
FORMAL DEFINITION OF AN

ABSTRACT VHDL'93

SIMULATOR BY EA{MACHINES

E. B�ORGER, U. GL�ASSER, W. M�ULLER

PUBLISHED IN:

C. Delgado Kloos and P.T. Breuer, editors,

\Formal Semantics For VHDL",

KLUWER ACADEMIC PUBLISHERS, Boston/London/Dordrecht, 1995

This article is subject to copyright.

Please do not distribute.

1
FORMAL DEFINITION OF AN

ABSTRACT VHDL'93 SIMULATOR

BY EA{MACHINES

Egon B�orger�, Uwe Gl�asser��, Wolfgang M�uller���

�Dipartimento di Informatica, Universit�a di Pisa, Pisa, Italy
��Heinz Nixdorf Institut, Universit�at-GH Paderborn, Paderborn, Germany
���Cadlab, Universit�at-GH Paderborn, Paderborn, Germany

ABSTRACT

We present a rigorous but transparent semantic de�nition for VHDL corresponding

to the IEEE VHDL'93 standard. Our de�nition covers the full behavior of signal

and variable assignments as well as the behavior of the various wait statements in-

cluding delta, time, and postponed cycles. We consider explicitly declared signals,

ports, local variables, and shared variables. Our speci�cation de�nes an abstract

VHDL'93 interpreter which comes in the form of transition rules for evolving alge-

bra machines (EA{Machines) [18]. It faithfully reects and supports the view given

in the IEEE VHDL'93 standard language reference manual. The de�nition can be

understood without any prior formal training. We outline our de�nition running a

VHDL program.

1 INTRODUCTION

An approach to the de�nition of a formal semantics of the IEEE Std-1076 hard-

ware description language VHDL'87 [33], as well as of the recently published

VHDL'931 [34, 2, 22], is of great interest for hardware design and veri�ca-

tion [5, 37].

For general hardware design, formal models are of great interest for a formal

comparison of hardware descriptions which may be represented by di�erent

means, e.g., di�erent hardware description languages such as VHDL, M, UDL/I,

1This standard is also known as VHDL'92

1

2 Chapter 1

and Verilog. For the speci�c domain of VHDL, formal veri�cation approaches

typically deal with subsets of VHDL'87 since the domain of application is gen-

erally restricted to deterministic synchronous sequential circuits clocked by a

single clock including the possibilities of resynchronization and asynchronous

parts [15, 14]. It is not obvious to identify the relationship between the o�-

cial VHDL IEEE standard and the subsets formalized for hardware veri�cation

since the standard language reference manual gives a natural language de�ni-

tion of the fairly complex behavioral semantics of VHDL. For standardization

e�ort a formal model is not only useful for deriving valid subsets from the

language but also for current language extensions. For instance, in the case

of analog VHDL (VHDL-A, IEEE subPAR 1076.1) it is necessary to clearly

de�ne the interaction between the event-driven VHDL'93 simulator and the

continuous simulation model.

To date, there is no coordinated e�ort for de�ning the formal semantics of

full VHDL which may serve as a standard reference. The basic problem for

the de�nition of such a standard formal model mainly lies in the complex-

ity of VHDL'87 and yet increases with enhanced properties of the upcoming

VHDL'93. In our approach we address the problem in achieving a formal, yet

human{processable model covering full behavioral VHDL'93. This makes it

possible to explicitly compare di�erent de�nitions or implementations of the

language, to evaluate them, to discuss prototypes, and to give a formal ex-

pression of standard requirements. Our de�nition provides the VHDL expert

with a precise model of VHDL'93 along the lines of the IEEE standard refer-

ence manual [34]. Once having reached an understanding of the basic concepts

of distributed EA{Machines our model may also serve as an introduction to

the new concepts of VHDL'93 for VHDL users. Due to our experience, this

understanding can be achieved without any major e�ort since the de�nition

of distributed EA{Machines follows basic patterns of classical programming

concepts.

Our rigorous de�nition of the VHDL'93 simulator covers full elaborated VHDL

including the new features of postponed processes, rejection pulse limit, and

shared variables [34]. We represent a detailed formal investigation of the

VHDL'93 language reference manual in terms of Gurevich's (distributed) EA{

Machines, also called distributed evolving algebras (EAs) [17, 18]. The de�nition
covers the interaction of the simulation kernel process with the user de�ned

processes, their suspension and resumption. We consider variables, explicitly

declared signals, and ports including their driving, e�ective, and current val-

ues. Thus, this chapter is a continuation of the work presented in [3]. Out

of the complete set of all syntactically correct VHDL statements we restrict

attention to those which characterize VHDL and whose behavioral semantics

De�nition of VHDL'93 by EA{Machines 3

is non{trivial. For example, we ignore features such as generics and component

instantiations. The latter, for instance, can be ignored since instantiated com-

ponents can be transformed into an equivalent description of hierarchical blocks

(VHDL'93 LRM, x9.6.1). We also ignore syntactical constructs like concurrent

signal assignments since each concurrent signal assignment can be transformed

into an equivalent process statement (VHDL'93 LRM, x9.5).

The remainder of this chapter is organized as follows. Section 2 gives an

overview over related work. In Section 3 we briey review what is needed

from distributed EA{Machines. In Section 4 we develop a mathematical de�ni-

tion of VHDL in terms of EA{Machines. For the correct understanding of that

section the reader should be familiar with the basics of VHDL'87. In Section 5

we analyze the example given in Appendix B.2 Section 6 concludes this chapter

and gives an outlook to future work.

2 RELATED WORK

In the literature there are various well-known approaches to the formal se-

mantics of VHDL for the veri�cation of VHDL descriptions in the context of

hardware design. They use temporal logic, functional semantics, denotational

semantics and operational semantics, mainly applying Boyer-Moore Logic, Pro-

cess Algebras, Petri-Nets, etc.

Borrione and Paillet [6] have investigated the semantics of a VHDL'87 subset in

terms of a functional model. Salem in [31] de�nes evaluation functions based on

the VHDL'87 subset P-VHDL which has been identi�ed for formal veri�cation

in PREVAIL [32, 5]. A de�nition of a subset of VHDL'87 semantics in terms

of Boyer-Moore Logic is presented by Read and Edwards in [27]. Russino� [30]

presents a mathematical de�nition of a hardware description language in terms

of Boyer-Moore Logic admitting a semantics-preserving translation to a subset

of VHDL'87.

A process algebra approach is presented by Bayol et al. in [1] translating a

veri�cation oriented VHDL (VOVHDL) into CCS for CCS-based veri�cation.

VOVHDL is an overlanguage of VHDL dedicated to specify the communication

of processes at system level. A di�erent algebra approach in the context of the

functional speci�cation methodology FOCUS can be found in [16]. Therein,

Fuchs and Mendler de�ne the semantics for delta-delay VHDL'87 by a transla-

2This example was given by the editor in [4].

4 Chapter 1

tion to streams and stream-processing functions. They investigate VHDL from

an abstract point of view without considering the underlying simulator.

