and/or outgoing arcs or not. Since the execution of the action associated to the task
may take time, the action Produce(out) to forward the control should take place only after
that execution has Completed(task), together with the (possibly missing) output producing action
ProduceOutput(outputSets(task)) defined below. Therefore every rule TaskTransition(task)
will consist of sequentially first Executing the task proper and then, upon task completion, pro-
ceeding to produce the output (if any) and the tokens (in case) to forward the control.

Whether a rule TaskTransition(task) can be fired depends also on a DataCond(task) ex-
pressing that the task is ReadyForExecution, which in turn depends on the particular type of the
task , as does the task Execution. The standard considers eight types for tasks:

TaskType = {Service,User ,Receive,Send ,Script ,Manual ,Reference,None}

A task of type Service or User is defined to be ReadyForExecution upon “the availability
of any defined InputSets”, formalized by a predicate SomeAvail(inputSets(task)) to be true. To
Exec(task) in these two cases means to Send(inMssg(task)) (“at the start of the Task”). In the
Service case this is presumably intended to have the effect to Activate the associated service, char-
acterized as “some sort of service, which could be a Web service or an automated application” [15,
p.64]; in the User case presumably to Activate the external performers of the associated action
for the given input, characterized as “the human resource that will be performing the User Task

27 This may also explain why a BPMN task is allowed to have an iterative substructure.
28 In the case of alternative paths the standard documents speaks of uncontrolled flow.
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. . . with the assistance of a software application” (ibid.p.65-66). 29 In both cases to Activate the
(performance of the) task is followed by waiting until an outMssg(task) arrives that “marks the
completion of the Task”.30 The latter is formalized by the predicate Completed(task) [15, Table
9.18 p.64, Table 9.21 p.66].

A task of type Receive “is designed to wait for a message to arrive . . . Once the message has
been received, the Task is completed.” Therefore Exec(task) is defined as Receive(mssg(task))
and ReadyForExec(task) is defined as Arrived(mssg(task)). There is a special case that a Receive
task is “used to start a Process”, which is indicated by an attribute called Instantiate(task).
In this case it is required for the underlying diagram, as static constraint, that either task has
no incoming arc and the associated process has no start event, or task has an incoming arc
and source(in) is a start event of the associated process [15, Table 9.19 p.65]. Therefore in this
particular case ReadyForExec(task) is defined to be the conjunction of Instantiate(task) = true
and Arrived(mssg(task)).

Tasks of type Send, Manual or Script are designed to unconditionally Execute the associated
action, namely to Send(msgg(task)) respectively to Call the performer(s) of the associated man-
ual action or script code—presumably with the effect to trigger its execution and to wait until that
action or code execution is Completed . In the case of script code the executing agent (read: the
engine that interpretes the script code) is the performer and the script code represents the to be
executed action. In the case of a manual task, to Call the performer is intended to activate “the
human resource that will be performing the Manual Task” [15, Table 9.23 p.67], which we denote
as action of the task for the given input.

A task of type Reference simply calls another task; to Execute it means to Execute the
referenced taskRef (task) (recursive definition).

The standard document determines the currInput(task), from where the (assumed to be de-
fined) inputs(currInput(task)) to start task are taken, by saying that “each InputSet is suffi-
cient to allow the activity to be performed” [15, Table 9.10 p.50], leaving it open which ele-
ment of inputSets(task) to choose if there are more than one available. We therefore consider
currInput(task) as result of an implementation-defined selection procedure selectInputSets that se-
lects an element out of SomeAvail(inputSets(task)). This input remains known until the end of
the proper task Execution since the choice of the output may depend on it via the relation
IORules(task) between input and output sets (see below the definition of ProduceOutput).

To produce an output (if any, indicated in the definition of TaskTransition(task) by square
brackets) upon task completion,31 an element of outputSets(task) with defined output is chosen
that satisfies the IORule(task) together with the currInputSet(task) ∈ inputSets(task) from which
the inputs had been taken to start the task . For the chosen element the defined outputs(o) are
Emitted [15, Table 9.10 p.50].

We collect here also the BPMN stipulations for the completion of single tasks.

Completed(t , ttype) =
Arrived(outMssg(t , ttype)) if type(t) ∈ {Service,User}
Received(mssg(task , ttype)) if type(t) = Receive
Sent(mssg(task , ttype)) if type(t) = Send
Completed(action(t , inputs(currInput(t))), ttype) if type(t) ∈ {Script ,Manual}
Completed(taskRef (t), ttype) if type(t) = Reference

29 The standard document leaves it open whether the service executing agent respectively the human
performers are incorporated as address into the inMssg(task) or whether this address should be a
parameter of the Send machine.

30 It remains unclear in the wording of the standard document whether Arrived or Received is meant here.
31 In case of no outgoing sequence flow and no end event in the associated process, the task (if it is not

marked as a Compensation Task, in which case it is “not considered a part of the Normal Flow”) “marks
the end of one or more paths in the Process.” In this case the process is defined to be completed “when
the Taks ends and there are not other parallel paths active” [15, Table 9.4.3 p.68]. This definition assumes
the other parallel paths to be known, although from the standard document it is not clear whether this
knowledge derives from static information on the graph structure or from run-time bookkeeping of the
paths that form a parallel subprocess. Presumably it is intended to permit both.
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Besides the notions of messages to have Arrived or been Sent they use a concept of completion
for the execution of (the actions associated to) script and manual tasks, all of which the standard
document seems to assume as known.

TaskTransition(task) = [if Enabled(in) then]
if ReadyForExec(task) then let t = firingToken(in)

[Consume(t , in)]
let i = selectInputSets(SomeAvail(inputSets(task)))

Exec(task , inputs(i))
currInput(task) := i

[seq
if Completed(task , t) then

[ProduceOutput(outputSets(task), currInput(task))]
[Produce(taskToken(task , t), out)]]

where
ProduceOutput(outputSets(t), i) =

choose o ∈ outputSets(t) with Defined(outputs(o)) and IORules(t)(o, i) = true
Emit(outputs(o))

ReadyForExec(t) =SomeAvail(inputSets(t)) if type(t) ∈ {Service,User}
Arrived(mssg(t)) [and Instantiate(t)] if type(t) = Receive
true if type(t) ∈ {Send ,Script ,Manual ,Reference}

Exec(t , i) =

Send(inMssg(t)) if type(t) ∈ {Service,User}
Receive(mssg(t)) if type(t) = Receive
Send(mssg(t)) if type(t) ∈ {Send}
Call(performer(action(t , i)), action(t , i)) if type(t) ∈ {Script ,Manual}
Exec(taskRef (t), i) if type(t) = Reference
skip if type(t) = None

6.2 Iterative Activity Nodes

The BPMN concepts of iterative activities correspond to well-known programming concepts of
iterated, parallel or sequential execution or stepwise execution in a non-deterministic order. Never-
theless we include their discussion here for the sake of completeness. Except their internal iterative
structure, iterative activities (tasks and subprocesses with corresponding markers) share the gen-
eral sequence flow and input/output mechanism of arbitrary activities. Therefore we reuse in the
transition rules for iterative activities the corresponding (possibly missing, depending on whether
there is incoming or outgoing sequence flow) entry and exit part of the TaskTransition(task)
rule without further explanations. For the sake of exposition we assume without loss of generality
also for iterative activity nodes the BPMN Best Practice Normal Form so that we consider (at
most) one ingoing and (at most) one outgoing arc.

