
A compact encoding of sequential ASMs
in Event-B?

Michael Leuschel1, Egon Börger2

1 Institut für Informatik, Universität Düsseldorf
Universitätsstr. 1, D-40225 Düsseldorf
leuschel@cs.uni-duesseldorf.de

2 Dipartimento di Informatica, University of Pisa (Italy)

Abstract. We present a translation of sequential ASMs to Event-B spec-
ifications. The translation also addresses the partial update problem, and
allows a variable to be updated (consistently) in parallel. On the theoreti-
cal side, the translation highlights the intricacies of ASM rule execution in
terms of Event-B semantics. On the practical side, we show on a series of
examples that the Event-B encoding remains compact and is amenable to
proof within Rodin as well as animation and model checking using ProB.
Keywords: ASM, B-Method, Model Checking, Constraint-Solving, Tools.

1 Motivation

ASMs have been used since 1989 to model computational systems of different
kinds; various tools have been built to simulate such models [12, 5, 13] and various
theorem proving systems have been adopted to prove properties of ASMs, for
references see [8, Ch.8.1] and more recent publications in the ABZ Conference
Proceedings. Given the close relationship between ASMs and B and Event-B [2]
models we want to investigate more closely the relation between ASMs, B and
Event-B concepts. In particular we want to clarify whether and how one can
translate ASMs to Event-B in a reasonable fashion, without blow-up, such that
the translation can be effectively applied and permits the use of the animation,
model checking, and constraint solving tool ProB[17] as well as of provers [3, 10,
11] to mechanically support proving properties for ASMs.

2 Background

2.1 ASM background

The syntax and semantics of ASMs is defined in [8, Ch.2.4]. We recapitulate the
part considered in this paper.

ASMs are defined as rules which transform structures of a given signature,
their ‘states’. Without loss of generality one can consider a signature as a family

? Part of this research by the second author was funded by a renewed Forschungspreis
grant of the Humboldt Foundation in the summer of 2015.

of function symbols f n of arity n; predicates (relations) can be dealt with in
terms of their characteristic Boolean-valued functions. Thus a state over such a
signature is the mathematical structure formed by a set U (called the (super-)
universe of the state) together with an interpretation of each function symbol f n

by an n-ary function with arguments and values in U ; specific domains can be
defined as subsets of the superuniverse U .

There are various constructs which can appear in ASM rules to modify a
state by changing the value of some of its functions at some of their arguments,
essentially using updates of form f (s1, . . . , sn) := t where si , t are terms (func-
tional expressions). In particular the following recursively defined set of ASM rules
turned out to be sufficient to describe any sequential algorithm at whatever level
of abstraction1

skip // empty action
f (s1, . . . , sn) := t with terms si , t // assignment rule
R par S // simultaneous parallel execution
if φ then R else S with formula φ // case distinction
let x = t in R // call by value
choose x with φ do R // nondeterministic choice

Notably the forall construct for universal quantification and the two clauses for
submachines and sequential functional composition in [8, Table 2.2] are missing.

Usually R1 par R2 par . . . par Rn is written in vertical notation without
par. Below we also write S | S ′ for S par S ′.

The parallel composition operator par is considered to be characteristic for
ASMs. The semantics of R = R1 par R2 par . . . par Rn is to execute all com-
ponent rules Ri simultaneously, atomically. This means that for one (an atomic)
step of R in a given state s, the updates of each Ri are applied together in one
step to s. This yields the next state s ′ (successor state of s) if the computed set of
updates is consistent; otherwise the step cannot be computed and the successor
state of s is undefined.

Updates are pairs ((f , (a1, . . . , an)), val) of so-called locations (f , (a1, . . . , an))
and a newly to be assigned (not necessarily new) value for that location; here f
is a function symbol (of arity n), (a1, . . . , an) an argument tuple of elements of
some set in the given state s—typically the interpretation in state s of some terms
s1, . . . , sn in an assignment rule f (s1, . . . , sn) := t—and val the interpretation of t
in state s. A set of updates (usually called an ‘update set’) is consistent if it does
not contain two pairs (l , v), (l , v ′) with v 6= v ′. Thus parallel updates to a same
variable (location) are allowed, but they must be consistent. In case the update set
is inconsistent (i.e. contains two updates (l , v), (l , v ′) for the same location l with
different values v , v ′) the next state s ′ is not defined. Note that 0-ary locations
(f , ()) are just variables (written f as usual).