Davis [13] has introduced a denotational semantics of the VHDL simulation

cycle by the use of an intermediate language derived from a limited behavioral

VHDL'87 subset. Breuer et al. de�ne a functional and denotational seman-

tics of the relevant behavioral VHDL'87 statements in [7, 8]. Progress in the

de�nition of a denotational semantics can be found in [9]. [10] represents the

continuation of their work.

A detailed structural operational semantics of a VHDL'87 subset, i.e., Femto-

VHDL, for HOL veri�cation is presented by Van Tassel in [35] (see also [36]).

Damm et al. de�ne the semantics of VHDL'87 through interpreted Petri-Nets

[11]. In [12] detailed structural operational semantics is de�ned based on tran-

sition systems and used for formal veri�cation against timing diagrams given

by a linear �rst-order logic [12]. The formal veri�cation is embedded in a hard-

ware design environment which supports an extension of VHDL'87 (VHDL/S)

for high-level design.

Work on interval temporal logic on a VHDL'87 subset was introduced byWilsey

in [38]. Reetz and Kropf provide a owgraph semantics to VHDL'87 descrip-

tions in order to facilitate the embedding of VHDL in high order logic [28] (see

also [29]). Work by Marcus and Levy [21] (Core VHDL) and Levy et al. [20]

considers formal veri�cation in the context of the state delta veri�cation sys-

tem (SDVS). The internal logic (state delta logic) is a variant of temporal

logic speci�cally tailored to be amenable to descriptions of computations and

to proofs by symbolic execution. The speci�cations and claims of correctness

are written in the state delta language which is a large subset of ISPS, Ada,

and VHDL'87.

M�uller introduces a modular framework de�ning a High-Level Semantics of

behavioral VHDL'93 [23]. Therein the static semantics of TINY-VHDL is

sketched by denotational means whereas the dynamic simulation semantics is

sketched by partially ordered events which de�ne Petri-Net-like structures.

Olcoz and Colom introduce a translation of full elaborated VHDL'87 to Col-

ored Petri-Nets in [24]. In [25, 26] they provide detailed investigations of the

VHDL'87 simulation cycle. In [26] they give a classi�cation into three se-

mantical layers: syntax checking and design library building, elaboration, and

execution.

De�nition of VHDL'93 by EA{Machines 5

Our formal speci�cation comes in the form of (distributed) EA{Machines. EA{

Machine speci�cations combine the advantages of the operational and the func-

tional approach to semantics. EA{Machines perform conditional destructive

assignments which come on the abstraction level of function updates where

arbitrary functions are allowed. This permits to tailor the operational view to

any desired level of abstraction. In the case of VHDL this gives us the pos-

sibility to de�ne our model along the lines of the standard language reference

manual.

3 EA{MACHINES

Gurevich introduced EA{Machines in [17, 18], called there Evolving algebras.
EA{Machines can be understood as `pseudocode over abstract data', without

any particular theoretical prerequisites. In order to make this chapter self-

contained, we list here however the basic de�nition and refer for a rigorous

formalization to [17, 18].

The abstract data come as elements of (possibly not furthermore speci�ed) sets

(domains and universes) which we denote by capitalized words. The operations

allowed on universes are represented by partial functions. Thus, we have hetero-

geneous structures (D1; :::; Dn; f1; :::; fm;P1; :::; Pr) with domainsDi, functions

fj , and relations Pk. For reasons of uniformity, we denote relations P by their

boolean-valued function �P , assuming that BOOL = ftrue; falseg is one of

the domains. Structures without relations are traditionally called algebras.

We use such algebras as formal representations of states of the system we are

going to describe. Since we want to emphasize that an algebra represents a

state of a system, we call it a static algebra.

State transformations are reected as transformations of static algebras. Dy-

namic changes of static algebras are obtained by executing update instructions
of form

f(t1; : : : ; tn) := t

whose execution is to be understood as setting (modifying) the value of function

f at the given arguments. We write f(x) = undef if \f is unde�ned at

x". Note that the 0-ary functions play the role of variables in programming

languages.

6 Chapter 1

A sequential EA{Machine is de�ned by a �nite set of transition rules of form

if Cond then Updates

where Cond (condition or guard) is a �rst-order expression, the truth of which

triggers simultaneous execution of all update instructions in the �nite set

Updates.

We are usually only interested in states reachable from some designated initial

states, which may be speci�ed in various ways. An EA{Machine often comes

together with a set of integrity constraints, i.e., extralogical axioms and/or

rules of inference, specifying the intended domains. In this chapter, our rules

will always be constructed so that the guards enforce consistency of updates.

We give a simple example which illustrates sequential EA{Machines:

if Condition

then A := B

B := A

Example 1: Exchanging Values

This example de�nes the simultaneous update of the 0-ary functions A and

B. Since the assignments are performed in parallel A becomes the value of B

and vice versa. These updates are performed each time Condition evaluates to

true.

Besides simultaneous execution of multiple update instructions guarded by a

condition, there is another form of parallelism which appears in sequential EA{

Machines. This parallelism is expressed by allowing variables to appear in the

update instructions of transition rules; the DOMAIN over which a variable is

supposed to range is declared by the condition D 2 DOMAIN appearing in

the guard of the rules. Executing such a rule means to execute the rule for each

instance D in its declared DOMAIN simultaneously. The following example

gives an illustration of this use of variables.

if List 2 LIST

thenif List 6= hi

then List := tail(List)

Example 2: Remove the First Element of all lists

De�nition of VHDL'93 by EA{Machines 7

This example de�nes a rule specifying that each non{empty List from the do-

main LIST is to be replaced by the list's tail. The expression List 2 LIST is

used as an abbreviation referring to any valid instantiation of List within the

underlying domain LIST .3 A characteristic example which we will use later

has the form

if S 2 SIGNAL ^ condition(S) then updates(S)

where condition(S) is a condition and updates(S) is a set of update instructions

in which S does appear. The meaning of this rule is to simultaneously execute

updates(S) for each signal S which satis�es condition(S).

We shall assume that we have the standard mathematical universes of booleans,

integers, lists of whatever etc. (as well as the standard operations on them) at

our disposal without further mention. We also use standard abbreviations like

nesting of if 's etc.

In this chapter, we want to formalize how concurrently running VHDL processes

update values under the supervision of the simulation kernel process. For this

purpose we use distributed EA{Machines.4 They are given by a �nite number

of modules each of which is assigned to a �nite number of agents. For details we
refer to [18]; in this context it is su�cient to say that each module is a sequential

EA{Machine which is executed concurrently by the agents with which it is

associated. Thus, a distributed EA{Machine can be seen as the de�nition of a

set of concurrently running agents. Each agent is speci�ed through a �nite set

of transition rules operating on a globally shared structure.

The model of distributed EA{Machines directly applies to our view of VHDL

whose agents are n user de�ned processes and one kernel process. Our VHDL

speci�cation comes in the form of two modules, one for the kernel process and

one for the asynchronously operating agents of user de�ned processes.

3In the remainder of this chapter domains are denoted by capitalized names whereas
variables are represented by the same name but with only the �rst letter capitalized. In most
cases this convention allows to skip the de�nition of which variable belongs to which domain,
e.g., skipping the �rst condition in Example 2.

4In some articles distributedEA{Machines are referred to as concurrent evolving algebras.

