Abstract State Machine Nets.
Closing the Gap between Business Process Models
and their Implementation

Egon Borger
Universita di Pisa
Dipartimento di Informatica
I-56125 Pisa, ltaly

boerger@di.unipi.it

ABSTRACT

The gap between on the one side the users’ understanding of
Business Process Models (BPMs) and on the other side the
run behavior of model implementations is still with us. We
introduce Abstract State Machine Nets (ASM Nets) whose
component ASMs can be defined using a simple combination
of textual (data-oriented) and intuitive graphical (control-
flow oriented) yet semantically rigorously defined descrip-
tive means. This allows the BP experts to design BPMs
whose underlying ASM Nets constitute a reliable precise
contract—a contract which guarantees the BP domain ex-
perts that the application-domain focussed understanding of
the BPMs they design is also a correct understanding of the
code behavior provided by the implementation of the models
by software experts. This paves the way for the development
of certifiably correct BPMs and their implementations. To
illustrate one practical and one conceptual application of the
concept we a) instantiate ASM Nets to model the behavioral
meaning of the graphical and textual notations used in the
commercial S-BPM tool suite with its focus on communica-
tion (service interaction) and b) show that applying the rig-
orous ASM refinement concept to ASM Nets supports IBM’s
Guard-Stage-Milestone approach to adaptive case manage-
ment by an accurate conceptual foundation.®

1. INTRODUCTION

It has been shown in numerous occasions that the Ab-
stract State Machines (ASM) Method [16] can help to close
the gap between the detailed fine-grained execution behaviour
of a software based system and the users’ abstract under-
standing of it. For references and characteristic examples

!The first author gratefully acknowledges support of this
work by a reinvitation by the Alexander von Humboldt
Foundation for a 2014 summer term research stay in Ger-
many, sequel to the Humboldt Forschungspreis awarded in
2007/08.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions @acm.org.

S-BPM ONE 15, April 23-24, 2015, Kiel, Germany

Copyright 2015 ACM 978-1-4503-3312-2/15/04 ... $15.00
http://dx.doi.org/10.1145/2723839.2723840.

Albert Fleischmann
D-85276 Pfaffenhofen
Albert.Fleischmann@interaktiv.expert

see [46, 16]. During the last two decades the problem has
received an increasing attention for the special case of Busi-
ness Process (BP) modeling and execution systems.

A peculiar feature of the development of BPs is a widespread
tradition to let the BP expert define Business Process Mod-
els (BPMs) using graphical notations which often come with
only loose, incomplete or even ambiguous descriptions of the
behavior they are intended to suggest and to leave the def-
inition of an executable model to the software developer—
without mediating between the loose graphical and the (by
the nature of software necessarily precise) textual software
model to guarantee that the latter correctly implements the
former. As a consequence of the early (unsatisfactory?®) fo-
cus of BPMs on control flow still today many BPM ap-
proaches deal with data, communication, resources and con-
ditions on the process environment (if at all) separately from
process flow, as an add-on (which furthermore the BP do-
main expert may have difficulties to control)® and often (as
for example in the widely process-centric OMG standard
BPMN [2]) only in a cursory manner, outside the process
specification and without precise connection to it.

We show that multi-agent ASMs can be defined as BP
specific nets of components whose definitions are supported
by a uniform notation which seamlessly combines textual
and intuitive pictorial yet semantically rigorously defined
descriptive means. The graphical part of the notation used
for these so-called ASM Nets extends the classical flowchart
notation for Finite State Machines (FSMs) and is integrated
with the description of data, communication and resource
aspects as well as of conditions on the process execution en-
vironment (e.g. coming through business rules), adaptable
to the desired level of abstraction. This avoids the frequent
mismatch between process and data layers in BPMs.*

In Sect. 2 we explain why it is important and what it

2Traditional flow-driven assembly and orchestration of ser-
vice components are ‘too rigid and static to accomodate
complex, real-world business processes’ [47, p.415].

3For example in [50] to insert data into a workflow model
one must use XML and XSD, languages most BP domain
experts will not know so that only an IT expert can insert
the data into the workflow model.

4This mismatch can be observed in mainly process-centric
modeling approaches like BPMN where the data dependency
of (or the data manipulation performed by) a BP activity
is modeled mostly outside the BP model (if at all). This is
the main motivation for so-called data-centric approaches to
BPM, see [18].

needs to bridge the gap between high-level BP models and
their executable versions. The section is of epistemological
character and can be skipped by the reader who is interested
only in technical matters. In Sect. 3.1 we define ASM Nets,
in Sect. 3.2 we explain how applying the ASM refinement
method [10] to ASM Nets can enhance IBM’s Guard-Stage-
Milestone approach proposed in [27]. In Sect. 4 we instan-
tiate ASM Nets by behavioral diagrams as they are used
in the Subject-Oriented BPM method [20]. In Sect. 5 we
discuss some methodological consequences the use of ASM
Nets and their refinements yield for certifiability of BPs.

2. REQUIREMENTS CAPTURE
BY GROUND MODELS

It is a well-known problem that the behavior of imple-
mentations of BPMs often does not satisfy the expectations
of the domain expert who defined the models. This mis-
match between the users’ understanding of a process and
the behavior of the machine which executes the process is
not even avoided by building the models using only standard
notations, e.g. of the OMG standard for BPMN [2] and its
‘standard’ compilation to the OASIS standard BPEL [7],
given the insufficient precision and the lack of completeness
of these standards and the conceptual mismatch between
them, which are amply documented in the literature (see
for ex. [35, 36, 48] and [12] with further references there).

The situation is an instance of a problem many complex
software intensive systems face. It has two methodologi-
cally different but complementary aspects, an epistemolog-
ical one—how to provide accurate models of processes in
the real world—and one concerning software engineering
methods—how to correctly code such rigorous models by
software which controls the execution of the intended pro-
cesses by machines. Numerous methods and techniques exist
to solve in more or less satisfactory ways the software engi-
neering part of the problem, prominent among them various
practical stepwise refinement approaches [49, 4, 10, 16, 5].
But the epistemological side of the coin, known as ground
model problem, is often neglected and therefore briefly char-
acterized below before discussing its specific BP character-
istics and proposing a way to solve it satisfactorily.