Standard Loops Each activity in the set Loop of standard loops comes with a loopCond ition
that may be evaluated at one of the following two moments (called testTime):

before the to be iterated act ivity begins, in which case the loop activity corresponds to the
programming construct while loopCond do act ,
after the activity finishes, in which case the loop activity corresponds to the programming
construct until loopCond do act .
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The BPMN standard forsees also that in each round a loopCounter is updated, which can be used
in the loopCond (as well as a loopMaximum location). The standard document does not explain
however whether the input is taken only once, at the entry of the iteration, or at the beginning
of each iteration step. There are reasonable applications for both interpretations, so that the issue
should be clarified. This is partly a question of whether the function inputs, which is applied to
the selected input set currInput(node) to provide the input for the iterBody of the to be iterated
activity, is declared to be a static or a dynamic function.

The preceding discussion is summarized by the following rule for nodes with loopType(node) =
Standard . For a natural definition of while and until in a way that is compatible with the syn-
chronous parallelism of ASM execution see [12, Ch.4]. We use an abstract function loopToken to
denote how (if at all) the information on loop instances and incoming tokens is elaborated during
the iteration.

LoopTransition(node) = [if Enabled(in) then]
let t = firingToken(in)

LoopEntry(node, t)
seq

if testTime(node) = before then
while loopCond(node, t) LoopBody(node, t)

if testTime(node) = after then
until loopCond(node, t) LoopBody(node, t)

[seq LoopExit(node, t)]
where

LoopBody(n, t) =
loopCounter(node, t) := loopCounter(node, t) + 1
iterBody(node, loopToken(t , loopCounter(node, t) + 1)[, inputs(currInput(node))])

The auxiliary machines LoopEntry and LoopExit are defined as follows (the possibly missing
parts, in case there is no incoming/outgoing sequence flow or no input/output, are in square
brackets). Note that the predicate LoopCompleted(n) is not defined in the standard document. It
seems that the standard permits to exit a loop at any place, for example by a link intermediate
event (Fig.10.46 p.126) or by a so-called Go To Object (Fig.10.45 ibid.), so that the question has
to be anwered whether this is considered as completion of the loop or not (see the example for
“improper looping” in Fig.10.51 p.129).

LoopEntry(n, t) =
loopCounter(n, t) := 0
[Consume(t , in)]
[currInput(n) := selectInputSets(SomeAvail(inputSets(n)))]

LoopExit(n, t) =
if Completed(n, t) then

[ProduceOutput(outputSets(n), currInput(n))]
[Produce(loopExitToken(t , loopCounter(n, t)), out)]

Completed(n, t) = LoopCompleted(n, t) if n ∈ Loop(t)

Multi-Instance Loops The iteration condition of activities in the set MultiInstance of multi-
instance loops is integer-valued, an expression (location in ASM terms) denoted miNumber , called
MI-Condition in the standard document. A miOrdering for the execution of the instances is defined,
which is either parallel or sequential. In the latter case the order seems to implicitly be understood
as the order of integer numbers, so that we can use for the description of this case the ASM construct
foreach (for a definition see the appendix Sect. 10) followed by the submachine LoopExit defined
above. Also in this case a loopCounter is “updated at runtime”, though here it is allowed to
only be “used for tracking the status of a loop” and not in miNumber , which is assumed to
be “evaluated only once before the activity is performed” [15, Sect.9.4.1]. We reflect in the rule
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MultiInstTransition below the explicitly stated standard requirement that “The LoopCounter
attribute MUST be incremented at the start of a loop”.

In the parallel case a miFlowCond ition indicates one of four types to complete the parallel
execution of the multiple instances of iterBody . In these four cases we know only that all iteration
body instances are started in parallel (simultaneously). Therefore we use an abstract machine
Start for starting the parallel execution of the multiple instances of the iteration body. The
requirements for the miOrdering = Parallel case appear in [15, Table 9.12 p.52] and read as
follows.

Case miFlowCond = All : “the Token SHALL continue past the activity after all of the activity
instances have completed”. This means to LoopExit(node) only after for each i ≤ miNumber
the predicate Completed(iterBody(node,miToken(t , i)[. . .])) has become true.
Note that for the (sequential or parallel) splitting of multiple instances the information on
the current multiple instance number i becomes a parameter of the miToken function in the
iteration body; it corresponds to (and typically will be equal to) the loopCounter(node, t)
parameter of the loopToken function in LoopTransition. In this way the token miToken(t , i)
contains the information on the current iteration instance.
Case miFlowCond = None, also called uncontrolled flow : “all activity instances SHALL gen-
erate a token that will continue when that instance is completed”. This means that each time
for some i ≤ miNumber the predicate Completed(iterBody(node,miToken(t , i)[. . .])) becomes
true, one has to Produce a token on out . We define below a submachine EveryMultInstExit
to formalize this behavior.
Case miFlowCond = One: “the Token SHALL continue past the activity after only one of
the activity instances has completed. The activity will continue its other instances, but ad-
ditional Tokens MUST NOT be passed from the activity”. We define below a submachine
OneMultInstExit to formalize this behavior.
Case miFlowCond = Complex : a complexMiFlowCond expression, whose evaluation is al-
lowed to involve process data, “SHALL determine when and how many Tokens will con-
tinue past the activity”. Thus complexMiFlowCond provides besides the number tokenNo (of
activity instances that will produce continuation tokens) also a predicate TokenTime indi-
cating when passing the token via Produce(out) is allowed to happen. We will formalize
the required behavior in a submachine ComplMultInstExit defined below. There it will
turn out that EveryMultInstExit and OneMultInstExit are simple instantiations of
ComplMultInstExit.