For the deterministic form of the sequential ASM Thesis it turned out that
the following sequential normal form ASMs suffice:

1 This fact is known as the sequential ASM Thesis Gurevich proved in [14] from three
natural postulates which axiomatize the underlying concept of ‘sequential algorithm’.

if φ1 then f1(s1,1, . . . , s1,n1
) := t1

...
if φk then fk (sk ,1, . . . , sk ,nk

) := tk

where the guards φi are boolean combinations of equations between terms.
Note that in fact

if φ then R else S is equivalent to

(if φ then R) par (if not φ then S)

rules of the form let x = t in R exist only for practical purposes, a hidden
form of sequentialization as used for example in initializations. The rule is
equivalent to choose x with x = t do R, though choose is not needed
for the deterministic case. Note that the let rule could also be programmed
(without using choose) by mere if then else rules.
occurrences of choose can be moved to the outside, using renaming to avoid
clashes between variables. Under the assumption that x is not used in B and
S , the construct if B then (choose x with φ do R) else S becomes

choose x with (B ⇒ φ and not (B)⇒ x = default) do
if B then R else S

where default is some value compatible with the type of x . Indeed, when B is
false, the variable x is not used and the role of the assignment x = default is
simply to prevent unnecessary non-determinism in the else branch.

In the non-deterministic case of the sequential ASM Thesis one has to consider
the bounded choices an algorithm can make—not only the environment—using
the choose operator. Gurevich’s sequential ASM Thesis remains provable but
with a slight restatement of one of the three postulates (namely the abstract-
state postulate) and the following extension of the normal form to:

choose i ∈ {1, 2, . . . , k} do
if i = 1 then R1
...
if i = k then Rk

Here the transitions rules Ri consist of a finite set of parallel updates. For details
see [8, p.306-7].

2.2 Event-B Background

Both the B-method [1] and its successor Event-B [2] are state-based formal meth-
ods rooted in set theory. Event-B has a richer refinement notion, with the aim of
systems modelling rather than software development. On the other hand, Event-B
has a much simpler structure for statements: notably there are no conditionals
and no let statements. The static parts of an Event-B model, such as carrier sets,
constants, axioms, and theorems are contained in contexts, whereas the dynamic

parts of the model are contained in machines. A machine comprises variables,
invariants, and events. An event consists of two main parts: guards and actions.
Formally, an event has the following form:

event e = any t when G(x , t) then S (x , t , x ′) end

Here, t are the parameters of the event and the guard G(x , t) can be an
arbitrarily complex predicate over the state variables x and the parameters t .
The statements S (x , t , x ′), however, are very restricted and consist of parallel
assignments of the form

v := E (x , t) (deterministic assignment)
v :∈ E (x , t) (non-deterministic assignment from a set of values)
v : |P(x , v ′, t) (non-deterministic assignment using a predicate)

The statement list can also be empty, which corresponds to skip. It is not allowed
to assign to the same variable v twice within the same event.

An event is enabled if there exists a value for the parameters t which makes
the guard G(x , t) true. If no such value exists, the event is disabled. Let us present
a small example. The following event decrements a variable x by the amount a.
In case x ≤ 0, the event is disabled, as no solution for a ∈ 1..x exists.

event decrement = any a when a ∈ 1..x then x := x − a end

All machines also contain a special event, the initialisation which is not allowed
to refer to the current state of the variables. The way events are executed in
Event-B is somewhat different to ASMs. First, the initialisation event is executed
to generate an initial state of the model. In any given state, any enabled event
e can be executed atomically, resulting in a new state. All the actions of e are
executed in parallel. So, in contrast to ASMs, events are executed in isolation;
events cannot be executed in parallel together (but the individual actions of an
event are).

Event-B machines contain an invariant, which is a predicate over the variables
(and constants) of the machine. In order to establish that the invariant is indeed
true in all reachable states, proof obligations are generated: one has to prove that
the initialisation establishes the invariant and that each event— when enabled—
preserves the invariant.

The Event-B language supports a rich set of datatypes, encompassing integers,
booleans, user-defined types, sets, relations, and (higher-order) functions. For this
paper one notation for functions will be important:

λx .P | E

Given a predicate P and an expression E , this represents the function whose
domain is all those values for x which make P true, in which case the function
returns the value of E . For example,

λx .x > 0 | x ∗ x

is the squaring function defined for strictly positive integers. In B, functions are
just seen as relations which in turn are sets of pairs. The above function could
also have been written as

{x 7→ y | x > 0 ∧ y = x ∗ x}

The function λx .x ∈ 1..3 | x ∗ x is a finite function and could thus also have been
written as a set extension {1 7→ 1, 2 7→ 4, 3 7→ 9}. Set operators can also be used
for functions, e.g., the predicate {2 7→ 4} ⊂ λx .x > 0 | x ∗ x is true.