2.0.1 The ground model problem.

The problem is about requirements capture, the first ac-
tivity at the two ends of the development of software-based
systems: understanding and formulation of real-world prob-
lems by humans to prepare the deployment of problem so-
lutions by code execution using various machines and plat-
forms. Requirements capture deals with descriptions of real-
world problems written by domain experts, formulated in
natural language, interspersed with diagrams, tables, for-
mulae, etc. Frequently such descriptions suffer from lack
of precision, ambiguity, incompleteness, inconsistency—yet
they have to serve as basis for the software design experts
who usually are not knowledgeable in the application domain
but have to develop software representations of the required
systems, i.e. compilable programs written for mechanical
elaboration by machines and therefore in need of implemen-
tation details at a level of precision and completeness that
is far away from the application domain view.

In other words the question is how to link ‘informal’ re-
quirements documents to necessarily formalized executable

code, the latter written to satisfy the former, in a way to
guarantee that the code does what the requirements describe
and not something else. Furthermore such a link must be re-
liably preserved during maintenance, e.g. upon requirements
change or process optimization when the process model and
its implementation have to be adapted to the new situation.
It is here that ground models and their stepwise refinements
come into play.

A ground model is a blueprint of the to-be-implemented
piece of real world—called ‘golden model’ in the semicon-
ductor industry [44]. It defines what in [17] is called ‘the
conceptual construct’ or ‘the essence’ of the software sys-
tem. It does this prior to coding, abstractly and rigorously:

= at an application-problem-determined level of detailing
(minimality), avoiding details that are only needed for
an implementation or only belong to the used modeling
language, but expressing domain knowledge as far as
it is relevant for the intended system behavior,

» formulated in application domain terms with technical
precision (sometimes called informal accuracy, as used
in mathematics), without ambiguity, based upon the
domain experts’ know-how,

= quthoritatively for the further development activities
including maintenance, serving in particular as design
contract for the software developer.

The name ‘ground model’ refers to the fact that these
models have to ground the design in reality by justifying
their definition as

m correct: the model elements reliably convey the origi-
nal intentions of the requirements, reflecting the tech-
nical know-how of the experts in the given domain di-
rectly, precisely and understandably for the software
designer,

= complete: every semantically relevant feature is present,
for the software designer there is no gap in understand-
ing or filling in of ‘what to build’,

m consistent: ambiguities and conflicting objectives in
the requirements have been removed resp. resolved by
the domain experts.

As a consequence ground models have to solve the three
typical problems every development process for software in-
tensive systems faces:

» the communication problem to offer a language in which
software system designers, domain experts and cus-
tomers can formulate prior to coding a common un-
derstanding of ‘precisely what to build’,

» the verification method problem: since there is no infi-
nite regress, there can be no mathematical transition
from informal to precise descriptions, but model in-
spection and domain-specific reasoning can provide ev-
idence of the intended direct correspondence between
ground model concepts and the reality the model has
to capture (using empirical interpretations of extra-
logical terms to guarantee model completeness and cor-
rectness),

» the validation problem: one has to validate the model
behaviour by repeatable experiments which systemat-
ically try to (in the Popperian sense) falsify model
execution by runtime verification and scenario-based
testing.

A way to solve the problem is to define ground models

using the not formalized, but mathematically precise gen-
eral purpose language of Abstract State Machines [16]. We
cannot show this here and instead refer the interested reader
to [16, 46, 9, 11] for numerous references to ground model
ASMs for a large variety of complex software-based systems
and industrial standards. In this paper we want to show
instead how one can tailor ASMs specifically to support ef-
fective ground model construction techniques in the BP do-
main.

2.0.2 The ground model concern for BPs.

In the BP domain we did not find the term “ground model”
but the concern is there. Under various names one finds in
the literature the two fundamental ground model related
requests for BPMs:

application correctness BPMs should come with a mini-
mal “semantical distance to human understanding” [21,
Sect.1, pg.1] and “manage a business-meaningful scope
of a business” in a way which “enables business insights
and improves communication among diverse stakehold-
ers about the operations and processes of a business” [27,
pg.2]. For the GSM (Guard-State-Milestone) approach
in IBM’s ArtiFact project “the core constructs of GSM
were chosen ... to be very close to the way that the
business stakeholders think—in terms of milestones
and business rules” (ibid., pg.4). Much of the focus on
pictorial definitional means in the BP domain is moti-
vated by this concern to support building BP models
which are close to the domain expert’s knowledge so
that he can control them to be epistemologically ‘cor-
rect’, from the point of view of the application.

implementation correctness The mapping of human-un-
derstandable BPMs to executable code “should allow
propagating the information from a value chain per-
spective to a software-development perspective in a
coherent and consistent way” providing the BP ex-
pert with an effective “end-to-end control ... to build
process-managed enterprise” [21, Sect.2, pg.3-4]. The
declared “second broad goal” of IBM’s ArtiFact project
is that BPMs “while reasonably intuitive, are action-
able, in the sense that there is a relatively direct path
from the specification to an implementation of running
systems” [27, pg.4]. This concern is about means to re-
liably relate ground models to executable code using
stepwise model refinement with various (experimental)
validation and (mathematical) verification techniques.

The Subject-Oriented approach to BPM (S-BPM [20])
stands out among the ones which are concerned about the
ground model problem by addressing it at its epistemological
roots instead of only focussing on pictorial notational means
for process representation. S-BPM achieves human under-
standing of BPMs above all by aligning BP descriptions to
three fundamental constituents of elementary sentences in
natural languages, namely “subjects” which perform actions
(expressed by “predicates”) on “objects” and in particular
communicate by sending (output) or receiving (input) mes-
sages. As a result, using the S-BPM approach:

1. Stakeholders need only to be familiar with natural lan-
guage ... to express their work behavior ...

2. Stakeholder specifications can be processed directly
without further transformations, and thus, experienced
as described’. [21, Sect.1, pg.2]

The close conceptual relation analysed in [13] between
the S-BPM approach and the ASM method for the devel-
opment of software intensive systems triggered the idea to
tailor multi-agent ASMs for BPs to a domain-specific, user-
friendly, graphically supported modeling language (Sect. 3)
in which BP users can express their design using directly BP-
knowledge-based (including graphically represented) terms
and notations which can be supported in two directions:

= by the underlying ASM constructs which correctly (for
the BP expert) and precisely (for the software expert)
express their intuitive understanding and can be justi-
fied by inspection and validation to do so, thus solving
the ground model problem,

» by implementations of these constructs the correct-
ness of which is validatable by experiments and (in
principle) provable, given the mathematical character
of ASMs and their refinements (in the sense defined
in [10]) to executable code.