MultiInstTransition(node) = [if Enabled(in) then]
let t = firingToken(in)

LoopEntry(node, t)
seq

if miOrdering(node) = Sequential then
foreach i ≤ miNumber(node)

loopCounter(node, t) := loopCounter(node, t) + 1
iterBody(node,miToken(t , i)[, inputs(currInput(node))])

seq LoopExit(node, t)
if miOrdering(node) = Parallel then

forall i ≤ miNumber(node)
Start(iterBody(node,miToken(t , i)[, inputs(currInput(node))]))

seq
if miFlowCond = All then

if Completed(node, t) then LoopExit(node, t)
if miFlowCond = None then EveryMultInstExit(node, t)
if miFlowCond = One then OneMultInstExit(node, t)
if miFlowCond = Complex then ComplMultInstExit(node, t)

where
Completed(n, t) = forall i ≤ miNumber(n) Completed(iterBody(n,miToken(t , i)[. . .]))
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ComplMultInstExit has to keep track of whether the initially empty set of those activity
instances, which have AlreadyCompleted and have passed their continuation tokens to the outgo-
ing arc, has reached the prescribed number tokenNo(complexMiFlowCond) of elements. If yes, the
remaining instances upon their completion are prevented from passing further tokens outside the
multiple instance activity. If not, each time an instance appears to be in NewCompleted we once
more Produce a token on the outgoing arc out—if the TokenTime(complexMiFlowCond) condi-
tion allows us to do so, in which case we also insert the instance into the set AlreadyCompleted .
Since the context apparently is distributed and since the standard document contains no constraint
on TokenTime(complexMiFlowCond), at each moment more than one instance may show up in
NewCompleted .32 Therefore we use a selection function selectNewCompleted to choose an element
from the set NewCompleted33 of multiple instances that have Completed but not yet produced
their continuation token.34 In the following definition n is supposed to be a multiple instance ac-
tivity node with parallel miOrdering . The standard document leaves it open whether output (if
any) is produced either after each instance has completed or only at the end of the entire multiple
instance activity, so that in our definition we write the corresponding updates in square brackets
to indicate that they may be optional.

ComplMultInstExit(n, t) = // for miOrdering(n) = Parallel
AlreadyCompleted := ∅ // initially no instance is completed
seq

while AlreadyCompleted 6= {i | i ≤ miNumber(n)} do
if NewCompleted(n, t) 6= ∅ then

if | AlreadyCompleted |< tokenNo(complexMiFlowCond)
then

if TokenTime(complexMiFlowCond) then
let i0 = selectNewCompleted in

Produce(miExitToken(t , i0), out)
Insert(i0,AlreadyCompleted)

[ProduceOutput(outputSets(n), currInput(n))]
else forall i ∈ NewCompleted(n, t) Insert(i ,AlreadyCompleted)

where
NewCompleted(n, t) =
{i ≤ miNumber(n) | Completed(iterBody(n,miToken(t , i)[. . .])) and i 6∈ AlreadyCompleted}

The EveryMultInstExit machine is an instance of ComplMultInstExit where tokenNo
is the number (read: cardinality of the set) of all to-be-considered activity instances and the
TokenTime is any time.

EveryMultInstExit(n, t) = ComplMultInstExit(n, t)
where

tokenNo(complexMiFlowCond) =| {i | i ≤ miNumber(n)} |
TokenTime(complexMiFlowCond) = true

32 The description of the case miFlowCond = One in the standard document is ambiguous: the wording
after only one of the activity instances has completed seems to implicitly assume that at each moment
at most one activity instance can complete its action. It is unclear whether this is really meant and if
yes, how it can be achieved in a general distributed context.

33 In ASM terminology this is a derived set, since its definition is fixed and given in terms of other dynamic
locations, here Completed and AlreadyCompleted .

34 If one prefers not to describe any selection mechanism here, one could instead use the forall construct
as done in the else branch. This creates however the problem that it would not be impossible for
more than tokenNo(complexMiFlowCond) many process instances to complete simultaneously so that a
more sophisticated mechanism must be provided to limit the number of those ones that are allowed to
Produce a token on the outgoing arc.
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OneMultInstExit is an instance of ComplMultInstExit where tokenNo = 1 and the
TokenTime is any time.

OneMultInstExit(n, t) = ComplMultInstExit(n, t)
where

tokenNo(complexMiFlowCond) = 1
TokenTime(complexMiFlowCond) = true

Remark. Into the definition of MultiInstTransition(node) one has to include the dynamic
update of the set Activity(p) of all running instances of multiple instances within process instance p,
since this set is used for the description of the behavior of end event transitions (in the submachine
DeleteAllTokens of EmitResult). It suffices to insert into some submachines some additional
updates as follows:

include Insert(inst ,Activity(proc(t)) in every place (namely in MultiInstTransition(node))
where the start of the execution of a multiple instance inst is described,
include the update Delete(inst ,Activity(proc(t))) where the completion event of an activity
instance inst is described (namely in LoopExit for the sequential case and for the parallel
case in ComplMultInstExit).

AdHoc Processes AdHoc processes are defined in [15, Table 9.14 p.56-57] as subprocesses of
type Embedded whose AdHoc attribute is set to true. The declared intention is to describe by such
processes activities that “are not controlled or sequenced in any particular order” by the activity
itself, leaving their control to be “determined by the performers of the activities”. Nevertheless an
adHocOrder ing function is provided to specify either a parallel execution (the default case) or a
sequential one.35

Notably the definition of when an adhoc activity is Completed is left to a monitored predicate
AdHocCompletionCond ition, which “cannot be defined beforehand” (ibid.p.132) and is required
to be “determined by the performes of the activites”. Therefore the execution of the rule for an
adhoc process continues as long as the AdHocCompletionCond ition has not yet become true; there
is no further enabledness condition for the subprocesses of an ad hoc processes. As a consequence
it is probably implicitly required that the AdHocCompletionCond ition becomes true when all the
“activities within an AdHoc Embedded Sub-Process”, which we denote by a set (parallel case) or
list (sequential case) innerAct, are Completed . Thus the transition rule to describe the behavior of
an adhoc activity can be formalized as follows.