8 Chapter 1

4 THE FORMAL MODEL

For the correct understanding of this section the reader should be familiar with

the terminology of the VHDL'87 or the VHDL'93 language reference manual.

For this the reader is referred to the glossary of [33, 34]. In this section we

�rst introduce the basic concepts for de�ning the simulator. Thereafter we

present the formal de�nition of various statements, i.e., variable assignment,

signal assignment, and wait statements. Finally, we give a de�nition of the

simulation kernel process.

4.1 Basic Concepts

The Simulation Cycle

The VHDL'93 time model of event driven simulation is based on a �nite num-

ber of user de�ned processes P 2 PROCESS which|under the supervision of

the simulation kernel process|concurrently compute new VALUEs for given

SIGNALs and V ARIABLEs. There is a mutual exclusion of the kernel pro-

cess and the concurrently running user de�ned processes, i.e., the kernel process

starts its execution if all user de�ned processes are suspended and vice versa

(see Figure 1).

SIMULATION

START OF

Initialization

*

END OF

SIMULATION

...1

All Processes Suspended

nProcess Process
executing executing

Kernel process executing

Figure 1 Execution of Simulation Cycles

Given the underlying discrete VHDL time model, the domain TIME is lin-

early ordered and contains the distinguished element Tc for current time. As-
signments to signals are performed by user de�ned processes and may cause

events at speci�ed points in time. Each user de�ned process is executed until it

De�nition of VHDL'93 by EA{Machines 9

suspends. A process becomes suspended upon reaching a wait statement, which

then delays the process execution until

a) the timeout expires, or
b) one of the associated signals is updated, or

c) a given expression becomes true if one of the corresponding signals is

updated.

If all user de�ned processes are suspended, the kernel process executes and

(i) determines the value for the next time point Tn,

(ii) sets the new current simulation time Tc, if required,

(iii) updates the current values of the relevant signals, and

(iv) resumes the suspended processes which are sensitive to the signal

changes or timeouts.

VHDL'87 distinguishes between so{called delta cycles and time cycles (time

points). For a time cycle, the current simulation time Tc is advanced by the

kernel. Delta cycles are introduces to model causality in simulation (in�nites-

imal delays). Between two delta cycles the kernel process does not advance

Tc.

In VHDL'93, processes are further classi�ed into so{called nonpostponed and

postponed ones. The nonpostponed processes of VHDL'93 correspond to the

user de�ned processes of VHDL'87. The postponed processes are executed only

on request of time advancement, i.e., during the last delta cycle at the current

time. Thus, we have to distinguish three consecutive cycles determined by the

kernel process (see also Figure 6): in the delta cycle, in which the current time
Tc does not change, nonpostponed processes are executed; in the postponed
cycle when the resumed postponed processes are executed; and the time cycle
at the beginning of which Tc is advanced. Note the careful use of the terms

\execute" and \resume". Postponed processes may resume on events or expired

timeouts during any simulation cycle but their execution is postponed to the

next postponed cycle.

In our model, the kernel decides the type of processes which are executed

during the next simulation cycle by setting phase 2 f execute postponed, exe-
cute nonpostponedg. This variable denotes the global state of the simulator.

If cycle = postponed cycle, the kernel executes the already resumed post-

poned processes by setting phase to execute postponed. If cycle 2 fdelta cycle,

10 Chapter 1

time cycleg the kernel assumes in sequence the phases: update driving values,
update e�ective values, update current values, resume processes (see Figure 5).
Before resuming processes and executing them, the signal changes have to be

propagated through the design hierarchy (blocks) by computing the driving,

e�ective, and current values of the relevant (active) signals (see also [26]).

The VHDL'93 LRM x12.6.4 de�nes the initialization phase which has to be

performed prior to the �rst simulation cycle. As initialization for our model we

suppose cycle = delta cycle, current time Tc to be set to 0, and the initializa-

tion of attributes, signals, and drivers through the simulator to be according

to the de�nitions in [34]. Unless otherwise stated all functions are assumed

to be undef and sets to be empty sets. Finally, we assume that �rst each

nonpostponed process and then each postponed process is executed until it

suspends.

Signals

A user de�ned process P cannot immediately assign a value to a signal S.

A signal assignment schedules a value val, desired at time t, into a sequence

driver(P; S) consisting of pairs (val; t). Those pairs are called TRANSAC-
TIONs (see Figure 2). Basically, to each signal assignment exactly one driver

driver(P; S) is associated. The transactions of a driver are linearly ordered by

their time components. By de�nition of the IEEE standard, the time compo-

nent of the �rst element of each driver is � Tc. The time components of all

the other transactions (in the tail of the driver) are > Tc. If the �rst element

of a driver is updated in a given simulation cycle, then the driver is said to be

active during the current simulation cycle.

Signal updates are performed by the kernel process only when all other pro-

cesses are suspended. Since for each signal S its value is usually updated

considering the set of all sources(S), possible conicts between multiple sources

of S are resolved via a user de�ned resolution function; we represent the lat-

ter by a resolved value function. In order to identify resolved and unresolved

signals we set resolved(S) 2 ftrue; falseg. The domain SIGNAL is parti-

tioned into ports and explicitly declared signals. The latter are distinguished

by the function declaredSignal. In the case of ports we distinguish them by

their mode which is in the set finPort, outPort, inoutPort, bu�erg. We ad-

ditionally set mode to a value in funconnected inPort, unconnected outPort,
unconnected inoutPort, unconnected bu�erg if we have to identify unconnected
ports.

De�nition of VHDL'93 by EA{Machines 11

When only considering non{hierarchical descriptions, i.e., excluding ports, the

sources of a signal are drivers only (see Figure 2). In that case, the value of

each signal S is determined from the �rst elements of drivers(S) eventually

applying a resolution function.

k
Process p

first
...

driver(p , S)i

...
k

driver(p , S)

first

Process p
i

Kernel

resolved_value(S)current_value(S)

Figure 2 Non{Hierarchical Signal Updates

When considering hierarchical connections de�ned by port associations, signal

values have to be propagated through a so{called net.5 A net is a value prop-

agation graph for propagating the driving and the e�ective values of signals

through the design hierarchy represented by embedded blocks (see also Fig-

ure 7). The root of a net is a signal whose value has to be determined. Inner

nodes are either associated with a signal or a resolution function; the leaves are

given by drivers. The edges represent the signal{source relationships where a

type conversion function may be assigned to each edge [22].

When computing new driving and new e�ective values, only active signals are

considered. A signal in a net is active if one of the following holds:6 (i) at least

one active driver is reachable from that signal, (ii) it is a connected port (there

exists an actual part given by a port association element) and its actual part

is active, (iii) if one of its subelements is active in the case that the signal is of

composite type. More formally,

active(S) : ,

(9d 2 D(S) : active(d)) or (actual(S) 6= undef ^ active(actual(S))) or
(9i 2 subelements(S) : active(i));

where D(S) = fd j d 2 drivers(S)g
[

S02sources(S)

D(S0)

5VHDL'93 LRM, Page 166
6VHDL'93 LRM, Page 164

12 Chapter 1

identi�es the set of drivers within the subtree of signal S which are reachable

from S.