In summary, the differences with ASMs are:

1. richer actions are allowed in ASM rules (conditionals, let, ...)
2. parallel updates to the same variable are allowed in ASMs and not in Event-B

(we return to this in Section 4),
3. the way rules are fired (all enabled ones are fired simultaneously in ASMs as

opposed to one enabled event in Event-B).

3 Translating Conditional and Parallel Statements

Both Event-B and ASM allow parallel updates but differ in a quite fundamental
way. Indeed, as mentioned in Section 2.2, Event-B only allows parallel updates of
disjoint variables, such as x := 1||y := 2. However, the following is not allowed in
Event-B (or classical B):

x := 1||x := y

ASMs, however, do allow this parallel assignment but then impose a consistency
condition on all parallel updates.2 For this example, this implies that the update
is allowed in case y = 1 and considered inconsistent otherwise. If the update set
to be applied to a state s is inconsistent, the next state s ′ is not defined. When
combined with conditional statements — which Event-B does not support— the
translation becomes even more intricate. Let us take an ASM machine with a
variable x initialised to 0 and the rule depicted in Fig. 1.

if x > 10 then x := x − 1 |if x < 5 then x := x + 1

Fig. 1. Simple ASM rule

2 This is related to the circumstance that for reasons of generality arbitrary terms s,
not only variables, are permitted on the left side of an assignment statement s := t .
Therefore a machine may contain assignment statements t1 := t and t2 := t ′ with
syntactically different ti = f (ti,1, . . . , ti,n) for which however in some state S their
evaluation may yield the same arguments evalS (t1,j) = evalS (t2,j) for all 1 ≤ j ≤
n resulting in two updates (l , evalS (t)) and (l , evalS (t ′)) to the same location l =
(f , (evalS (t1,1), . . . , evalS (t1,n)) so that the consistency condition evalS (t) = evalS (t ′)
is required.

Suppose we are interested in proving that this rule preserves the invariant
x ∈ N. How can we translate this to Event-B, without using conditional actions
and parallel assignments to the same variable x?

3.1 A simple translation using case distinctions

The first solution that comes to mind is to encode every possible path through
the rule as one event in Event-B. In this case there are in principle four possible
paths: each of the two if-conditions can be either true or false. A translation of
this ASM machine using four events is presented in Fig. 2.

machine ASM_4
variables x
invariants @inv x∈ℕ
events
 event INITIALISATION begin @ini x≔0
 end
 event asmif_tt when @gtt x>10 ∧ x<5 theorem @thm x-1=x+1 then
 @act x ≔ x−1
 end
 event asmif_tf when @gtf x>10 ∧ ¬(x<5) then
 @dec x ≔ x−1
 end
 event asmif_ft when @gft ¬(x>10) ∧ x<5 then
 @inc x ≔ x+1
 end
 event asmif_ff when @gff ¬(x>10) ∧ ¬(x<5) end
end

Fig. 2. Non-linear translation of if x > 10 then x := x − 1 |if x < 5 then x := x + 1
from Fig. 1

On the positive side, this machine can be be animated and model checked with
ProB and proven fully automatically in Rodin with the standard autotactics. In
other words, we have established that our ASM rule preserves the invariant x ∈ N.
Note that, for the case that both assignments are triggered (asmif tt), we have
added the guard theorem x + 1 = x − 1 to encode that these two assignments
yield the same result. In Event-B this gives rise to the following proof obligation
(where the guards and invariants are in the hypotheses):

x ∈ N ∧ x > 10 ∧ x < 5 |= x + 1 = x − 1

As the hypotheses are unsatisfiable, the theorem can be proven. We have thus
also proven that no conflict between the parallel assignments to x can occur. If
we change the test x < 5 to, e.g., x < 15 in Fig. 1 and 2 the corresponding guard
theorem proof obligation x ∈ N ∧ x > 10 ∧ x < 15 |= x + 1 = x − 1 can no longer
be discharged.

On the negative side, however, this translation can lead to a combinatorial
blow up in the number of events. The many events will share many common
predicates (i.e., x > 10 or x < 5 above) which will be re-evaluated by tools such
as a model checker or even the provers. In this paper, we try to find a translation
into Event-B which does not lead to such an explosion of the events, but which
remains linear in the size of the original ASM.