AdHocTransition(node) = [if Enabled(in) then]
let t = firingToken(in)

[Consume(t , in)]
[let i = selectInputSets(SomeAvail(inputSets(node)))

currInput(node) := i ]
while not AdHocCompletionCond(node, t)

if adHocOrder(node) = Parallel then forall a ∈ innerAct(node) do a[inputs(i)]
if adHocOrder(node) = Sequential then let< a0, . . . , an >= innerAct(node)

foreach j < n do aj [inputs(i)]
seq LoopExit(node, t)

where Completed(node, t) = AdHocCompletionCond(node, t)

Remark on completely undefined ad hoc behavior In [15, Sect.10.2.3 p.132] yet another
understanding of “the sequence and number of performances” of the inner activities of an adhoc
process is stated, namely that “they can be performed in almost (Sic) any order or frequency”

35 For the description of the parallel case we use the parallel ASM construct forall, for the sequential case
the foreach construct as defined for ASMs in Sect. 10 using seq.
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and that “The performers determine when activities will start, when they will end, what the next
activity will be, and so on”. The classification into sequential and parallel adHocOrder seems to
disappear in this interpretation, in which any behavior one can imagine could be inserted. We
have difficulties to believe that such a completely non-deterministic understanding is intended as
BPMN standard conform. To clarify what the issue is about, we rewrite the transition rule for adhoc
processes by explicitly stating that as long as AdHocCompletionCond is not yet true, repeatedly a
multi-set of inner activities can be chosen and executed until completion. The fact that the choice
happens in a non-deterministic manner, which will only be defined by the implementation or at
runtime, is made explicit by using the choose construct for ASMs (see Sect. 10 for an explanation).
We use A ⊆multi B to denote that A is a multi-set of elements from B .

UnconstrainedAdHocTransition(node) = [if Enabled(in) then]
let t = firingToken(in)

[Consume(t , in)]
[let i = selectInputSets(SomeAvail(inputSets(node)))

currInput(node) := i ]
while not AdHocCompletionCond(node, t)

choose A ⊆multi innerAct(node)
forall a ∈ A do a[inputs(i)]

seq LoopExit(node, t)
where Completed(node, t) = AdHocCompletionCond(node, t)

Many issues remain open with such an interpretation. For example, can an activity within an
ad hod embedded subprocess be transactional? Can it be an iteration? What happens if during
one execution round for a chosen subset A of embedded activities one of these throws an exception
that cannot be caught within the embedded activity itself? Can ad hod subprocesses be nested?
If yes, how are exceptions and transactional requirements combined with nesting? Etc.

6.3 Subprocess Nodes

The main role of subprocesses is to represent modularization techniques. Their role in creating an
EventContext for exception handling, cancellation and compensation has already been described
above when formalizing the behavior of intermediate events that are placed on the boundary of
an activity. Their role in showing parallel activities has been dealt with by the description of iter-
ative (in particular adhoc) processes. The normal sequence flow of their inner activities is already
formalized by the preceding description of the behavior of tasks, events and gateways, using that
subprocess activities in BPMN have the same sequence flow connections as task activities. What
remains to be described is their role when calling an activity, which may involve an instantiation
and passing data from caller to callee, and when coming back from an activity.

For the discussion of calling and returning from subprocesses we can start from the BPMN Best
Practice Normal Form assumption as made for tasks, namely that there is (at most) one incoming
and (at most) one outgoing arc. For calling a subprocess we can assume that when an arc incoming
a subprocess is enabled, the start event of the process if triggered. This stipulation comes up to
be part of the definition of the Triggered predicate for such start events, where we assume for
the token model that the event type is Link and that startToken con veys the token information
related to this link to the the token created when the subprocess starts. If there is no incoming
arc, then the standard stipulation is that the subprocess (if it is not a compensation) is enabled
when its parent process is enabled. We can include this into the description of the previous case
by considering that there is a special virtual arc in our graph representation that leads from the
parent process to each of its (parallel) subprocesses. We have dealt in a similar way with returning
from a subprocess via end events, which bring the sequence flow back to the parent process (see the
definition of EmitResult for end events in Sect. 5). This is in accordance with the illustrations
in [15, Fig.10.14-16 p.108-110] for dealing with start/end events that are attached to the boundary
of an expanded subprocess (see also the characteristic example in [15, Fig.10.48 p.127]).
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There is not much one can do to formalize instantiation aspects since the standard document
leaves most of the details open. For example concerning the instantiation of a process called by a
so-called independent subprocess it is stated that “The called Process will be instantiated when
called but it can be instantiated by other Independent Sub-Process objects (in other diagrams)
or by a message from an external source” [15, Sect.9.4.2 p.57]. This does not mean that there is
not a certain number of issues to specify to make the subprocess concept clear enough to allow for
standard compatible implementations. These issues are related to problems of procedure concepts
that are well-known from programming languages. For example, how is the nesting of (recursive?)
calls of independent subprocesses dealt with, in particular in relation to the exception handling
and the transaction concept? Which binding mechanism for process instances and which parameter
passing concept is assumed? Are arbitrary interactions (sharing of data, events, control) between
caller and callee allowed? Etc.

7 Related Work

There are two specific papers we know on the definition of a formal semantics of a subset of
BPMN. In [17] a Petri net model is developed for a core subset of BPMN which however, due
to the well-known lack of high-level concepts in Petri nets, “does not fully deal with: (i) parallel
multi-instance activities; (ii) exception handling in the context of subprocesses that are executed
multiple times concurrently; and (iii) OR-join gateways. ” In [41] it is shown “how a subset of the
BPMN can be given a process semantics in Communicating Sequential Processes”, starting with a
formalization of the BPMN syntax using the Z notation and offering the possibility to use the CSP-
based model checker for an analysis of model-checkable properties of business processes written in
the formalized subset of BPMN. Both papers present, for a subset of BPMN, technically rather
involved models for readers who are knowledgeable in Petri nets respectively CSP, two formalisms
one can hardly expect system analysts or business process users to know or to learn. In contrast,
the ASM descriptions we have provided here cover every construct of the BPMN standard and use
the general form of if Event and Condition then Action rules of Event-Condition-Action systems,
which are familiar to most analysts and professionals trained in process-oriented thinking. Since
ASMs provide a rigorous meaning to abstract (pseudo-) code, for the verification and validation of
properties of ASMs one can adopt every appropriate accurate method, without being restricted to
mechanical (theorem proving or model checking) techniques.

The feature-based definition of workflow concepts in this paper is an adaptation of the method
used in a similar fashion in [35] for an instructionwise definition, verification and validation of
interpreters for Java and the JVM. This method has been developed independently for the definition
and validation of software product lines [6], see [5] for the relation between the two methods.