Variables

Alternative means for interprocess communication are provided by shared vari-

ables in VHDL'93. The value value(SV) of a shared variable SV can be up-

dated from multiple concurrently running processes. Since no concept for the

resolution of possibly conicting write accesses is prescribed by VHDL'93 this

introduces explicit non-determinism into the language. In order to distinguish

shared variables from local variables we set kind(V) 2 flocal; sharedg for each
V 2 V ARIABLE. For a local variable LV we write value(P;LV) associating it

with the process P it is declared in. In contrast to signal assignment, a variable
assignment is immediately executed by a user de�ned process. Consequently,

no timing model is associated with variables.

4.2 User De�ned Processes

The rules P1-P6 in this section constitute the program of an agent, one for each

user de�ned process P , and de�ne the semantics of variable assignment, signal
assignment, and of the various wait statements.

Processing Statements

In order to concentrate on the essential behavioral semantics of VHDL'93, we

assume that the control ow of each (sequential) iterative process is deter-

mined by the environment which provides the dynamic changes of values for

the external function7 program counter. The program counter of each process

is initialized by pointing to the �rst statement of that process. After having

processed the last statement it returns to the �rst statement again.

In order to express that a user de�ned process P can be executed only when it

is not suspended and when all processes of the same type as P are enabled to

execute, we use the following abbreviation:

7An external function in the sense of [17] is a function which is not updated by the rules
of the system under consideration; nevertheless such a function might be updated by the
environment and thus represents a precise interface for the system.

De�nition of VHDL'93 by EA{Machines 13

Process does statement�

program counter(Process) = statement^ suspended(Process) = false^

((type(Process) = postponed ^ phase = execute postponed)_

(type(Process) = nonpostponed^ phase = execute nonpostponed))

Recall that phase can assume sequential states of the kernel as well as ex-
ecute nonpostponed and execute postponed indicating that the agents of that

type are the ones currently executed.

Variable Assignments

The semantics of variable assignment is given by the transition rule P1.8 If

the target variable V is of kind local (6= shared), the value(Process; V) of

that variable V declared in Process is given by the value computed from the

right-hand side expression Expr.

P1: SHARED/LOCAL VARIABLE ASSIGNMENT

if Process does hV := Expri

thenif kind(V) 6= shared

then value(Process;V) := value(Expr)

else value(V) := resolve(competingV alues(V))

In the case of shared variables9 resolve denotes the implementation de�ned

resolution10 of the concurrent update requests to value(V) of variable V . com-
petingValues(V) denotes the set of values competing for the update of V , i.e.,

all values value(Exprp) for each right-hand side expression Exprp of all pro-

cesses p which are currently performing an assignment to variable V . Note, that

for composite variables the VHDL'93 standard permits a possibly interleaving

update of the subelements of a shared variable. That means, that for com-

posite variables competingV alues(S) is applied subelement-wise and resolve

is de�ned on the competing values of the subelements, i.e.,

resolve(V1 ; :::; Vr) = resolve(V1); :::; resolve(Vr):

8In order to concentrate on the relevant parts of behavioral semantics of VHDL statements
we use abstract syntax by template-like descriptions enclosed by hi.

9VHDL'93 LRM, x4.3.1.3
10Since shared variables introduce non{determinismthere will be di�erent implementations

of VHDL'93 resolving this non{determinism.

14 Chapter 1

Signal Assignments

The intuitive meaning of a transport delay instruction11 hS (TRANSPORT

Expr1 AFTER Time1; :::i
12 when carried out by some process P is to schedule,

on the driver identi�ed through driver(P,S) of process P of signal S, for each

1 � i � n, the (possibly new) value Xi = value(Expri) for the time point

Tc+T imei.
13 Note that due to the discrete VHDL time model, the sequence of

time points T imei is required to be strictly increasing. For signal assignment

the VHDL standard de�nes a preemptive scheduling. That is, all old values

which were scheduled for time points � Tc + T ime1 are deleted. We describe

this using a function j<: DRIV ER � TIME ! DRIV ER, which for given

driver d and time t yields the driver containing precisely those transactions in

d which have time component < t.

In the special case, when a new value is scheduled for the current time Tc,

i.e., when T ime1 = 0 , this means that the whole driver is replaced by the

list h(X1; T ime
0
1); : : : ; (Xn; T ime

0
n
)i where T ime0

i
= T imei + Tc denotes the

absolute time with respect to the current simulation time Tc. Since this means

that the �rst transaction is replaced, the driver is set to be active then.

In the other case, when T ime1 > 0, the waveform, which by de�nition is

linearly ordered, is simply appended to the previously shrunken driver. For the

concatenation of sublists we use the ^-operator.

P2: TRANSPORT DELAY

if Process

does hS (TRANSPORT Expr1AFTER Time1; : : : ; ExprnAFTER Timeni

thenif Time1 = 0

then driver(Process;S) :=Waveform

active(driver(Process;S)) := true

else driver(Process; S) := (driver(Process; S) j< Tc + Time1)
^Waveform

where Waveform = h(X1; T ime
0

1); : : : ; (Xn; T ime
0

n)i ^ Time0j = Timej + Tc ^

Xj = value(Exprj)

The inertial delay14 hS (INERTIAL Expr1AFTER Time1; :::i has the same

e�ect as a transport delay, in the case that a new value is scheduled for the

11VHDL'93 LRM, Page 117
12T imei are placeholders for the time values computed from the corresponding time

expressions.
13Within our model time components of transactions and timeouts represent the absolute

time.
14VHDL'93 LRM, Page 117

De�nition of VHDL'93 by EA{Machines 15

current time, i.e., if T ime1 = 0. In other cases, all new values are sched-

uled for time points following the time point of the �rst transaction; as in

the transport delay the new waveform Waveform is appended. In addition

to the transport delay's behavior, which realizes a preemption for scheduled

transactions � T ime01, the inertial delay manipulates the driver for elements

with time < T ime01. The VHDL'87 LRM de�nes this by a further 3 step al-

gorithm in terms of marking elements and removing the unmarked elements

thereafter.15 This algorithm de�nes that the �rst element of the driver is kept

(Step 3). Step 2 de�nes that a transaction is kept if

\... it immediately precedes an unmarked transaction and its value

component is the same as that of the marked transaction."

Waveform’:

Driver:

1 c>Time +T

...

...
1 c

 Time +T
X1

...

1=X

not rejected

...
=X1

rejected

< Tc

first

: unmarked transaction : marked transaction

Figure 3 Preemptive scheduling for inertial delay

In our model this is realized by the function reject, which only keeps trans-

actions whose value is equal to the value of the �rst new transaction (X1 =

value(Expr1)), i.e., it rejects transactions with value 6= X1. The resulting

driver is obtained as a composition of three separate lists: the �rst element,

the not rejected rest restricted by T ime1 + Tc, and the new transactions. This

directly corresponds to the last update in the following rule.