3.2 Translation using update functions

One idea of our solution is to encode the updates to variables into composable
update functions. Basically, an update function u for the variable x will be used
to construct an Event-B assignment of the form

x := u(x)

This solution can later be extended (in Section 4) to deal with the important issue
of partial updates, but it also solves the problem of conditional total updates.
Let us return to our ASM rule from Fig. 1, where we now add the implicit else
branches:

if x > 10 then x := x − 1 else skip | if x < 5 then x := x + 1 else skip

The idea is that every branch First, the update function for the (implicit) else
branches is the identity function idZ for the type Z of x , defined by:

idT = λv .v ∈ T | v

Second, the update function for the assignment x := x − 1 is the function
cstZ(x − 1) defined by (where x ′ does not occur in C):3

cstT (C) = λv .v ∈ T | C

Similarly, the update function for the assignment x := x + 1 is the function
cstZ(x +1). While idT copies the old value v of a variable, cstT (C) simply ignores
it and overwrites it with C .

For conditionals, we construct update functions by inserting conditions into
the update functions of each branch. This scheme is defined formally below. First,
we need the following two auxiliary definitions (where v is a variable not occurring
in u):

cond(P , u) = λv .P | u(v)
if (P , u1, u2) = cond(P , u1) ∪ cond(¬P , u2)

We can now formally define the ternary relation S ;x u, denoting that the
ASM statement S results in the update function u for the variable x . We assume
that, like above, a conditional statement without else branch is first translated
into a conditional statement whose else branch is skip.

3 An overwrite particle in the terminology of [15].

We also have the set of location (entry) names LocEntry , which are the names
of functions/variables which are updated in the ASM machine under considera-
tion. From the point of view of the Event-B translation, these will be the variable
names of the B machine. Below, type(E) refers to the type of an expression.

skip;y idtype(y)
y ∈ LocEntry

x := E ;x cst type(x)(E)

x := E ;y idtype(y)
y ∈ LocEntry \ {x}

S ;x u ∧ S ′ ;x u ′

if B then S else S ′ ;x if (B , u, u ′)

S1 ;x u1 ∧ S2 ;x u2

S1 | S2 ;x u1 ◦ u2

Rule 1 above stipulates that skip does not modify any location, i.e., we always
obtain the identity function as update function. Rule 2 says that an assignment to
x does indeed modify location x , while Rule 3 stipulates that it does not influence
locations y 6= x , i.e., we obtain the identity update function idtype(y) for y . In the
case of the parallel composition in the fifth rule, how do we know that the update
functions u1 and u2 are compatible ? Also, the last rule has two obvious solutions:
u1 ◦ u2 and u2 ◦ u1. Which one should be chosen? Basically, we will add proof
obligations to ensure that u1 ◦ u2 = u2 ◦ u1, which in turn guarantees that the
update functions are compatible. Indeed, commutativity is one way of defining
compatible updates (see the functional applicative algebras in [15]). As such we
will add a guard theorem u1◦u2 = u2◦u1 to the translated events; this theorem will
result in a proof obligation but does not influence the event execution as such.4

Actually, for technical reasons we will add the following weaker guard theorem,
which only requires commutativity for the actual values of x encountered:

u1(u2(x)) = u2(u1(x))

This theorem can be dealt with more easily by the Rodin provers and by tools such
as ProB. The precise computation of these guard theorems, also encompassing
partial updates, will be formalised later in Section 4.

Note that the above rules distinguish between skip and x := x : the former
has the update function idZ while the latter has the update function cstZ(x) =
λv .v ∈ Z | x . This is very important. Indeed, x := x | x := x − 1 is inconsistent
while skip| x := x − 1 is valid and equivalent to x := x − 1. Indeed, for the latter
we have commutativity of the update functions:

idZ ◦cstZ(x − 1) = cstZ(x − 1) ◦ idZ = cstZ(x − 1)

4 See http://handbook.event-b.org/current/html/theorems.html.

but not for the fomer:

cstZ(x) ◦ cstZ(x − 1) = cstZ(x) 6= cstZ(x − 1) ◦ cstZ(x)

We can now use the following inference rules to construct the action parts of
an Event-B event for an ASM rule R as follows

R ;x u

R ;act x := u(x)
x ∈ LocEntry ∧ u 6= idtype(x)

To construct the Event-B action we simply take all solutions A for R ;act A
and put them into parallel and then add the commutativity theorems.

Let us return to our ASM rule R from Fig. 1. We have R ;x u1 ◦ u2 with

u1 = if (x > 10, cst(x − 1), id) and
u2 = if (x < 5, cst(x + 1), id).