8 Conclusion and Future Work

A widely referenced set of 23 workflow patterns appeared in [37] and was later extended by 20
additional workflow patterns in [33]. The first 23 patterns have been described in various languages,
among which BPMN diagrams [15, Sect.10.2], [38], coloured Petri nets [33], an extension of a
subset of BPMN [23]36, UML 2.0 in comparison to BPMN [38]. A critical review of the list of these
patterns and of their classification appears in [10], where ASM descriptions are used to organize
the patterns into instances of eight (four sequential and four parallel) fundamental patterns. It
could be interesting to investigate what form of extended BPMN descriptions can be given for the
interaction patterns in [3] (formalized by ASMs in [4]), where the communication between multiple
processes becomes a major issue, differently from the one-process-view of BPMN diagrams dealt
with in this paper, which was motivated by the fact that in BPMN the collaboration between
different processes is restricted to what can be expressed in terms of events, message exchange
between pools and data exchange between processes.
36 The extensions are motivated by the desire to capture also the additional 20 workflow patterns
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One project of practical interest would be to use the high-level description technique presented
in this paper to provide for the forthcoming extension BPMN 2.0 a rigorous description of the
semantical consequences of the intended extensions, adapting the abstract BPMN model devel-
oped here. For this reason we list at the end of this section some of the themes discussed in this
paper where the present BPMN standard asks for more precision or some extension. The scheme
for WorkflowTransition is general enough to be easily adaptable to the inclusion of process
interaction and resource usage concerns, should such features be considered by the standardization
comittee for an inclusion into the planned extension of BPMN to BPMN 2.0, as has been advo-
cated in [39]. To show that this project is feasible we intend to adapt the model developed here for
BPMN 1.0 to a refined model for BPMN 1.1.

One can also refine the ASM model for BPMN to an adaptation to the current BPEL version
of the ASM model developed in [20,21] for BPEL constructs. The ASM refinement concept can be
used to investigate the semantical relation established by the mapping defined in [15, Sect.11] from
process design realized in BPMN to its implementation by BPEL executions. In particular one can
try to resolve the various issues discussed in [29] and related to the fact that BPMN and BPEL
reside at different levels of abstraction and that the mapping must (be proved to) preserve the
intended process semantics. This is what in the literature is refered to with the bombastic wording
of a “conceptual mismatch” [30] between BPMN and BPEL. One could also use CoreAsm [18,19]
for a validation of the models through characteristic workflow patterns.

Another interesting project we would like to see being undertaken is to define an abstract model
that either semantically unifies UML 2.0 activity diagrams with BPMN diagrams or allows one to
naturally instantiate its concepts to those of the two business process description languages and
thus explicitly point to the semantic similarities and differences. This is feasable, it has been done
for a comparison of highly complex programming languages like Java and C# in [13] using the
corresponding ASM models developed for Java and C# in [35,11].

8.1 List of Some Themes for Reviewing the Current BPMN Standard

We summarize here some of the issues concerning the BPMN standard that have been discussed
in the paper, where the reader can find the corresponding background information.

1. Clarify the correlation mechanism for multiple events needed to start a process.
2. Clarify the intended consumption mode for events (in particular timer and messages).
3. Specify the assumptions on the selection of input (see task node section).
4. Clarify the issues related to the interpretation of the classical iteration concepts (e.g. which

input is taken for while/loop constructs). In particular clarify the concepts of upstream paths
and of parallel paths.

5. Provide a precise definition of activities to be Completed , in particular with respect to the
iteration concepts for ad hoc processes and MultiInstTransition. Clarify what assumptions
are made on the possible simultaneous completion of multiple subprocess instances.

6. Provide a precise definition of interruption and cancel scopes, in particular of the set Activity(p)
of running instances of multiple instances within a process instance p.

7. Define the behavioral impact of the concept of (multiple) tokens.
8. Clarify the issues related to the procedural concept of (in particular independent) subprocesses

and its relation to the underlying transaction concept.
9. Clarify the (possible nesting of the) exception handling and compensation mechanism (in par-

ticular whether it is stack like, as seems to be suggested by [15, Sect.11.13]).
10. Clarify the underlying transaction concept, in particular the interaction between the trans-

action concepts in the listed non-normative references, namely business transaction protocol,
open nested transitions and web services transactions in relation to the group concept of [15,
Sect.9.7.4], which is not restricted to one agent executing a pool process.

11. Clarify how undetermined the interpretation of OR-join gateways is intended (specification of
the functions selectProduce and selectConsume).
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12. Clarify the issues related to the refinement of abstract BPMN concepts to executable ver-
sions, in particular their mapping to block-structured BPEL (see [29] for a detailed analysis of
problems related to this question).

13. Clarify whether to keep numerous interdefinable constructs or to have a basic set of independent
constructs from where other forms can be defined in a standard manner (pattern library).37

14. Clarify whether other communication mechanisms than the one in BPEL are allowed.
15. Formulate a best practice discipline for BPMN process diagrams.
16. Add the consideration of resources.
17. Provide richer explicit forms of interaction between processes.

9 Appendix: The BPMN Execution Model in a Nutshell

We summarize here the rules explained in the main text. We do not repeat the auxiliary definitions
provided in the main text.

9.1 The Scheduling and Behavioral Rule Schemes

WorkflowTransitionInterpreter =
let node = selectNode({n | n ∈ Node and Enabled(n)})
let rule = selectWorkflowTransition({r | r ∈ WorkflowTransition and Fireable(r ,node)})

rule

The behavioral rule scheme (form of rules in WorkflowTransition):

WorkflowTransition(node) =
if EventCond(node) and CtlCond(node)

and DataCond(node) and ResourceCond(node) then
DataOp(node)
CtlOp(node)
EventOp(node)
ResourceOp(node)

9.2 Gateway Rules

AndSplitGateTransition(node) = WorkflowTransition(node)
where

CtlCond(node) = Enabled(in)
CtlOp(node) =

let t = firingToken(in)
Consume(t , in)
ProduceAll({(andSplitToken(t , o), o) | o ∈ outArc(node)})

DataOp(node) = //performed for each selected gate
forall o ∈ outArc(node) forall i ∈ assignments(o) Assign(toi , fromi)

AndJoinGateTransition(node) = WorkflowTransition(node)
where

CtlCond(node) = forall in ∈ inArc(node) Enabled(in)
CtlOp(node) =

let [in1, . . . , inn ] = inArc(node)
let [t1, . . . , tn ] = firingToken(inArc(node))

ConsumeAll({(tj , inj )) | 1 ≤ j ≤ n})
Produce(andJoinToken({t1, . . . , tn}), out)

DataOp(node) = forall i ∈ assignments(out) Assign(toi , fromi)
37 The problem of redundancy of numerous BPMN constructs has been identified also in [28]. An analogous

problem has been identified for UML 2.0 activity diagrams, called “excessive supply of concepts” in [34].
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OrSplitGateTransition(node) =
let O = selectProduce(node) in WorkflowTransition(node,O)

where
CtlCond(node) = Enabled(in)
CtlOp(node,O) =

let t = firingToken(in)
Consume(t , in)
ProduceAll({(orSplitToken(t , o), o) | o ∈ O})