3. TUNING ASMS AS BPM LANGUAGE

The definition of ASM Nets below uses as components a
variant of so-called control state ASMs which were defined
in [8] (see also [16, Ch.2.2.6]). There are two reasons for
doing this in an attempt to align with the in the BP domain
widespread graphical representation of processes:

m Control state ASMs offer the BP designer a flexible
high-level compositional structure to split complex mod-
els by the introduction of modes or phases into compo-
nents. This compositional structure is long-known in
software engineering and conveniently taken from Fi-
nite State Machines (FSMs), but control state ASMs
combine it with the full power of component abstrac-
tion and refinement ASMs offer, thus avoiding a) the
restriction FSMs suffer from only being able to manip-
ulate mere letters (or words, trees, etc. in various ex-
tensions of FSMs) and b) incomprehensible spaghetti
flowcharts, a risk the use of BPMN faces due to its
poor process structuring means (see [36]).

= Control state ASMs inherit from FSMs the intuitive
pictorial control flow representation by flowcharts and
allow the designer to directly express also the under-
lying data, resource and environmental process con-
ditions, at the level of detail which corresponds to
the level of abstraction of the model and with tex-
tual definitions where appropriate (read: simpler, di-
rect and without the risk of different interpretations of
complex pictorial representations by different users).
This uniform way to combine graphical and textual de-
scriptions avoids the introduction of an overwhelming
number of graphical language elements—a defect for
which the OMG standard BPMN (which comes with
more than 100 by no means all intuitive graphical ele-
ments) has been rightly critized for [51, 52]. To find a
good balance between graphical and textual represen-
tation is pragmatically important since each increase in
graphical notation yields increased meta-model com-
plexity and risks to make transparent faithful imple-
mentations more and more impractical.’

5The possibility to insert textual descriptions where a graph-
ical format would complicate matters seems to be a dividing
line between so-called process-centric and data-centric ap-

3.1 Definition of ASM Nets

An ASM Net N is a (finite) diagram built from ASM net
transitions (also called ASM net rules with body M) of the
form defined by Fig. 1 where it is allowed to connect any
exit node of one transition (read: to identify it) with one
and at most one entry node of another transition.

EntryCond(1)
// ’
EntryCond(n)

Figure 1: ASM Net Transition

The BEHAVIOR(trans) resulting from applying the transition

is defined as execution of (an instance of) the body M which
is

= STARTed if N is in the phase denoted by the entry
node and the corresponding EntryCondition is satis-
fied where EntryCond can be any state property or
event (e.g. to trigger a service) or a combination of
both,’

» continued if the body is already active and not yet
Completed,

= FINALIZEd when M’s execution is Completed letting
the net proceed in the phase denoted by the exit node
whose EzitCondition is satisfied.

Multiple EntryConditions are required to be pairwise dis-
joint unless otherwise stated; similarly for the EzitConditions
for which it is also assumed that at least one of them is true
when Completed(M) holds.”

The behavior of the entire (sequential) ASM net N with
given set Transition of transitions is then simply the union
of all single transition behaviors, formally:

BenAVIOR(N) = |_J{BEHAVIOR(trans) | trans € Transition}

The BEHAVIOR(C) of a concurrent system C of ASM Nets,
where multiple agents execute asynchronously each one (se-
quential) ASM Net N € C, can be defined as the set of all
BEHAVIOR(N) with N € C. For a general precise definition
of the semantics of runs of concurrent ASMs see [14].

Fig. 1 is tailored as a scheme one can instantiate as needed
for specific BPs and at the desired level of detail by step-
wise refining the Entry/EzitConditions, the body behavior
(i.e. that of M, START(M) and FINALIZE(M)) and the ter-
mination criterion (defining when the execution of the body

proaches to BPM: “Conditions and [business] rules become
essential when business policies are too intricate or cumber-
some to express in a graphical format alone.” [27, pg.4]

6 EntryConditions support loose coupling of system compo-
nents by separating the generation of an event from trigger-
ing the to-be-executed process, a crucial feature for reactive
BP systems.

7 Alternatively, the first possible entry/exit mode is assumed
to be taken in the order in which their guards appear in the
diagram or a selection discipline is provided.

Exitcond(1) — ,
\
\
\\
i ExitCond(m)

is considered as Completed). We describe in Sect. 3.2 two
concrete classes of ASM Nets and their refinements which
are useful for BPM.

To achieve the mediation goal between BP and software
experts mentioned in the previous section we provide for the
intended intuitive understanding of Fig. 1 also a mathemat-
ically precise textual counterpart whose semantics is defined
by the semantics of ASMs [16, Ch.2.4]. Here i denotes any
entry mode ® and EntryCond; its entry condition, j any exit
mode and EzitCond; its exit condition, Mode(M) the set
of possible internal mode values of the body M (which are
assumed to be different from any entry/exit mode value).

BEHAVIOR(transition) = forall i, j
if mode = i and EntryCond; then // enter M
START(M)
mode := start(M,1) // make M active
if active(M) then
if not Completed(M) then M // iterate M
if Completed(M) then // exit M
FINALIZE(M)
if EzitCond; then mode := j
where active(M) = (mode € Mode(M))

The graphical representation in Fig. 1 is borrowed from
FSM flowcharts where

» each node, pictorially indicated as circle or oval usually
carrying a name ¢, stands for a mode or phase of the
ASM net, also called control state and corresponding
to what traditionally is called an ‘internal state’ of an
FSM,°

= rhombs name the Condition which must be true (or the
event which has to happen, or both) for the transition
to be applicable,

= rectangles name the to-be-taken transition action, the
body behavior.