We can compute these update functions and their composition as follows:

cst(x − 1) = λv .v ∈ Z | x − 1
u1 = (λv .x > 10 | x − 1) ∪ (λv .¬(x > 10) | v)
u2 = (λv .x < 5 | x + 1) ∪ (λv .¬(x < 5) | v)
u1 ◦ u2 = (λv .x > 10 | x − 1) ∪ (λv .¬(x > 10) ∧ x < 5 | x + 1) ∪

(λv .¬(x > 10) ∧ ¬(x < 5) | v)
u2 ◦ u1 = (λv .x < 5 | x + 1) ∪ (λv .¬(x < 5) ∧ x > 10 | x − 1) ∪

(λv .¬(x > 5) ∧ ¬(x > 10) | v) =
u1 ◦ u2 because x > 10 ∧ x < 5 is unsatisfiable.

machine ASM1
variables x
invariants @inv x∈ℕ
events
 event INITIALISATION begin @ini x≔0
 end
 event asmifs // if x>10 then x:=x−1 | if x<5 then x:=x+1
 any u1 u2 where
 @g1 u1 = (λv·v∈ℤ ∧ x>10 ∣ x−1) ∪ (λv·v∈ℤ ∧ ¬(x>10)∣ v)
 @g2 u2 = (λv·v∈ℤ ∧ x<5 ∣ x+1) ∪ (λv·v∈ℤ ∧ ¬(x<5)∣ v)
 theorem @comm u1(u2(x)) = u2(u1(x))
 then
 @a x ≔ u1(u2(x))
 end
end

Fig. 3. Event-B Translation of an ASM Rule with parallel conditional update on the
same variable

Figure 3 shows the complete Event-B translation of the above example with
the commutativity theorem. We use the syntax of the text editor Camille [6]. The

labels such as @g1, @g2 and @a only play a role for user feedback during proof; they
have no attached semantics. For readability we have extracted the two composed
update functions into event parameters. The machine has three proof obligations
related to the translated event asmifs, all of which can be automatically discharged
using the SMT prover plugin [10, 11]. However, the standard autotactics of Rodin
no longer discharge all of them. Indeed, proving commutativity typically requires
case distinctions, which the SMT prover plugin is good at but not so much the
Atelier-B provers ML and PP. ProB can animate and model check the model; it
has 6 distinct states (x ∈ 0..5).

4 Partial Update Problem

In Event-B a function—just like a relation— is seen like a set of tuples. An array
is just a special case of a function, where the domain is a contiguous set of indexes.
We will adopt the same view for our ASM machines. Below we also use λv .E as
a shortcut for λv .v ∈ type(E) | E .

The parallel update problem becomes more interesting when partial updates
are concerned. An assignment like f (2) := 3 is a partial update in the sense that
the function f is only changed at the position 2. A possible value for f would
be {1 7→ 0, 2 7→ 0} and the effect of the above assignment would be to change
f into {1 7→ 0, 2 7→ 3}. Furthermore, in Event-B the above assignment is seen
as syntactic sugar for f := f �− {2 7→ 3}, where the override operator �− can be
defined as follows:

r �− s = {x 7→ y | x 7→ y ∈ s ∨ (x 7→ y ∈ r ∧ x 6∈ dom(s))}

As such Event-B does not allow the parallel updates:

f (1) := 2 | f (2) := 3

as indeed they get translated to the following parallel total updates of f :

f := f �− {1 7→ 2} | f := f �− {2 7→ 3}

First, parallel updates of the same variable are not allowed in Event-B. Second,
even if they were, these two total updates are not consistent, as f �− {1 7→ 2} =
{1 7→ 2, 2 7→ 0} 6= {1 7→ 0, 2 7→ 3} for our value of f = {1 7→ 0, 2 7→ 0} above. In
ASMs, however, these parallel partial updates are allowed (and are not seen as
equivalent to a total update) and result in f = {1 7→ 2, 2 7→ 3}.

The situation is somewhat similar to the conditional updates in Section 3, and
our solution is the same: we represent partial updates also as update functions
which can be composed and which have to be checked for commutativity. So, in
the example above we would generate two update functions:

1. u1 = λv .v �− {1 7→ 2}
2. u2 = λv .v �− {2 7→ 3}

We have commutativity u1 ◦ u2 = u2 ◦ u1 = λv .v �− {1 7→ 2, 2 7→ 3} and we can
achieve the combined parallel effect of the assignments using the single assignment

f := u1(u2(f))