15VHDL'87 LRM, Page 8{5

16 Chapter 1

P3: INERTIAL DELAY

if Process

does hS (INERTIAL Expr1AFTER Time1; : : : ; Exprn AFTER Timeni

thenif Time1 = 0
then driver(Process; S) := Waveform

active(driver(Process;S)) := true

else driver(Process; S) :=
first(driver(Process; S))^reject(driver0;X1)

^Waveform

where Waveform = h(X1; T ime
0

1); : : : ; (Xn; T ime
0

n)i ^ Time
0

j = Timej + Tc ^

Xj = value(Exprj) ^ driver
0 = tail(driver(Process; S) j< (Time1 + Tc))

The function reject is speci�ed by:

reject(TransList; V al) �

if TransList = hi _ value(last(TransList)) 6= V al

then return hi

else return reject(front(TransList; V al))^last(TransList)

We have a similar rule for the re�ned inertial signal assignment statement ap-

pearing in VHDL'93:16

hS (REJECT Pulse INERTIAL Expr1 AFTER Time1; :::i.

By the use of this statement it is possible to de�ne an explicit pulse rejection

limit Pulse, which may be di�erent from the limit given by the �rst waveform

element. This means that compared to the above rule the function reject is
not applied to the whole tail of the restricted driver but, instead, some front

transactions may be kept. Transactions starting from the �rst element of a

driver up to (T ime1 � Pulse) + Tc are not rejected. For Pulse = T ime1,

the behavior of the statement is the same as a transport signal assignment.

When Pulse = 0 the statement is equivalent to the VHDL'87 inertial signal

assignment. Formally this is reected in our model by the new driver being

composed of the �rst transaction, followed by those whose time component is

less that the rejection pulse, followed by those which are �ltered by reject,

followed by the new waveform elements; formally:

driver(Process; S) :=

first(driver(Process; S))^driver00^reject(driver000;X1)
^Waveform,

16VHDL'93 LRM, Page 117

De�nition of VHDL'93 by EA{Machines 17

where driver00 = (driver0 j< ((T ime1 �Pulse)+Tc)) and driver
000 denotes the

driver elements of driver0 without the elements of driver00.

Wait Statements

The rules for wait statements de�ne how processes are suspended due to wait

requirements for a speci�ed time period, a signal, or the truth of a condition.

For modeling WAIT FOR statements we use the concept of timeouts. Time-

outs are set when a WAIT FOR statement is executed. They are reset by the

kernel if the process is resumed. That is, if Process WAITs FOR Time,17

then timeout(Process) is set to Tc + T ime and Process is suspended by

suspended(Process) := true.

P4: WAIT FOR
if Process does hWAIT FOR Timei

then timeout(Process) := Time+ Tc

suspended(Process) := true

If a Process WAITs ON a set of Signals or UNTIL an Expression becomes true,

then the Process becomes suspended and added to the set of processes which

are waiting for changes of a signal in the sensitivity set. Each signal holds in

waiting(S) the set of processes which are sensitive to the signal value change

(see also Figure 4).

P5: WAIT ON

if Process does hWAIT ON Signalsi

then

suspended(Process) := true

if S 2 Signals

then waiting(S) :=
waiting(S) [fProcessg

P6: WAIT UNTIL

if Process does hWAIT UNTIL Expri

then

waitcond(Process) := Expr

suspended(Process) := true

if S 2 condsignals(Expr)
then waiting(S) :=

waiting(S) [fProcessg

If a Process WAITs UNTIL an expression Expr it is resumed when the ex-

pression evaluates to true. The expression (current wait condition) is stored in

waitcond(Process). waitcond(Process) is set to undef when the kernel resumes

the individual Process suspended on that condition. The evaluation of the cur-

rent waiting condition is performed by the kernel if at least one signal in this

17T ime is a placeholder for the value computed from a time expression.

18 Chapter 1

Signal S: waiting
p

i

0

Signal P: waiting p
i

1

...
...

Process
i

 p : ...

......

...

wait on P, S

current
value

current
value

Figure 4 Processes Suspend on Signals

expression changes. The signals representing the sensitivity set are extracted

from the expression by condsignals(Expr). Again, the Process is suspended

and added to the set of processes of each signal in the sensitivity set. Note that

if the function condsignals returns an empty list the process suspends forever.

Finally, the special case of a wait statement without a clause which suspends

the process for the rest of the simulation is de�ned by the following rule.

P7: WAIT FOREVER

if Process does hWAITi

then suspended(Process) := true

4.3 The Kernel Process

The kernel is an agent the execution of which is enabled as soon as all user

de�ned processes are suspended (see also Figure 1 and [26]). We abbreviate

this by:

AllProcessesSuspended � either (i) or (ii) holds :

(i) phase = execute nonpostponed ^ 8P 2 PROCESS :

if type(P) = nonpostponed then suspended(P) = true

(ii) phase = execute postponed ^ 8P 2 PROCESS :

if type(P) = postponed then suspended(P) = true

Kernel actions are de�ned by the rules K1-K3. In these rules, the kernel

�rst determines the next time point Tn. With respect to Tn and the cur-

De�nition of VHDL'93 by EA{Machines 19

rent cycle 2 fdelta cycle; postponed cycle; time cycleg the kernel sets phase

and next cycle. Recall, that if cycle = postponed cycle the kernel executes the

already resumed postponed processes by setting phase to execute postponed.

If cycle 2 fdelta cycle; time cycleg, the kernel runs sequentially through the

further phases as given in Figure 5: update driving values, update e�ective

values, update current values, resume processes.18

Resume Processes

Update Current Values

Update Effective Values

Update Driving Values

Kernel Process

Execute Nonpostponed / Excecute Postponed Processes

Determine Next Time

Figure 5 Di�erent Phases of the VHDL Simulator

Determine Next Time Point

If the expected next time Tn is equal to the current time Tc
19 the kernel goes

into cycle delta cycle, i.e., the next cycle will be a delta cycle. Tn is computed by

taking the minimumof all timeouts � Tc, the time of all current transactions of

active drivers, and the future time points of inactive drivers. Otherwise, if Tn >

Tc, the kernel goes either from delta cycle to postponed cycle or from the latter

to time cycle (see Figure 6). Note that for the transition from postponed cycle
to time cycle the condition Tn > Tc still holds. \It is an error if the execution

of any postponed process causes a delta cycle to occur immediately after the

current simulation cycle"(VHDL'93 LRM, Page 169).

In the case of a postponed cycle, postponed processes (which have already been

resumed) are executed by setting phase := execute postponed. In the case of a

time cycle, also the drivers are updated with respect to the new time Tn. This

18VHDL'93 LRM, x12.6.4
19This is the case if there are some active drivers or if at least one of the processes has

been suspended by hWAITFOR 0nsi. The latter one is a trick to enforce a synchronization
with the kernel process.

20 Chapter 1

postponed_cycledelta_cycle

T = Tn c

cnT > T
n cT = T

cnT > Ttime_cycle

Figure 6 Di�erent Cycles of the VHDL Simulator

causes at least one driver to become active. Additionally, Tc is advanced to Tn.

In the case that the new time exceeds the simulation time limit TIME0HIGH,

further execution is stopped by setting phase := undef (see also Figure 1).