DataOp(node,O) = forall o ∈ O forall i ∈ assignments(o) Assign(toi , fromi)

Constraints for selectProduce

selectProduce(node) 6= ∅
selectProduce(node) ⊆ {out ∈ outArc(node) | OrSplitCond(out)}

OrJoinGateTransition(node) =
let I = selectConsume(node) in WorkflowTransition(node, I )

where
CtlCond(node, I ) = (I 6= ∅ and forall j ∈ I Enabled(j ))
CtlOp(node, I ) =

Produce(orJoinToken(firingToken(I )), out)
ConsumeAll({(tj , inj ) | 1 ≤ j ≤ n}) where

[t1, . . . , tn ] = firingToken(I )
[in1, . . . , inn ] = I

DataOp(node) = forall i ∈ assignments(out) Assign(toi , fromi)

GateTransitionPattern(node) =
let I = selectConsume(node)
let O = selectProduce(node) in

WorkflowTransition(node, I ,O)
where

CtlCond(node, I ) = (I 6= ∅ and forall in ∈ I Enabled(in))
CtlOp(node, I ,O) =

ProduceAll({(patternToken(firingToken(I ), o), o) | o ∈ O})
ConsumeAll({(tj , inj ) | 1 ≤ j ≤ n}) where

[t1, . . . , tn ] = firingToken(I )
[in1, . . . , inn ] = I

DataOp(node,O) = forall o ∈ O forall i ∈ assignments(o) Assign(toi , fromi)

9.3 Event Rules

StartEventTransition(node) =
choose e ∈ trigger(node) StartEventTransition(node, e)

StartEventTransition(node, e) =
if Triggered(e) then Produce(startToken(e), out)

ConsumEvent(e)

EndEventTransition(node) =
if Enabled(in) then

Consume(firingToken(in), in)
EmitResult(firingToken(in), res(node),node)
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EmitResult(t , result ,node) =
if type(result) = Message then Send(mssg(node, t))
if type(result) ∈ {Error ,Cancel ,Compensation} then

Triggered(targetIntermEv(result ,node)) := true // trigger intermediate event
Insert(exc(t), excType(targetIntermEvNode(result ,node))))

if type(result) = Cancel then
Callback(mssg(cancel , exc(t),node), listener(cancel ,node))

if type(result) = Link then Produce(linkToken(result), result)
if type(result) = Terminate then DeleteAllTokens(process(t))
if type(result) = None and IsSubprocessEnd(node) then

Produce(returnToken(targetArc(node), t), targetArc(node))
if type(result) = Multiple then

forall r ∈ MultipleResult(node) EmitResult(t , r ,node)

Callback(m,L) = forall l ∈ L Send(m, l)
DeleteAllTokens(p) = forall act ∈ Activity(p)

forall a ∈ inArc(act) forall t ∈ TokenSet(p) Empty(token(a, t))

IntermEventTransition(node) =
choose e ∈ trigger(node) IntermEventTransition(node, e)

IntermEventTransition(node, e) =
if Triggered(e) then

if not BoundaryEv(e) then
if Enabled(in) then let t = firingToken(in)

ConsumEvent(e)
Consume(t , in)
if type(e) = Link then Produce(linkToken(link), link)
if type(e) = None then Produce(t , out)
if type(e) = Message then

if NormalFlowCont(mssg(node), process(t))
then Produce(t , out)
else Throw(exc(mssg(node)), targetIntermEv(node))

if type(e) = Timer then Produce(timerToken(t), out)
if type(e) ∈ {Error ,Compensation,Rule} then Throw(e, targetIntermEv(e))

if BoundaryEv(e) then
if active(targetAct(e)) then

ConsumEvent(e)
if type(e) = Timer then Insert(timerEv(e), excType(node))
if type(e) = Rule then Insert(ruleEv(e), excType(node))
if type(e) = Message then Insert(mssgEv(e), excType(node))
if type(e) = Cancel then choose exc ∈ excType(node) in

if Completed(Cancellation(e, exc)) then Produce(excToken(e, exc), out)
else TryToCatch(e,node)

where
TryToCatch(ev ,node) =

if ExcMatch(ev) then Produce(out(ev))
else TrytoCatch(ev , targetIntermEv(node, ev))

Completed(Cancellation(e)) =
RolledBack(targetAct(e)) and Completed(Compensation(targetAct(e)))
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9.4 Activity Rules

TaskTransition(task) = [if Enabled(in) then]
if ReadyForExec(task) then let t = firingToken(in)

[Consume(t , in)]
let i = selectInputSets(SomeAvail(inputSets(task)))

Exec(task , inputs(i))
currInput(task) := i

[seq
if Completed(task , t) then

[ProduceOutput(outputSets(task), currInput(task))]
[Produce(taskToken(task , t), out)]]

where
ProduceOutput(outputSets(t), i) =

choose o ∈ outputSets(t) with Defined(outputs(o)) and IORules(t)(o, i) = true
Emit(outputs(o))

ReadyForExec(t) =SomeAvail(inputSets(t)) if type(t) ∈ {Service,User}
Arrived(mssg(t)) [and Instantiate(t)] if type(t) = Receive
true if type(t) ∈ {Send ,Script ,Manual ,Reference}

Exec(t , i) =

Send(inMssg(t)) if type(t) ∈ {Service,User}
Receive(mssg(t)) if type(t) = Receive
Send(mssg(t)) if type(t) ∈ {Send}
Call(performer(action(t , i)), action(t , i)) if type(t) ∈ {Script ,Manual}
Exec(taskRef (t), i) if type(t) = Reference
skip if type(t) = None

LoopTransition(node) = [if Enabled(in) then]
let t = firingToken(in)

LoopEntry(node, t)
seq

if testTime(node) = before then
while loopCond(node, t) LoopBody(node, t)

if testTime(node) = after then
until loopCond(node, t) LoopBody(node, t)

[seq LoopExit(node, t)]
where

LoopBody(n, t) =
loopCounter(node, t) := loopCounter(node, t) + 1
iterBody(node, loopToken(t , loopCounter(node, t) + 1)[, inputs(currInput(node))])

LoopEntry(n, t) =
loopCounter(n, t) := 0
[Consume(t , in)]
[currInput(n) := selectInputSets(SomeAvail(inputSets(n)))]

LoopExit(n, t) =
if Completed(n, t) then

[ProduceOutput(outputSets(n), currInput(n))]
[Produce(loopExitToken(t , loopCounter(n, t)), out)]

Completed(n, t) = LoopCompleted(n, t) if n ∈ Loop(t)