3.2 Instantiating the Definition of ASM Nets

The way we propose to use ASM Nets for BP modeling
deliberately avoids the complex sets of actions offered in the
(syntactically richer) activity diagrams of UML 2.0 [1]'° or
similar concepts in BPMN [2]. We want to use only graphical
notations which more or less directly and clearly suggest the
intuitive meaning the underlying ASM formalization defines
for them as basis for a semantically correct transformation
to executable code—without paying for the major reliability
by a loss of generality, given that the underlying ASMs are
expressivity wise as general as a computational system can
be.

8Most BPM approaches require for every M a unique start
mode start(M). Using the same mode location for the ASM
Net transition and its body M determines the sequential
(mono-agent) nature of the defined ASM Net.

9“Control’ states represent the control flow part of the com-
prehensive state concept of ASMs which comprises also the
data, resource and communication part.

%Tn this context we mention [37, 38, 29, 30] which provide
a precise mathematical foundation for the major graphical
UML 2 notations, including activity diagrams, by developing
ASM ground models together with their implementation,
thus offering a unified precise framework for the major UML
diagram types.

3.2.1 Control state ASMs.
A conceptually simple but general instance of ASM Nets

results from interpreting the body M, START(M), FINALIZE(M)

in an ASM Net transition as control state ASMs. The latter
were defined in [8],[16, Ch.2.2.6] as ASMs all of whose rules
have the form of Fig. 2 with pairwise disjoint cond;.

Ceond e, |3

@_
SCINITN S

Figure 2: Control state ASM instructions

In Sect. 4 we will use only such control state ASMs.

3.2.2 GSM Approach.

A specific management instance of ASM Nets, formulated
at an abstraction level which is appropriate for ‘guiding the
operations of a business’ [26, pg.3], is IBM’s recent Guard-
State-Milestone (GSM) approach [27]. According to [23] it
forms ‘the conceptual basis of the forthcoming OMG Case
Management Model and Notation (CMMN) standard’ [3].
It is not difficult to define a GSM ground model by an
ASM Net once all intended system features which are only
sketched in [27] are fully clarified, given the close correspon-
dence between the basic GSM concepts and their ASM net
counterpart.

In GSM the word stage is used instead of mode, phase or
control state; an EntryCond is called a guard which ‘enables
entry into the stage body’ by launching (read: STARTing)
an occurrence of it; a stage body is ‘intended to achieve a
milestone (or one of several related milestones)’ [27, pg.3]
which can be expressed by EzitConditions (instantiating
Completed(M) to their disjunction).

GSM permits nesting of stages where ‘all occurrences of
substages are terminated if the parent closes’ (op.cit., pg.12);
this is a specific instance of the ASM Net submachine con-
cept. Also ‘stages at the same level of nesting may execute
in parallel’ (ibid., pg.7), which is an instance of the syn-
chronous parallel resp. truly concurrent concept of compu-
tation of ASM Nets. A “transactional consistency discipline
based on read and write locks” is used, see [15] for an ASM
model of such a discipline. Atomic stage bodies (i.e. without
substages) are allowed to contain a sequence of several tasks,
namely assignments, an invocation of external services, a re-
quest to create a new instance or to send a response to a call
or to send an event (message). Such tasks can be described
by simple control state ASMs (see for example [6]).

The GSM approach shares with the ASM method the con-
cern to describe process behavior—via the GSM lifecycle
model which corresponds to (read: can be described by)
the rules of an ASM model—not separated from but to-
gether with the underlying process relevant data. This is
the role of the GSM information model—which corresponds
to (read: can be described by) the states of an ASM—where
“all business-relevant information about an entity instance”,
namely data/event attributes, milestones and state infor-
mation [27, pg.6-7], is held. Interestingly enough the of-
ten critized ‘global’ state concept ASMs support is used

here in the sense that “the ... information model is shared
among the multiple stakeholders involved ... a design fea-
ture that fosters communication across different groups and
sub-organizations. This is a deliberate and significant de-
parture from traditional SOA and object-oriented program-
ming, where the internal data structures of a service or ob-
ject are hidden.”(ibid., pg.12)

A framework for or a rigorous foundation of what is called
to ‘drill-down’ into a stage seems to be missing in op.cit.
The ASM refinement concept defined in [10] provides both
a) a practical general framework that supports systematic
detailing of model elements down to executable code and
b) a rigorous mathematical foundation (which has been fur-
ther developed and implemented in a well-known interactive
theorem prover in [39, 40, 42, 41, 43]). Enhancing ‘drilling-
down’ by ASM refinements could help to implement what
in [27, pg.4] is called “a central vision of Project ArtiFact”,
namely to develop GSM models stepwise, starting from “in-
tuitive, inprecise, and /or incomplete” descriptions and piece-
wise adding more and more details provided by the stake-
holders, eventually leading to a GSM specification. We re-
fer to the literature [46, 16, 11] for the variety of real-life
applications of ASM refinements to piecemeal system de-
velopment and illustrate the method by some simple BPM
examples in Sect. 4.2.

4. S-BPMINTERPRETER SPECIFICATION

In this section we instantiate ASM nets to the Subject Be-
havior Diagrams (SBDs) of the S-BPM method [20], thereby
building a ground model for the behavioral meaning of the
core concepts of its commercial tool suite [34]. This simpli-
fies considerably the definition of an interpreter of graphi-
cally designed S-BPMs in [20, Appendix]*'.

In an S-BPM of a (distributed) process each involved
party (called subject) in each process phase performs one
action which is either internal or a communication with
another party (Send or Receive via synchronous or asyn-
chronous message exchange). The Subject Interaction Di-
agram (SID) of a process defines what in [31, p.1162] is
called the network topology, i.e. the communication links
through which the subjects interact (read: Send and Receive
messages) in the process. The Subject Behavior Diagrams
(SBDs) of a process on whose interpretation our attention
is focussed here define for each subject the sequence of the
actions it performs using the relevant data of the involved
business objects.'? In the next Sect. 4.1 we use ASM Nets
to define the BEHAVIOR i (SBD) of a subject when it walks
through an SBD, exploiting that the mathematical graph
structure underlying ASM Nets and SBDs is the same.'?