Let us consider again the assignment x := x +1 from Section 3. There we have
used the update function uc = cstZ(x +1). However, an alternate update function
would have been ucum = λv .v ∈ Z | v + 1. Note that uc is idempotent and does
not commute with u ′c = cstZ(x − 1). ucum on the other hand is not idempotent

ucum ◦ ucum = λv .v ∈ Z | v + 2

but does commute with u ′cum = λv .v ∈ Z | v − 1:

ucum ◦ u ′cum = u ′cum ◦ ucum = idZ

So, the update function ucum corresponds to another, cumulative interpreta-
tion of x := x +1; when executed in parallel with itself it increments x by 2. ucum

is an example of what are called particles in [15].
Figure 4 contains a few more example update functions. For queues we assume

the representation of a sequence of length n as a total function with domain 1..n.
Within the update function for pop, ({1}�− v) removes the first element from the
sequence v without adjusting the indices of the other elements; that is achieved
by using relational composition with the successor function succ. Our translation
to Event-B can in principle cope with any of these interpretations, cumulative or
not. In the remainder of the paper we will only focus on total assignment and
function update, though.

Description Syntax Update function u
Regular total assignment x := y λv .y
Cumulative integer addition x+ = ∆ λv .v ∈ Z | v +∆
Function update x (s) := t λv .v �− {s 7→ t}
Function update level 2 x (s1)(s2) := t λv .v �− {s1 7→ (v(s1) �− {s2 7→ t})}
Cumulative set addition x∪ = y λv .v ∪ y
Cumulative set removal x\ = y λv .v \ y
Queue push push(x , e) λv .v ∪ {(card(v) + 1) 7→ e}
Queue pop pop(x) λv .(succ ;({1}�− v))

Fig. 4. Example update functions (λv .E is a shortcut for λ.v ∈ type(E) | E)

The core idea is that two partial updates are consistent if they commute and
the practical question is how can we check this, in particular when multiple update
functions are combined. We could try out all permutations, but that quickly blows
up. Note that the composition of multiple update functions is always associative,
as function composition ◦ is associative. We return to this issue later.

5 Translation Scheme

We now finish the translation scheme started in Section 3.2, adding rules for
partial updates and describing how the guard theorems are generated. Basically,
we have already described the rule ASM ;act x := u(x) and below we describe
the relation ASM ;thm G . Let {A1, . . . ,Ak} = {A | ASM ;act A} and let
{G1, . . . ,Gm} = {G | ASM ;thm G}. Then we generate the Event-B event:

event ASM = when theorem G1 . . . theorem Gm then A1| . . . |Ak end

Observe that we have no parameters and no proper guard, just guard theo-
rems. The guard theorems just give rise to proof obligations which ensure that
the update functions commute and we have consistent updates. We could (and
actually do so in the implementation) lift the individual update functions u in
the Aj ’s to be parameters and reuse them within the Gi ’s. We already did so in
Fig. 3.

In addition to the basic update functions id, cst(C), and if (P , u1, u2) we now
need one more construct defined as follows:

upd(s, t) = λv .v �− {s 7→ t}
We extend the inference rules for ; from Section 3.2 by the two following

ones:

x (E) := F ;x upd(E ,F)

x (E) := F ;y idtype(y)

y ∈ LocEntry \ {x}

The guard theorems are generated using this inference rule for ;thm :

ASM ;x u1 ◦ . . . uk

ASM ;thm permx ((u1 ◦ . . . uk))

We define permx (u) to be true if u is a basic update function not of the form
u1 ◦ u2. Otherwise we have:

permx (u1 ◦ u2) =def (u1(u2(x)) = u2(u1(x))) ∧ permx (u1) ∧ permx (u2)

Take the following ASM rule f (x) := 1 |if y 6= x then f (y) := −1 where we
wish to establish that the invariant f (x) ≥ 0 is preserved by the rule. The result
of our translation can be found in Fig. 5.

For this example the proofs no longer go through automatically in Rodin: we
have to do manual case distinctions on x = y . In future, one should probably gen-
erate a library of “update function proof rules”; we return to this issue below. We
can animate and model check the system using ProB without problem though.

 event asm // f(x) := 1 || if y/= x then f(y) := -1
 any u1 u2 where
 @g1 u1 = (λg·g∈ℤ↔ℤ∣ g⋖{x↦1})
 @g2 u2 = (λg·g∈ℤ↔ℤ ∧ y≠x∣ g⋖{y↦−1}) ∪
 (λg·g∈ℤ↔ℤ ∧ y=x∣ g)
 theorem @commutativity u1(u2(f)) = u2(u1(f))
 then
 @a f ≔ u1(u2(f))
 end

Fig. 5. Event-B Translation of an ASM Rule with partial udpates and conditionals

Some Optimisations In order to make the translation more amenable to proof
and animation, we suggest a few optimisation rules (some of which we have im-
plemented in our prototype). Let us first define this notation:

u1 � u2 =def (u1 ◦ u2) = (u2 ◦ u1)

Note that u1 �u2 is symmetric. The following selection of results hold for commu-
tativity of our update functions and can ease proving our guard theorems:

idT �u ⇔ >
cstT (C1) � cstT (C2)⇔ (C1 = C2)

cstT (C) � upd(s, t)⇔ (C (s) = t)

upd(s, t) � upd(s ′, t ′)⇔ (s 6= s ′ ∨ t = t ′)

It would make sense to add these as theorems to our translation, to ease
automatic proving.