36



MultiInstTransition(node) = [if Enabled(in) then]
let t = firingToken(in)

LoopEntry(node, t)
seq

if miOrdering(node) = Sequential then
foreach i ≤ miNumber(node)

loopCounter(node, t) := loopCounter(node, t) + 1
iterBody(node,miToken(t , i)[, inputs(currInput(node))])

seq LoopExit(node, t)
if miOrdering(node) = Parallel then

forall i ≤ miNumber(node)
Start(iterBody(node,miToken(t , i)[, inputs(currInput(node))]))

seq
if miFlowCond = All then

if Completed(node, t) then LoopExit(node, t)
if miFlowCond = None then EveryMultInstExit(node, t)
if miFlowCond = One then OneMultInstExit(node, t)
if miFlowCond = Complex then ComplMultInstExit(node, t)

where
Completed(n, t) = forall i ≤ miNumber(n) Completed(iterBody(n,miToken(t , i)[. . .]))
ComplMultInstExit(n, t) = // for miOrdering(n) = Parallel

AlreadyCompleted := ∅ // initially no instance is completed
seq

while AlreadyCompleted 6= {i | i ≤ miNumber(n)} do
if NewCompleted(n, t) 6= ∅ then

if | AlreadyCompleted |< tokenNo(complexMiFlowCond)
then

if TokenTime(complexMiFlowCond) then
let i0 = selectNewCompleted in

Produce(miExitToken(t , i0), out)
Insert(i0,AlreadyCompleted)

[ProduceOutput(outputSets(n), currInput(n))]
else forall i ∈ NewCompleted(n, t) Insert(i ,AlreadyCompleted)

NewCompleted(n, t) = {i ≤ miNumber(n) |
Completed(iterBody(n,miToken(t , i)[. . .]))
and i 6∈ AlreadyCompleted}

EveryMultInstExit(n, t) = ComplMultInstExit(n, t)
where

tokenNo(complexMiFlowCond) =| {i | i ≤ miNumber(n)} |
TokenTime(complexMiFlowCond) = true

OneMultInstExit(n, t) = ComplMultInstExit(n, t)
where

tokenNo(complexMiFlowCond) = 1
TokenTime(complexMiFlowCond) = true

UnconstrainedAdHocTransition(node) = [if Enabled(in) then]
let t = firingToken(in)

[Consume(t , in)]
[let i = selectInputSets(SomeAvail(inputSets(node)))

currInput(node) := i ]
while not AdHocCompletionCond(node, t)

choose A ⊆multi innerAct(node)
forall a ∈ A do a[inputs(i)]

seq LoopExit(node, t)
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AdHocTransition(node) = [if Enabled(in) then]
let t = firingToken(in)

[Consume(t , in)]
[let i = selectInputSets(SomeAvail(inputSets(node)))

currInput(node) := i ]
while not AdHocCompletionCond(node, t)

if adHocOrder(node) = Parallel then forall a ∈ innerAct(node) do a[inputs(i)]
if adHocOrder(node) = Sequential then let< a0, . . . , an >= innerAct(node)

foreach j < n do aj [inputs(i)]
seq LoopExit(node, t)

where Completed(node, t) = AdHocCompletionCond(node, t)

10 Appendix: ASMs in a nutshell

The ASM method for high-level system design and analysis (see the AsmBook [12]) comes with
a simple mathematical foundation for its three constituents: the notion of ASM, the concept of
ASM ground model and the notion of ASM refinement. For an understanding of this paper only
the concept of ASM is needed. For the concept of ASM ground model (read: mathematical system
blueprint) and ASM refinement see [9].

10.1 ASMs = FSMs with arbitrary locations

n

cond 1

cond nrule

1rule

i

j

jn

1

if ctl state = i then
if cond1 then

rule1

ctl state := j1
· · ·

if condn then
rulen

ctl state := jn

Fig. 1. Viewing FSM instructions as control state ASM rules

The instructions of a Finite State Machine (FSM) program are pictorially depicted in Fig. 1,
where i , j1, . . . , jn are internal (control) states, condν (for 1 ≤ ν ≤ n) represents the input condition
in = aν (reading input aν) and ruleν the output action out := bν (yielding output bν), which goes
together with the ctl state update to jν . Control state ASMs have the same form of programs and
the same notion of run, but the underlying notion of state is extended from the following three
locations:

a single internal ctl state that assumes values in a not furthermore structured finite set
two input and output locations in, out that assume values in a finite alphabet

to a set of possibly parameterized locations holding values of whatever types. Any desired level of
abstraction can be achieved by permitting to hold values of arbitrary complexity, whether atomic
or structured: objects, sets, lists, tables, trees, graphs, whatever comes natural at the considered
level of abstraction. As a consequence an FSM step, consisting of the simultaneous update of the
ctl state and of the output location, is turned into an ASM step consisting of the simultaneous
update of a set of locations, namely via multiple assignments of the form loc(x1, . . . , xn) := val ,
yielding a new ASM state.

This simple change of view of what a state is yields machines whose states can be arbitrary
multisorted structures, i.e. domains of whatever objects coming with predicates (attributes) and
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functions defined on them, structures programmers nowadays are used to from object-oriented
programming. In fact such a memory structure is easily obtained from the flat location view of
abstract machine memory by grouping subsets of data into tables (arrays), via an association of
a value to each table entry (f , (a1, . . . , an)). Here f plays the role of the name of the table, the
sequence (a1, . . . , an) the role of a table entry, f (a1, . . . , an) denotes the value currently contained
in the location (f , (a1, . . . , an)). Such a table represents an array variable f of dimension n, which
can be viewed as the current interpretation of an n-ary “dynamic” function or predicate (boolean-
valued function). This allows one to structure an ASM state as a set of tables and thus as a
multisorted structure in the sense of mathematics.

In accordance with the extension of unstructured FSM control states to ASM states repre-
senting arbitrarily rich structures, the FSM-input cond ition is extended to arbitrary ASM-state
expressions, namely formulae in the signature of the ASM states. They are called guards since
they determine whether the updates they are guarding are executed.38 In addition, the usual non-
deterministic interpretation, in case more than one FSM-instruction can be executed, is replaced
by the parallel interpretation that in each ASM state, the machine executes simultaneously all the
updates which are guarded by a condition that is true in this state. This synchronous parallelism,
which yields a clear concept of locally described global state change, helps to abstract for high-level
modeling from irrelevant sequentiality (read: an ordering of actions that are independent of each
other in the intended design) and supports refinements to parallel or distributed implementations.