K1: DETERMINE NEXT TIME POINT

if AllProcessesSuspended

thenif Tn = Tc

then cycle := delta cycle

phase := update driving values

elsif cycle = delta cycle

then cycle := postponed cycle

phase := execute postponed

else cycle := time cycle

phase := update driving values

AdvanceT ime

UpdateDrivers(Tn)

where Tn = minfmindriver; mintimeoutg

AdvanceTime � if Tn � TIME0HIGH then Tc := Tn else phase := undef

Tn is computed by taking the minimum of all timeouts � Tc (mintimeout) if

being de�ned and of times of all drivers (mindriver). In the case of active

drivers, the time of the newly scheduled �rst element has to be considered. In

the case of inactive drivers, the time of the second element has to be considered.

mintimeout = minftimeout(p) jp 2 PROCESS ^ timeout(p) 6= undef^

timeout(p) � Tcg

mindriver = minftime(t) j 9d 2 DRIV ER : t = ti; active(d) = ig;

where ttrue = first(d) and tfalse = second(d):

De�nition of VHDL'93 by EA{Machines 21

UpdateDrivers is applied in the case of a time cycle in order to update all

drivers with respect to the new time Tn. If any transaction is scheduled in

any driver for the new Tn these drivers are updated to their tails, i.e., the �rst

element is removed. These drivers become active by de�nition.20 Due to the

ordering of drivers, we can determine these drivers by comparing their second

element with Tn.

UpdateDrivers(Time) �

if d 2 DRIV ER ^ tail(d) 6= hi ^ time(second(d)) = Time

then d := tail(d)

active(d) := true

Propagation of Signal Values

When in time cycle or in delta cycle, the kernel process switches in sequence

to the subphases for evaluating the driving values, the e�ective values, and

the current values. This is called the propagation of signal values (see also

VHDL'93 LRM, x12.6.2). The values of the signals have to be propagated

through the design hierarchy by computing their di�erent values (see also the

outlines on Page 11). Figure 7 gives an example of a net and the corresponding

VHDL program.

We specify the sequential states for propagating the signal values by the rules

K2a{K2c. Each of these rules determines the value only for those signals which

have become active during the current simulation cycle (for the de�nition of

active see Page 12). The kernel switches to the next state by setting phase in

each of these rules.

First we consider the computation of driving values.

K2a: UPDATE DRIVING VALUES

if cycle 2 fdelta cycle; time cycleg ^ phase = update driving values

then SetDrivingV alues

phase := update effective values

When computing the driving value driving value(S) of each active signal S,

ports of mode in are ignored since for an in port a driving value is not de�ned.

This explains the following de�nition:

20VHDL'93 LRM, Page 164

22 Chapter 1

resolved_value(S)

driver(p ,P2)k driver(p ,P2)l

resolved_value(P2)

jdriver(p ,S) idriver(p ,S)

S <=...;p :j

S <=...;p :i

PORT (P1: INOUT ...; ...)

Signal S : ...;

P2<=...;

p :k

p :l

P2<=...P3...;

BLOCK

BLOCK

S

P1

P2P3

PORT (P2: .INOUT ...; P3: IN ...)

: propagation of driving values

: propagation of effective values

PORT MAP (P2=>P1, P3=>P1,...)

PORT MAP (P1=>S,...)

Figure 7 Signal Propagation Net Example

SetDrivingV alues �

if S 2 SIGNAL ^ active(S) = true ^mode(S) 6= inPort

then driving value(S) := dv(S)

where dv(s) =

8>>>>><
>>>>>:

resolved value(dv(s01); :::; dv(s
0

n)); if resolved(s)^

sources(s) is de�ned
dv(s01); if not resolved(s)^

sources(s) is de�ned

value(s); if s is a driver

default value(s); otherwise

dv is a recursive de�nition on the signal sources, where s01; :::; s
0
n
= sources(s);

n � 1, and value(s) is the value of the �rst component for driver s. Note, that

the second case in the de�nition of dv de�nes the value propagation for a signal

s with only one source. This case also covers the propagation for inout, bu�er,

and out ports propagating the value from the formal to the actual part of the

particular port association element.

After computing the driving value the e�ective values of the active signals have

to be determined.

De�nition of VHDL'93 by EA{Machines 23

K2b: UPDATE EFFECTIVE VALUES
if cycle 2 fdelta cycle; time cycleg ^ phase = update effective values

then SetEffectiveV alues

phase := update current values

When determining the e�ective value effective value(S) of each active signal

S, ports of mode out are ignored since for an out port an e�ective value is not

de�ned. This explains the following de�nition:

SetEffectiveV alues �

if S 2 SIGNAL ^ active(S) = true ^mode(S) 6= outPort

then effective value(S) := ev(S)

where ev(s) =

8><
>:

ev(actual(s)); if mode(s) = inPort _mode(s) = inoutPort

driving value(s); if declaredSignal(s) _mode(s) = buffer_

mode(s) = unconnected inoutPort

default(s); if mode(s) = unconnected inPort

ev is de�ned by a recursion on port association elements from ports to signals.

Recall, that declaredSignal(s) = true denotes that s is an explicitly declared

signal. Otherwise s is a port.

Finally, the current values are computed from the e�ective values.

K2c: UPDATE CURRENT VALUES

if cycle 2 fdelta cycle; time cycleg ^ phase = update current values

then SetCurrentV alues

phase := resume processes

The current value is determined for all active signals except for ports of mode

out. If the newly determined e�ective value is di�erent from the current value

then the current value is updated by this value. This sets an event on the

updated signal which is expressed by event(S) := true.

24 Chapter 1

SetCurrentV alues �

if S 2 SIGNAL ^ active(S) = true ^mode(S) 6= outPort

^ effective value(S) 6= current value(S)

then current value(S) := effective value(S)

event(S) := true

SetEventTrueAttributes(S)

else SetEventFalseAttributes(S)

Note that, as an example, we sketch the update of the corresponding prede�ned

attributes of signal S without giving a further speci�cation. In the case of

an event SetEventTrueAttributes is applied and SetEventFalseAttributes

otherwise.

Resume Processes

After phase update current values, the kernel continues in phase resume pro-
cesses in order to resume processes on signals and on expired timeouts. After

that, the resumed nonpostponed processes are executed by setting phase to

execute nonpostponed.

K3: RESUME AND EXECUTE PROCESSES

if cycle 2 fdelta cycle; time cycleg ^ phase = resume processes

then ResetActiveDrivers

ResumeOnTimeouts

ResumeOnSignals

phase := execute nonpostponed

The active drivers are �rst reset to their initial values since their being active

holds only for one simulation cycle.

ResetActiveDrivers � if d 2 DRIV ER then active(d) := false

ResumeOnT imeouts resumes all waiting processes whose timeout is set and

equals the new Tc. The timeout is �nally reset to undef .

De�nition of VHDL'93 by EA{Machines 25

ResumeOnTimeouts �

if Process 2 PROCESS ^ timeout(Process) 6= undef ^ timeout(Process) = Tc
then suspended(Process) := false

timeout(Process) := undef

ResumeOnSignals resumes the processes which are sensitive to signals S with

event(S) := true, i.e., all processes in waiting(S) are resumed for each signal

S in the case of an event on S. In case of suspension by WAIT UNTIL, i.e., if

waitcond is de�ned, the corresponding condition condvalue has to be evaluated.

Note that, when applying this function, each appearance of each signal S now

refers to the previously updated current value of S. Finally, event and waitcond

have to be initialized for the next simulation cycle and the individual resumed

Process is deleted from the set of waiting processes.