4.1 Subject behavior diagrams

The appendix contains some misleading text
editing errors. A correct version can be down-
loaded from http://www.hanser.de/buch.asp?

isbn=978-3-446-42707-5&area=Wirtschaft and
http://www.di.unipi.it/ boerger/Papers/Bpmn/
SbpmBookAppendix.pdf.

12The granularity of S-BPMs depends on the decision about
which subjects should explicitly appear as actors of the to-
be-defined BP. This decision reflects the particular business
needs of the process and precedes the definition of the SBDs.
13SBDs are restricted to nets with exactly one initial node
and one or more end nodes and such that each path leads
to at least one end node.

http://www.hanser.de/buch.asp?isbn=978-3-446-42707-5&area=Wirtschaft
http://www.hanser.de/buch.asp?isbn=978-3-446-42707-5&area=Wirtschaft
http://pages.di.unipi.it/borger/Papers/Bpmn/SbpmBookAppendix.pdf
http://pages.di.unipi.it/borger/Papers/Bpmn/SbpmBookAppendix.pdf

By treating SBDs as ASM Nets the BEHAVIOR sy, (SBD)
results from the local BEHAVIOR(subj, node) of the subject
at any SBD node. In fact in an SBD each node represents
a process phase or mode in which the executing subject is
when (typically triggered by an EntryCond) it PERFORMS
the associated local action A—which constitutes the body
(here called service(node)) of an ASM Net transition. Once
the subject has Completed to PERFORM the service(node) it
proceeds to one of possibly multiple successive modes each of
which can be reached under a specific termination condition
of the PERFORMed service, its EritCondition. This explains
the definition of the ASM net transition in Fig. 3.

®

ExitCond;
e

~ PERFORM(a)

|
Completed(A)

no yes

Figure 3: BEHAVIOR(subj, node) (of a subject in a node)

This intuitive understanding of the BEHAVIOR of a node is
accurate (due to its mathematical foundation by the seman-
tics of ASMs [16, Ch.2.4]) and complete relative to the un-
derstanding of what it means to START and then to PERFORM
a service until it is Completed—three notions which for in-
ternal actions are defined by the typically domain-specific
meaning of these actions the BP expert understands and
knows well. The ASM framework supports that one might
use existing library functions for their implementation or,
where needed, specify the relevant functional behavior sep-
arately. The semantical meaning of PERFORMing a ComAct
(Communication Action, ComAct € {Send, Receive}) is de-
fined by stepwise ASM refinement in the next Sect. 4.2.

4.2 Refining the Communication Actions

In this section we define by four ASM refinement steps
the detailed conceptual meaning of PERFORMing an S-BPM
communication, avoiding however any reference to imple-
mentation details. First we define single communication,
a ComAct of sending or receiving one message and refine
it to multiple communication by which a given multitude
of messages can be sent or received as a bundle. The lat-
ter is refined to alternative communication which allows one
to select among a set of alternatives until for one choice
(if there is any) the multiple send or receive action suc-
ceeds. The last refinement yields the detailed definition of
PERFORM yp; (ComAct) for any S-BPM ComAction.

Each of these refinements happens to constitute a purely
incremental (in logic also called conservative) extension of
the given model, meaning that the extension performs previ-
ous behavior without semantical change and adds some new
behavior. This special case of ASM refinements is method-
ologically important by the strong support conservative ex-
tensions provide for both modular design and compositional
verification techniques.

In S-BPM each subject is equipped with an input pool

ExitCond, ‘

where messages sent to this subject are placed by other sub-
jects and where the receiver looks for a message when it is
ready to take it. We abstract in this exposition from the way
these input pools can be configured, accessed and blocked
(for a message of a specific type and/or from a specific
sender) to uniformly handle synchronous and asynchronous
communication (see [20, pg. 321-324] for details).

4.2.1 Single Communication Action.

For a single send or receive action the sender first has to
PREPARE the msgToBeHandled, a message of a determined
type to be sent or received. As second step the sender will
TRy the ComAct for the prepared msgToBeHandled and
then TERMINATE it with either success or failure. This ex-
plains the refinement defined by the control state ASM in
Fig. 4.

. PREPARE | | TRY
(ComAct,msgToBeHandled) ' (ComAct,msgToBeHandled) 5‘

TERMINATE |
| (comAct,msgToBeHandled)

Terminate
(ComAct)

Figure 4: SINGLE(ComAct)

By further refinements one can detail the behavior of the
rather abstract components PREPARE, TRY and TERMINATE.
We illustrate here the next refinement step for the latter two
because they define the basic use S-BPM subjects make of
their input pool. For PREPARE see below the definition of
Murti(ComAct).

The refinement of TERMINATE(ComAct, msgToBeHandled)
states that after a successful communication the subject can
COMPLETENORMALLY, otherwise it has to HANDLEFAILure
of sending resp. receiving the msgToBeHandled. This ex-
plains the refinement defined in Fig. 5.

+
| Complete Normal

| Normally " Exit

Failure
(ComAct,m)

B HandleFailure Failure

(ComAct,m) © Exit
yes -

Figure 5: Refinement of TERMINATE(ComAct, m)

If the sender CanAccess the input pool of the receiver
and the pool is not blocked (neither for the sender nor
for the type of the msgToBeHandled), then the sender can
PassMsa with msgToBeHandled for an asynchronous inser-
tion into the pool'® and TERMINATE with success. Other-
wise, in case the sender can have a Rendezvous for a syn-
chronous communication with the receiver, the message is
directly taken by the receiver bypassing the input pool (syn-
chronous Receive) and the sender can TERMINATE with suc-

1A refinement of PassMsG (skipped here) shows how de-
pending on the configuration and current state of the pool
the message is either dropped or inserted into the pool (pos-
sibly dropping some other message from it).

cess. In the other cases the send action will TERMINATE
with failure. This explains the refinement defined in Fig. 6.