Including in Fig. 1 ctl state = i into the guard and ctl state := j into the multiple assignments
of the rules, we obtain the definition of a basic ASM as a set of instructions of the following form,
called ASM rules to stress the distinction between the parallel execution model for basic ASMs
and the sequential single-instruction-execution model for traditional programs:

if cond then Updates

where Updates stands for a set of function updates f (t1, . . . , fn) := t built from expressions ti , t
and an n-ary function symbol f . The notion of run is the same as for FSMs and for transition
systems in general, taking into account the synchronous parallel interpretation.39 Extending the
notion of mono-agent sequential runs to asynchronous (also called partially ordered) multi-agent
runs turns FSMs into globally asynchronous, locally synchronous Codesign-FSMs [27] and similarly
basic ASMs into asynchronous ASMs (see [12, Ch.6.1] for a detailed definition).

The synchronous parallelism (over a finite number of rules each with a finite number of to-be-
updated locations of basic ASMs) is often further extended by a synchronization over arbitrary
many objects in a given Set , which satisfy a certain (possibly runtime) Property :

forall x [∈ Set ][with Property(x )] do
rule(x )

standing for the execution of rule for every object x , which is element of Set and satisfies Property .
Sometimes we omit the key word do. The parts ∈ Set and with Property(x ) are optional and
therefore written in square brackets.

Where the sequential execution of first M followed by N is needed we denote it by M seq
N , see [12] for a natural definition in the context of the synchronous parallelism of ASMs. We
sometimes use also the following abbreviation for iterated sequential execution, where n is an
integer-valued location:

foreach i ≤ n do rule(i) =
rule(1) seq rule(2) seq . . . seq rule(n)

38 For the special role of in/output locations see below the classification of locations.
39 More precisely: to execute one step of an ASM in a given state S determine all the fireable rules in S

(s.t. cond is true in S), compute all expressions ti , t in S occuring in the updates f (t1, . . . , tn) := t of
those rules and then perform simultaneously all these location updates if they are consistent. In the
case of inconsistency, the run is considered as interrupted if no other stipulation is made, like calling an
exception handling procedure or choosing a compatible update set.
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ASM Modules Standard module concepts can be adopted to syntactically structure large ASMs,
where the module interface for the communication with other modules names the ASMs which are
imported from other modules or exported to other modules. We limit ourselves here to consider
an ASM module as a pair consisting of Header and Body. A module header consists of the name
of the module, its (possibly empty) import and export clauses, and its signature. As explained
above, the signature of a module determines its notion of state and thus contains all the basic
functions occurring in the module and all the functions which appear in the parameters of any
of the imported modules. The body of an ASM module consists of declarations (definitions) of
functions and rules. An ASM is then a module together with an optional characterization of the
class of initial states and with a compulsory additional (the main) rule. Executing an ASM means
executing its main rule. When the context is clear enough to avoid any confusion, we sometimes
speak of an ASM when what is really meant is an ASM module, a collection of named rules,
without a main rule.

ASM Classification of Locations and Functions The ASM method imposes no a priori re-
striction neither on the abstraction level nor on the complexity nor on the means of definition
of the functions used to compute the arguments and the new value denoted by ti , t in function
updates. In support of the principles of separation of concerns, information hiding, data abstrac-
tion, modularization and stepwise refinement, the ASM method exploits, however, the following
distinctions reflecting the different roles these functions (and more generally locations) can assume
in a given machine, as illustrated by Figure 2 and extending the different roles of in, out , ctl state
in FSMs.

A function f is classified as being of a given type if in every state, every location (f , (a1, . . . , an))
consisting of the function name f and an argument (a1, . . . , an) is of this type, for every argument
(a1, . . . , an) the function f can take in this state.

Semantically speaking, the major distinction is between static and dynamic locations. Static
locations are locations whose values do not depend on the dynamics of states and can be determined
by any form of satisfactory state-independent (e.g. equational or axiomatic) definitions. The further
classification of dynamic locations with respect to a given machine M supports to distinguish
between the roles different ‘agents’ (e.g. the system and its environment) play in using (providing
or updating the values of) dynamic locations. It is defined as follows:

controlled locations are readable and writable by M ,
monitored locations are for M only readable, but they may be writable by some other machine,
output locations are by M only writable, but they may be readable by some other machine,

controlled out

derived

(monitored)
in

(interaction)

static

shared

dynamic

basic

function/relation/location

Fig. 2. Classification of ASM functions, relations, locations
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shared locations are readable/writable by M as well as by some other machine, so that a
protocol will be needed to guarantee the consistency of writing.
Monitored and shared locations represent an abstract mechanism to specify communication

types between different agents, each executing a basic ASM. Derived locations are those whose
definition in terms of locations declared as basic is fixed and may be given separately, e.g. in
some other part (“module” or “class”) of the system to be built. The distinction of derived from
basic locations implies that a derived location can in particular not be updated by any rule of
the considered machine. It represents the input-output behavior performed by an independent
computation. For details see the AsmBook [12, Ch.2.2.3] from where Figure 2 is taken.

A particularly important class of monitored locations are selection locations, which are fre-
quently used to abstractly describe scheduling mechanisms. The following notation makes the
inherent non-determinism explicit in case one does not want to commit to a particular selection
scheme.

choose x [∈ Set ][with Property(x )][do]
rule(x )

This stands for the ASM executing rule(x ) for some element x , which is arbitrarily chosen among
those which are element of Set and satisfy the selection criterion Property. Sometimes we omit the
key word do. The parts ∈ Set and with Property(x ) are optional.

We freely use common notations with their usual meaning, like let x = t in R, if cond then
R else S , list operations like zip((xi)i , (yi)i) = (xi , yi)i , etc.

Non-determinism, Selection and Scheduling Functions It is adequate to use the choose
construct of ASMs if one wants to leave it completely unspecified who is performing the choice and
based upon which selection criterion. The only thing the semantics of this operator guarantees is
that each time one element of the set of objects to choose from will be chosen. Different instances
of a selection, even for the same set in the same state, may provide the same element or maybe not.
If one wants to further analyze variations of the type of choices and of who is performing them, one
better declares a select ion function, to select an element from the underlying set of Cand idates,
and writes instead of choose c ∈ Cand do R(c) as follows, where R is any ASM rule:

let c = select(Cand) in R(c)

The functionality of select guarantees that exactly one element is chosen. The let construct guar-
antees that the choice is fixed in the binding range of the let. Declaring such a function as dynamic
guarantees that the selection function applied to the same set in different states may return dif-
ferent elements. Declaring such a function as controlled or monitored provides different ownership
schemes. Naming these selection functions allows the designer in particular to analyze and play
with variations of the selection mechanisms due to different interpretations of the functions.
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