ResumeOnSignals �

if S 2 SIGNAL ^ event(S) = true

then event(S) := false

if Process 2 waiting(S)

thenif waitcond(Process) = undef

then suspended(Process) := false

waiting(S) := waiting(S)nfProcessg

elsif value(waitcond(Process)) = true

then waitcond(Process) := undef

suspended(Process) := false

waiting(S) := waiting(S)nfProcessg

5 EXAMPLE

This section gives a detailed insight into the basic concepts of the IEEE stan-

dard VHDL simulator by simulating the VHDL program introduced in Ap-

pendix B. We outline the de�nition of our previously de�ned VHDL'93 simula-

tor by running the �rst 11 simulation cycles which advance the simulation time

to 23 nanoseconds.

Since our de�nition presumes elaborated VHDL we run the simulation on the

elaborated model in Appendix A of the VHDL program in Appendix B.21 By

21This example was given by the editor in [4].

26 Chapter 1

this elaboration, component instantiations are transformed into hierarchical

blocks, concurrent signal assignments are transformed into process statements,

and positional port associations are transformed into named port associations.

Additionally, each block and process is given a label. Since the port's identi�ers

are not unique within the model we pre�x these identi�ers with the label of the

block they are de�ned in, e.g., the out port Y of the block labeled example is

referred to as example:Y .

For our simulationwe introduce a further process p5 and a signal for the stimuli.

The signal stimuli implements a clock with a half-period of 5 nanoseconds.

Table 1 shows the values of the signals stimuli, S(0::2), and example:Y for

each nanosecond time point between 0 ns and 23 ns. The values of this table

are partitioned with respect to the 5 nanosecond half-period of signal stimuli.

Signal nT ime 0 ns 5 ns 10 ns 15 ns 20 ns

stimuli 0,0,0,0,0 1,1,1,1,1 0,0,0,0,0 1,1,1,1,1 0,0,0,0,...
S(0) 0,0,0,0,0 0,0,0,0,0 0,1,1,1,1 1,1,1,1,1 1,0,0,0,...
S(1) 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,1,1,...
S(2) 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,0 0,0,0,0,...

example:Y 0,0,0,0,0 0,0,0,0,0 0,0,1,1,1 1,1,1,1,1 1,1,0,2,...

Table 1

The net representation of the elaborated model is illustrated in Figure 8. This

�gure shows three nets with the signals stimuli, S, and example:Y at their

roots.

: propagation of effective values: propagation of driving values

example.X

one.X one.Y two.X two.Y three.X three.Y

stimuli

S(0...2)

example.Y
5driver(p , stimuli)

1driver(p , one.Y) 2driver(p , two.Y) 3driver(p , three.Y)

4driver(p , example.Y)

Figure 8 Value Propagation Nets

De�nition of VHDL'93 by EA{Machines 27

Initialization

For initialization we set the time{scale to nanoseconds and the current time Tc
to 0 ns. All functions are set to undef and all sets are assumed to be empty

sets unless stated otherwise. active(d) and event(s) are set to false for all

d 2 DRIV ER and s 2 SIGNAL. cycle is initially set to delta cycle. The �rst

transaction of each driver is initialized by the current time (0 ns) and by the

value 0: (0 j 0ns). The current value of each (subelement of each) signal is

initialized by 0.

By de�nition of the program all processes are nonpostponed processes, i.e.,

type(p) = nonpostponed for all p 2 PROCESS. Finally, these processes are

executed by setting phase = execute nonpostponed. This enables p5 to execute

a signal assignment which �res Rule P3 updating the driver of stimuli which

becomes active. Thereafter driver(p5; stimuli) holds the following waveform

elements:

(0 j 0ns) (1 j 5ns) (0 j 10ns) (1 j 15ns) (0 j 20ns) (1 j 25ns) ...

Furthermore, p4 schedules the value 0 to driver(p4; example:Y) at 1 ns when

�ring Rule P3. We obtain:

driver(p4; example:Y) = (0 j 0ns)(0 j 1ns)

All other processes are suspended when executing their �rst statement. The

processes are suspended with the con�guration given in Table 2. The leftmost

column of this table shows the location of the program counters. The rightmost

column enumerates the sensitivity sets of the individual processes.

Process nFunction program counter waitcond condsignals

p1 h wait until X = '0' i one.X = '0' fone:Xg

p2 h wait until X = '0' i two.X = '0' ftwo:Xg

p3 h wait until X = '0' i three.X = '0' fthree:Xg

p4 h wait on S i undef fSg

p5 h wait i undef fg

Table 2

As an additional result, the set waiting(s) of each signal s holds the processes

which are sensitive to events on s. The signals with a non{empty waiting set

28 Chapter 1

are listed in Table 3. Note that process p5 has been suspended forever �ring

Rule P7 and thus is not sensitive to any timeout or signal change.

Function nSignal one:X two:X three:X S

waiting fp1g fp2g fp3g fp4g

Table 3

Cycle 1

Firing rule K1, the next simulation time Tn is computed. Since during ini-

tialization driver(p5; stimuli) has been set active the time minimum for Tn is

given by the time component of its �rst transaction (0 j 0ns), i.e., 0 ns. cycle
is set to delta cycle and phase is set to update driving values since Tc = Tn.

During the next phases the driving, e�ective, and current values are propagated

through the net driver(p5; stimuli) is associated with �ring the rules K2a{K2c.

This net is given by Figure 9.

example.X

one.X

stimuli

: propagation of effective values
: propagation of driving values

5driver(p , stimuli)

Figure 9 Value Propagation Net for stimuli

First, the driving value of stimuli is set to the value 0, i.e., to the value of

driver(p5; stimuli). Thereafter, the e�ective value of stimuli is set to its driv-

ing value. The e�ective value is then propagated to example:X and one:X set-

ting both to 0. Since the e�ective values of these signals all equal their current

values no events are generated for those signals when �ring Rule K2c. Rule K3

resets active of driver(p5; stimuli). No process is resumed since no event has

occurred on any signal. Thus, when setting phase to execute nonpostponed in

Rule K3 the condition AllProcessesSuspended immediately evaluates to true

which initiates the next simulation cycle.

De�nition of VHDL'93 by EA{Machines 29

Cycle 2

On the condition for AllProcessesSuspended the kernel becomes active �r-

ing Rule K1. The minimum time for Tn is given by the second element of

driver(p4; example:Y): 1 ns. Consequently, cycle is set to postponed cycle

and phase is set to execute postponed. Since by de�nition of the example

there are no postponed processes K1 �res once more.22 Tn = 1 ns remains

greater than Tc = 0 ns and thus cycle is set to time cycle and phase to

update driving values. By UpdateDrivers with 1 ns, driver(p4; example:Y)

becomes updated and thereby active:

driver(p4; example:Y) = (0 j 1ns)

The current time is advanced to 1 ns in AdvanceT ime. Thereafter, when

�ring the rules K2a-K2c, the driving, e�ective, and current values of all active

signals are determined in sequence, i.e., the value of driver(p4; example:Y)

is propagated in Rule K2a to the driving value of signal example:Y . Since

example:Y is an out port neither an e�ective nor a current value is de�ned

for this signal. For that reason and since a value change from 0 to 0 does not

cause an event, no process is resumed when �ring Rule K3. Consequently, the

condition AllProcessesSuspended immediately evaluates to true.