Initialisation The Event-B initialisation allows no parameters. In case parameters
are used in an ASM initialisation, we either need to translate these into a second
initialisation event (along with a boolean variable isInitialised). Alternatively, one
can use Event-B constants to represent the parameters.

Well-Definedness The ASM statement f(x) := undef is translated to domain
subtraction in Event-B f := {x}�− f . Apart from that we suppose well-definedness
in Event-B style.

Translating Choose and Forall The proof of the Parallel ASM Thesis in [7] yields
the following normal form for parallel ASMs R (i.e. sequential ASMs with the
additional forall x with φ do M construct):

forall x ∈ UR

if Cond1(x) then upd1(x)
...
if Condr (x) then updr (x)

for a multiset term UR, single assignments updi(x) of the form f (t1, . . . , tn) := t
and some r depending on the given ASM program R. Essentially the term UR

represents the multiset U of updates to be applied by R—the empty set in case
R computes an inconsistent multiset of updates so that if U 6= ∅ the assignments
updi(x) are consistent.

Suppose now we have a parallel ASM rule forall i with Φ(i) do S (i) in normal
form (i.e. where forall appears only as the outer constructor of the ASM).

If the set {i | Φ(i)} is static, the machine can be translated to a sequential ma-
chine as follows. One can transform Φ(i) into i ∈ {K1, . . . ,Kn}∧Φ′(i), where the
expressions K1, . . . ,Kn are known statically. Then we can generate the following
sequential ASM which is equivalent to the given ASM:

if Φ′(K1) then S (K1)
if Φ′(K2) ∧K2 6∈ {K1} then S (K2)
...
if Φ′(Kn) ∧Kn 6∈ {K1, ...,Kn−1) then S (Kn)

to which one can apply the translation rules described above.

6 Prototype, Discussions and Future Work

Prototype Implementation and Experiments

A prototype translator has been implemented within ProB, using Prolog to im-
plement our inference rules. It uses the classical B syntax to express ASMs. To
avoid generating errors for parallel assignments to the same variable, a preference
within ProB has been added to turn off a variety of static checks. The translator
generates the update functions and theorems as described above. We have then
manually copied and pasted the result into Rodin.

However, while writing the paper we have streamlined and improved the nota-
tions and also the transformation process. Initially we experimented with various
other approaches, notably collecting the updates in sets. All of these were more
cumbersome than the solution presented here and actually less amenable to au-
tomated proof.

The prototype implementation should now be rewritten using the simpler con-
cepts and should also work on “real” ASM input files rather than use classical B
syntax. We plan to do this in future work. Still, we were able to experiment with
some non-trivial ASM rules and animate, model check, and prove them.

Discussion and Future Work

Translating Monitored Variables ASMs foresee certain variables (locations) to be
monitored and implicitly modified by the environment (between two internal ASM
steps, see [8, Def.2.4.22]). We can translate this behaviour by adding a “turn”
variable and the respective guards to alternate between executing the ASM rules
proper and the environment which modifies the monitored variables.

Translating Derived Functions ASMs also foresee derived functions such as:

derived isMaster(m) = (index(m)=0)

There are various ways these could be translated. One solution would be to
add new definition using the Event-B Theory Plugin [9]. Alternatively, one could
add a new function in a context which takes all variables as arguments. For this
example that would be: isMaster = λm.m ∈ Agents | bool(index (m)) = 0.

Translating Submachine calls These use “call by reference” in ASM. In our exper-
iments we have thus expanded such rule calls like macros (possibly with renaming
to avoid clashes and variable capture).

Bounded Exploration Postulate Sequential ASMs satisfy Gurevich’s bounded ex-
ploration postulate so that there can only be finitely many changes to locations
in one step. In B (as in parallel ASMs) you can do infinitely many changes, e.g.,
the assignments f := N × {1} or f := {d 7→ r | d ∈ N ∧ r = d ∗ x} set the
value of f in infinitely many locations, as do the non-sequential parallel ASMs
forall n ∈ N f (n) := 1 resp. forall n ∈ N f (n) := n ∗ x .