] Record
Failure(m)
PassMsg(m)
RecordSuccess(m) gt

Record yes Rendez
Success(m) vous

Record
Failure(m)

Figure 6: Refinement of TRy (Send, m)

Analogously a receiver, depending on whether it wants to
asynchronously or synchronously receive an instance of the
(kind of) msgToBeHandled, checks whether such a message
is Present in its input pool or available via a Rendezvous
with the sender and in case it is the receiver ACCEPTs the
instance of the msgToBeHandled from its input pool resp.
makes a local copy of what the sender offers. This explains
the refinement defined in Fig. 7.

)

Sync Async
(Receive,m) (Receive,m)
Record | Rendez 3 | Accept
Locally(m) Vous(m) resent(m) yes | (m)
yes no

Figure 7: Refinement of TRy (Receive, m)

4.2.2 Refinement of Single to Murti(ComAct).

S-BPM permits to send or receive multiple messages in
one communication action. The understanding is that all
messages have first to be prepared together and then to be
sent or received one by one, without pursueing any other
action in between. In case of failure for at least one message
the MuLTI(ComAct)ion fails and leads to failure handling,
otherwise it succeeds.

To capture this requirement by extending SINGLE(ComAct)
incrementally it suffices to a) refine the PREPARE component
to prepare not one but a set MsgToBeHandled of messages
and b) to apply the iteration pattern to the core compo-
nent TRY of SINGLE(ComAct).'® Since the order in which

15Had the requirement not asked to first prepare all to be
handled messages and only then send them one by one,
one could have applied the iterator pattern directly to
SINGLE(ComAct) instead of applying it to its components.

PREPARE | select | Choose msgToBeHandled
| (ComAct,MsgToBeHandled) ' nxtMsg MarkChoice
no
oD [emmnorna] (5
(ComAct,msgToBeHandled) os—

i MultiRound
Finished
Terminate
(ComAct)

Figure 8: Refinement MuLTI(ComAct)

l TERMINATE | — F
(ComAct,MsgToBeHandled)

the prepared messages are sent out or received is considered
to be behaviorally irrelevant we use the non-deterministic
CHOOSE operator to select for each iteration step the next
msgToBeHandled out of MsgToBeHandled (together with
marking the selected element to exclude double selections).
In the definition of the refinement by Fig. 8 the two new
components are placed on the right hand side of the reused
SINGLE(ComAct) components.

The definition of the (typically human-performed) PREPARE
component provides the interface to the handling of the data
to define (say for Sending) the content of msgToBeHandled:
a function msgData the subject uses to retrieve in the cur-
rent state the needed data from the database as input for a
function composeMsg to define the msgToBeHandled.

PREPARE(Send, msgToBeHandled)(subj, state) =
msgToBeHandled (subj, state) :=
composeMsg(subj, msgData(subj, state))

The two auxiliary functions are platform specific and there-
fore left abstract here. But they serve to illustrate how tex-
tual descriptions can be seamlessly combined with graphi-
cal ASM Net elements. In fact the above PREPARE compo-
nent is lifted for MuLTI(Send) as follows to compute a set
MsgToBeHandled (where we introduce as further parameter
alternatives of given multitude which will be used below for
the further TRYALT(ComAct) refinement):

PREPARE(Send, MsgToBeHandled)(subj, state, alt) =
forall 1 < i < mult(alt)
let m; = composeMsg(subj, msgData(subj, state, alt), i)
MsgToBeHandled(subj, state) := {ma, ..., Mpuis(air) }

Remark. The extension is conservative: if MsgToBeHandled
is a singleton set {mg}, then the new updates are trivial
and the communication step of MULTI(ComAct)({mo}) boils
down to execute SINGLE(ComAct)(mo).

4.2.3 Refinement for communication alternatives.

S-BPM forsees also alternative communication actions which
allow subjects to repeatedly choose one alternative out of a
set of Alternatives and try to communicate the message(s)
prepared for the chosen alternative until the communication
succeeds, in which case the alternative communication step
succeeds.

Initialize
AltRound

AltRound
Finished

|
Choose MsgToBeHandled
| MarkChoice

Figure 9: Refinement TRYALT(ComAct)

This extension consists in simply iterating MuLTI(ComAct)
through the given set of Alternatives until one succeeds. As-
suming an appropriate initialization (which is part of the
definition of the START machine for an alternative communi-
cation node and which we skip here) the meaning of a single
step of the TRYALT(ComAct) refinement of MuLTI(ComAct)
is defined by Fig. 9, essentially parameterizing the set Msg-
ToBeHandled by the alternative.

For the iteration of TRYALT(ComAct) the S-BPM frame-
work stipulates that in a first (called ‘non blocking’) round
each alternative is tried out once; if none of them succeeds
further alternative communication attempts are performed
in additional (‘blocking’) rounds which are interruptable by
timeouts or user interactions. This requirement is captured
by the definition in Fig. 10 which refines for Communication
Action nodes the PERFORM component of Fig. 3.

| TryAlt(ComAct) |- *‘

J

Initialize [
AltRound

Initialize
InterruptableTryAlt §‘

I

+

MuLTI(ComAct)

Choose MsgToBeHandled
MarkChoice

yes

Interrupt
(Send)

Abrupt
(Send)
]

Figure 10: Refinement of PERFORM,y; (ComAct)

S. CERTIFIABILITY CONSEQUENCES

We have defined ASM Nets and illustrated that they can
serve to mediate between BP views of different stakeholders,
e.g. a domain expert and a software system designer. The
mediation is possible because the language of ASMs uses
only the (semantically well defined) fundamental description
as well as reasoning scheme of both natural and scientific
languages:

MULTI (ComAct) ‘\

]

if Condition then Statement

where Condition describes an arbitrary state property or
event (e.g. the arrival of a message or signal) which trig-
gers the action to-be-performed in the current state resp.
implies the to-be-proved logical expression describing a to-
be-verified property (e.g. a system invariant).