Validation To prove our translation correct we would need an expression of ASM
semantics in B; but this is what we are trying to develop in the first place. However,
once we have a tool in place we could cross check the results of various tools, such
as [12] or [4].

By combining all updates for a variable, our translation avoids re-evaluating
the same predicate multiple times (unlike the naive translation in Fig. 2). However,
the same predicate can still appear in different update functions for different
variables. We propose to solve this issue by using ProB’s common-sub-expression
elimination.5

To what extent our technique can really scale to bigger ASM machines is still
open. As far as proving is concerned, the commutativity theorems usually require
a series of case distinctions. As such, provers such as the SMT prover plugin [10,
11] or the ProB Disprover [16] are probably essential for our translated models.
Theorems about applicative algebras in [15] may be of help. Simulation and model
checking can also be done, but it still remains open what the performance will be
compared to running CoreASM[12] or using AsmetaSMV [4].

Outside of tooling support for ASMs, we hope that our work has also clarified
the intricacies of ASM rules to Event-B researchers, and also shown the ASM
researchers the power of B’s predicates and expressions.

In summary, we have developed a translation from sequential ASMs to Event-
B machines, which prevents a blow-up of the number of events. The translated
machines can be validated using the Event-B tools. We hope that the efforts help
in bringing the ASM and B communities closer to together.

Acknowledgement We would like to thank the reviewers of ABZ’16 for very
useful feedback. The second author thanks Laurent Voisin for discussing with

5 A recent feature of ProB; it needs to be explicitly enabled via the CSE preference; it
does not work across multiple events and thus cannot be applied to Fig. 2.

him during the Dagstuhl seminar Integration of Tools for Rigorous Software Con-
struction and Analysis (September 8-13, 2013) the problem of an Asm2EventB
translation.6

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
2. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge

University Press, 2010.
3. J.-R. Abrial, M. Butler, and S. Hallerstede. An open extensible tool environment

for Event-B. In Z. Liu and J. He, editors, Proceedings ICFEM’06, LNCS 4260, pages
588–605. Springer-Verlag, 2006.

4. P. Arcaini, A. Gargantini, and E. Riccobene. Asmetasmv: A way to link high-level
ASM models to low-level NuSMV specifications. In Proceedings ABZ’10, pages 61–
74, 2010.

5. The Abstract State Machine Metamodel website. http://asmeta.sourceforge.net,
2006.

6. J. Bendisposto, F. Fritz, M. Jastram, M. Leuschel, and I. Weigelt. Developing
Camille, a text editor for Rodin. Software: Practice and Experience, 41(2):189–198,
February 2011.

7. A. Blass and Y. Gurevich. Abstract State Machines capture parallel algorithms:
Correction and extension. ACM Trans. Computational Logic, 8(3):19:1–19:32, 2008.

8. E. Börger and R. F. Stärk. Abstract State Machines. A Method for High-Level
System Design and Analysis. Springer, 2003.

9. M. J. Butler and I. Maamria. Practical theory extension in event-b. In Z. Liu,
J. Woodcock, and H. Zhu, editors, Theories of Programming and Formal Methods -
Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday, volume 8051
of Lecture Notes in Computer Science, pages 67–81. Springer, 2013.

10. D. Déharbe. Automatic Verification for a Class of Proof Obligations with SMT-
Solvers. In Proceedings ASM 2010, pages 217–230, 2010.

11. D. Deharbe, P. Fontaine, Y. Guyot, and L. Voisin. SMT solvers for Rodin. In
Proceedings ABZ’2012, LNCS 7316, pages 194–207. Springer, 2012.

12. R. Farahbod et al. The CoreASM Project. http://www.coreasm.org and
https://github.com/coreasm/.

13. Foundations of Software Engineering Group, Microsoft Research. AsmL.
http://research.microsoft.com/foundations/AsmL/, 2001.

14. Y. Gurevich. Sequential Abstract State Machines capture sequential algorithms.
ACM Trans. Computational Logic, 1(1):77–111, July 2000.

15. Y. Gurevich and N. Tillmann. Partial updates. Theoretical Computer Science,
336(2-3):311–342, 2005.

16. S. Krings, J. Bendisposto, and M. Leuschel. From Failure to Proof: The ProB
Disprover for B and Event-B. In Proceedings SEFM’2015, LNCS 9276. Springer,
2015.

17. M. Leuschel and M. J. Butler. ProB: an automated analysis toolset for the B method.
STTT, 10(2):185–203, 2008.

6 See http://drops.dagstuhl.de/opus/volltexte/2014/4358/.