To see the consequences for certifiability let us recapitu-
late:

= ASM Nets provide the BP expert with an intuitive
but accurate and reliable behavioral definition of basic
BP constructs in application-domain terms and thus
enable to build BP ground models which can be sys-
tematically inspected and validated to be correct,*®

= Ground model ASM Nets constitute a precise and com-
plete specification for the software implementation of
the BP they define; if the coding process is correct—
a software design problem whose mathematical un-
derpinning can remain hidden to the BP expert, the
same as to an experienced car driver the technical de-
tails of the acceleration and brake mechanisms can re-
main hidden!—then the implementation is guaranteed
to correctly reflect the meaning the BP expert intended
when designing the high-level BPM.

As a consequence BPs developed this way can be certified.
The quality (degree of reliability) of a correctness certificate
is proportional to the quality of the ground model valida-
tion (e.g. by model inspection, model checking, model-based
testing) and the verification of the stepwise refinements used
to develop the executable BP—whether by compiling the
ground model ASM Net using a compiler verified a la [22,
45, 46, 28, 33] or by providing a qualified design documenta-
tion which shows the refinement correctness in the form of
proof sketches or mathematical or machine supported (in-
teractive or fully automated) proofs.

Using ASM nets offers the ingredients to produce certi-
fiably correct industrial BPs, a challenge which is a BP-

specific version of Hoare’s ‘verified software grand challenge’[24,

25]. In the BP domain version of the challenge, ground mod-
els and their validation play an even more important role
than in the general case and constitute a challenge in their
own for the modeling community.

Acknowledgement. The idea for this work came dur-
ing the Dagstuhl seminar on Integration of Tools for Rig-
orous Software Construction and Analysis (September 8-13,
2013). We thank the organizers U. Glisser, S. Hallerstede,
M. Leuschel and E. Riccobene for the inspiring and con-
structive seminar.

6. REFERENCES

[1] UML 2.0 superstructure specification. Object
Management Group, see
http://www.omg.org/cgi-bin/doc?formal /05-07-04.

[2] Business Process Model and Notation (BPMN).
Version 2.0. http://www.omg.org/spec/BPMN/2.0,
January 2011. formal/2011-01-03.

'SAn open-source implementation [32] of the S-BPM inter-
preter on top of CoreAsm [19] can be used by the BP expert
to experiment with executions of the process, without knowl-
edge of the coding which translates the graphical model into
executable code.

3]

[12]

[13]

[14]

[15]

Case Management Model and Notation (CMMN).
Version 1.0 Beta 1.
http://www.omg.org/spec/CMMN/1.0/Betal,
January 2013.

J.-R. Abrial. The B-Book. Cambridge University
Press, Cambridge, 1996.

J.-R. Abrial. Modeling in Event-B: System and
Software Engineering. Cambridge University Press,
Cambridge, 2010.

M. Altenhofen, E. Borger, A. Friesen, and J. Lemcke.
A high-level specification for virtual providers.
Int.J.BP Integration and Management, 1:267-278,
2006.

Web Services Business Process Execution Language
version 2.0. OASIS Standard, 2007. URL
http://docs.oasis-open.org/wsbpel/2.0/OS /wsbpel-
v2.0-OS.html.

E. Borger. High-level system design and analysis using
Abstract State Machines. In D. Hutter et al., editors,
Current Trends in Applied Formal Methods
(FM-Trends 98), volume 1641 of LNCS, pages 1-43.
Springer, 1999.

E. Borger. The ASM ground model method as a
foundation of requirements engineering. In
N.Dershowitz, editor, Verification: Theory and
Practice, volume 2772 of LNCS, pages 145-160.
Springer, 2003.

E. Borger. The ASM refinement method. Formal
Aspects of Computing, 15:237-257, 2003.

E. Bérger. Construction and analysis of ground
models and their refinements as a foundation for
validating computer based systems. Formal Aspects of
Computing, 19:225-241, 2007.

E. Borger. Approaches to modeling business processes.
A critical analysis of BPMN, workflow patterns and
YAWL. J. Software and Systems Modeling, 2011.

E. Borger. The subject-oriented approach to software
design and the Abstract State Machines method.
volume 7260 of LNCS, pages 52—72, 2012. Reprinted
in Vol. 104 of LN in Business Information Processing,
pp.-1-21, Springer, 2012.

E. Borger and K.-D. Schewe. Concurrent Abstract
State Machines, June 2014. submitted.

E. Borger and K.-D. Schewe. Specifying transaction
control to serialize concurrent program executions. In
Y. Ait-Ameur and K.-D. Schewe, editors, Proc. ABZ
2014, volume 8477 of LNCS, pages 142—157. Springer,
2014.

E. Borger and R. F. Stark. Abstract State Machines.
A Method for High-Level System Design and Analysis.
Springer, 2003.

F. P. J. Brooks. No silver bullet. Computer,
20(4):10-19, 1987.

D. Cohn and R. Hull. Business artifacts: a
data-centric approach to modeling business operations
and processes. IEEE Data Engineering Bulletin,
32:3-9, 2009.

R. Farahbod et al. The CoreASM Project.
http://wuw.coreasm.org.

A. Fleischmann, W. Schmidt, C. Stary, S. Obermeier,
and E. Borger. Subject-Oriented Business Process

(21]

22]

23]

24]

[25]

(26]

27]

(28]

29]

30]

(31]

(32]

Management. Springer Open Access Book, Heidelberg,
2012. www.springer.com/978-3-642-32391-1.

A. Fleischmann and C. Stary. Whom to talk to? A
stakeholder perspective on business process
development. Universal Access in the Information
Society, pages 1-26, June 2011. DOI
10.1007/s10209-011-0236-x.

W. Goerigk, A. Dold, T. Gaul, G. Goos, A. Heberle,
F. W. von Henke, U. Hoffmann, H. Langmaack,

H. Pfeifer, H. Ruess, and W. Zimmermann. Compiler
correctness and implementation verification: The
verifix approach. In P. Fritzson, editor, Int. Conf. on
Compiler Construction, Proc. Poster Session of
C(C’96, Linkoping, Sweden, 1996. IDA Technical
Report LiTH-IDA-R-96-12.

F. Heath et al. Barcelona: A design and runtime
environment for declarative artifact-centric BPM. In
1CSOC 2013, volume 8274 of LNCS, pages 705-709,
2013.

C. A. R. Hoare. The verifying compiler: A grand
challenge for computing research. J. ACM,
50(1):63-69, 2003.

T. Hoare and J. Misra. Verified software: theories,
tools, experiments. Vision of a Grand Challenge
project. In B. Meyer, editor, Proc.IFIP WG
Conference on Verified Software: Tools, Techniques,
and Experiments,
http://vstte.ethz.ch/papers.html, Ziirich
(Switzerland), October 2005. Chair of Software
Engineering at ETH Ziirich.

R. Hull et al. Business artifacts with
Guard-State-Milestone lifecycles: Managing artifact
interactions with conditions and events. In 5th ACM
Int.Conf. on Distributed Event-Based Systems (DEBS
2011). ACM, 2011.

R. Hull et al. Introducing the Guard-State-Milestone
approach for specifying business entity lifecycles. In
M. Bravetti and T. Bultan, editors, Web Services and
Formal Methods, volume 6551 of LNCS, pages 1-24.
Springer, 2011.

G. Klein and T. Nipkow. A machine-checked model for
a Java-like language, virtual machine and compiler.
ACM Transactions on Programming Languages and
Systems, 2004.

J. Kohlmeyer. Eine formale Semantik fir die
Verkniipfung von Verhaltensbeschreibungen in der
UML 2. PhD thesis, Universitit Ulm (Germany),
2009.

J. Kohlmeyer and W. Guttmann. Unifying the
semantics of UML 2 state, activity and interaction
diagrams. LNCS, pages 206—217. Springer, 2009.

L. Lamport and N. Lynch. Handbook of Theoretical
Computer Science, chapter Distributed Computing:
Models and Methods, pages 1157-1199. Elsevier, 1990.
H. Lerchner and C. Stary. An open S-BPM runtime
environment based on Abstract State Machines. In
Proc.IEEE 16th Confererence on Business
Informatics, pages 54-61, 2014. http://doi.
ieeecomputersociety.org/10.1109/CBI.2014.24.
See http:
//www.i2pm.net/interest-groups/open-s-bpm/
sub-projects/open-s-bpm-workflow-engine.

http://www.coreasm.org
www.springer.com/978-3-642-32391-1
http://vstte.ethz.ch/papers.html
http://doi.ieeecomputersociety.org/10.1109/CBI.2014.24
http://doi.ieeecomputersociety.org/10.1109/CBI.2014.24
http://www.i2pm.net/interest-groups/open-s-bpm/sub-projects/open-s-bpm-workflow-engine
http://www.i2pm.net/interest-groups/open-s-bpm/sub-projects/open-s-bpm-workflow-engine
http://www.i2pm.net/interest-groups/open-s-bpm/sub-projects/open-s-bpm-workflow-engine

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]
[43]

[44]

[45]

X. Leroy. Formal verification of a realistic compiler.
Communications of the ACM, 52(7):107-115, 20009.
Metasonic. Metasonic-suite.
www.metasonic.de/metasonic-suite.

J. Recker and J. Mendling. On the translation
between BPMN and BPEL: Conceptual mismatch
between process modeling languages. In Proc.11th
EMMSAD, June 2006.

J. Recker and J. Mendling. Lost in business process
model translations: How a structured approach helps
to identify conceptual mismatch. In K. Siau, editor,
Research Issues in Systems Analysis and Design,
Databases and Software Development, pages 227—-259.
IGI Publishing, Hershey, Pennsylvania, 2007.

S. Sarstedt. Semantic Foundation and Tool Support
for Model-Driven Development with UML 2 Activity
Diagrams. PhD thesis, Universitdt Ulm, 2006.

S. Sarstedt and W. Guttmann. An ASM semantics of
token flow in UML 2 activity diagrams. volume 4378
of LNCS, pages 349-362. Springer, 2007.

G. Schellhorn. Verification of ASM refinements using
generalized forward simulation. J. Universal Computer
Science, 7(11):952-979, 2001.

G. Schellhorn. ASM refinement and generalizations of
forward simulation in data refinement: A comparison.
Theoretical Computer Science, 336(2-3):403-436, 2005.
G. Schellhorn. ASM refinement preserving invariants.
J.UCS, 14(12), 2008.

G. Schellhorn. Completeness of ASM refinement.
Electr. Notes TCS, 214, 2008.

G. Schellhorn. Completeness of fair ASM refinement.
SCP, 76(9):756-773, 2011.

Semiconductor Industry Assoc. International
technologoy roadmap for semiconductors. Design.
http://www.itrs.net/Links/2005ITRS/Design2005.pdf,
2005.

R. F. Stark and J. Schmid. Completeness of a
bytecode verifier and a certifying Java-to-JVM
compiler. J. of Automated Reasoning, 30:323-361,
2003.

R. F. Stérk, J. Schmid, and E. Borger. Java and the
Java Virtual Machine: Definition, Verification,
Validation. Springer-Verlag, 2001.

J. K. Strosnider, P. Nandi, S. Kumaran, S. Gosh, and
A. Arsanjani. Model-driven synthesis of SOA
solutions. IBM Syst.J., 41(5):415-432, 2008.

M. Weidlich, G. Decker, A. Grosskopf, and M. Weske.
BPEL to BPMN: The myth of a straight-forward
mapping. In On the Move to Meaningful Internet
Systems: OTM 2008, Part I, volume 5331 of Springer
LNCS, pages 265—282, 2008.

N. Wirth. Program development by stepwise
refinement. Comm. ACM, 14, 1971.

YAWL: Yet Another Workflow Language.
http://www.yawlfoundation.org/.

M. zur Muehlen and J. Recker. How much BPMN do
you need? Posted at
http://www.bpm-research.com/2008/03/03/how-
much-bpmn-do-you-need/.

M. zur Muehlen and J. Recker. How much language is
enough? Theoretical and practical use of the Business

Process Modeling Notation. In Z. Bellahséne and
M. Léonard, editors, Advanced Information Systems
Engineering (CAiSE 2008), volume 5074 of LNCS,
pages 465—479. Springer, 2008.

http://www.yawlfoundation.org/