Cycle 3

On the condition for AllProcessesSuspended the kernel becomes active �ring

Rule K1. The minimum time for Tn is given by 5 ns, i.e., the time compo-

nent of the second element of driver(p5; stimuli). Consequently, cycle is set to

postponed cycle and phase is set to execute postponed. This causes an imme-

diate second �ring of Rule K1 since by de�nition of the model there are no post-

poned processes. cycle is set to time cycle and phase to update driving values

in Rule K1. By UpdateDrivers with 5 ns, driver(p5; stimuli) becomes updated

and thereby active. Thus, we obtain:

driver(p5; stimuli) = (1 j 5ns) (0 j 10ns) (1 j 15ns) (0 j 20ns) (1 j 25ns) ...

The current time is advanced to 5 ns in AdvanceT ime. The driving, e�ective,

and current values of all active signals are determined when �ring the rules

K2a{K2c. Thereby the value of driver(p5; stimuli) is propagated through the

corresponding net given by Figure 9. Table 4 presents the results after applying

22At the beginning of each cycle of the remaining simulation K1 �res twice. The �rst �ring
is an attempt to execute the (not existing) postponed processes.

30 Chapter 1

the rules K2a{K2c. In this table we indicate the change of a value by an arrow,

i.e., the current values of all of these signals change from 0 to 1 which sets an

event for each of these signals.

V alue nSignal stimuli example:X one:X

driving 1 - -

effective 1 1 1

current 0!1 0!1 0!1

event true true true

Table 4

In ResumeOnSignals of Rule K3, for each of the signals with an event the wait

condition of the processes in waiting (see Table 3) is checked by the kernel. p1
is not resumed since the condition waitcond(waiting(one.X)) evaluates to false

(one:X 6= 000). Rule K3, in addition, resets active and event for the given

signals and all drivers. Rule K1 immediately �res since suspended remains

true for all processes.

Cycle 4

In Rule K1, Tn is given by the second transaction of driver(p5; stimuli) evalu-

ating to 10 ns. After the attempt to execute the resumed postponed processes

K1 �res again and determines a time cycle advancing the current simulation

time to Tn = 10 ns. In UpdateDrivers to 10 ns, driver(p5; stimuli) is updated

and set to active. Thus, we obtain:

driver(p5; stimuli) = (0 j 10ns) (1 j 15ns) (0 j 20ns) (1 j 25ns) ...

Again, all signals of the net driver(p5; stimuli) is associated with are updated.

The result of this update is shown in Table 5.

The waiting sets of all signals with an event are checked for processes to resume

(see Table 3). In the current cycle, process p1 resumes on signal one:X since

waitcond(p1) evaluates to true (see Table 2). The kernel sets phase in order to

execute the resumed nonpostponed processes in Rule K3. This enables process

p1 to execute the signal assignment h Y <= '1' AFTER 1 nsi. The signal

assignment �res Rule P3 scheduling one transaction at time Tc + 1 ns:

driver(p1; one:Y) = (0 j 0ns) (1 j 11ns)

De�nition of VHDL'93 by EA{Machines 31

V alue nSignal stimuli example:X one:X

driving 0 - -

effective 0 0 0

current 1!0 1!0 1!0

event true true true

Table 5

p1 �nally suspends with wait condition one:X = 000 enabling the kernel process

again.

Cycle 5

The new time Tn is given by the second element of driver(p1; one:Y), i.e.,

11ns. After a second �ring of Rule K1 a time cycle is determined. When being

updated to 11 ns, driver(p1; one:Y) becomes active and obtains a new value

which is propagated through the subnet of S(0) (see Figure 10).

one.Y two.X

S(0)

: propagation of effective values
: propagation of driving values

1driver(p , one.Y)

Figure 10 Value Propagation Subnet for S(0)

Table 6 shows the values after the update.

Process p4 is resumed since there is an event on the subelement S(0) of signal

S and p4 2 waiting(S) (see Table 3). p2 is not resumed since two:X 6= 000.

When phase = execute postponed, p4 performs the signal assignment state-

ment h Y <= S AFTER 1 nsi. This assignment schedules the value 1 at time

12 ns to driver(p4; example:Y). Thereafter, the wait statement suspends p4
on signal S.

32 Chapter 1

V alue nSignal one:Y S(0) two:X

driving 1 1 -

effective - 1 1

current - 0!1 0!1

event false true true

Table 6

Cycle 6

Since all user de�ned processes are currently suspended Rule K1 �res twice.23

The current simulation time is advanced to 12 ns which is given by the previ-

ously scheduled transaction of driver(p4; example:Y). Consequently, the driv-

ing value of example:Y computes to 1.

Cycle 7 { Cycle 11

Cycle 7 performs equal to Cycle 3 advancing the current simulation time to

15 ns. Cycle 8 performs equal to Cycle 4 and sets the current time to 20 ns.

As a result of the event on one:X, which equals 0, p1 is resumed. The signal

assignment schedules the value 0 at 21 ns to driver(p1; one:Y). Thus, in Cycle

9, Tc is set to 21 ns. The value of driver(p1; one:Y) is propagated to S(0) and

two:X which both become 0. p2 is resumed since an event is set for two:X and

the condition two:X = 000 evaluates to true. The signal assignment performed

by p2 schedules the value 1 at 22 ns to driver(p2; two:Y). In Cycle 10 this

value is propagated to S(1) whose value change resumes process p4. The signal

assignment performed by p4 schedules the value 2 to driver(p4; example:Y) at

23 ns. The propagation to the driving value of example:Y �nally takes place

in Cycle 11. Thus, during the last three cycles, the (driving) value of the out

port example:Y increments from 1 at time 21 ns to 2 at time 23 ns with the

intermediate value of 0 at time 22 ns (see also Table 1).

23Recall that the �rst �ring is the attempt to execute the postponed processes.

De�nition of VHDL'93 by EA{Machines 33

6 CONCLUSION & FUTURE

DIRECTIONS

We have given a formal de�nition of the VHDL'93 simulator which is introduced

without any extraneous formal methodological overhead. We have strictly de-

�ned our model with regard to the nameing of the VHDL'93 language refer-

ence manual which makes the formalization of this manual directly visible to

the reader. Our aim was to provide the community with a formal but yet

human{processable model of the relevant behavioral constructs of VHDL'93.

The next investigations will be undertaken from this rigorous basis to build

tools for machine assisted analysis and veri�cation. Additional investigations

in deriving an implementation of a VHDL simulator might be sensible since

most of the syntactical representation of our EA{Machines should be easily

implementable. Due to the inherent parallelism of EA-Machines a distributed

implementation might be achieved.

Further work will concentrate on a speci�cation of UDL/I [19] with the ultimate

goal to close the formal gap between VHDL's simulation{oriented semantics and

UDL/I's hardware{oriented semantics for language comparison. As a �rst step

we have to investigate implicit signals within our VHDL speci�cation.

Acknowledgements

We would like to thank Peter T. Breuer, Uschi Hudson, Yuri Gurevich, Leo

Marcus, Christel Oczko, Sera�n Olcoz, Franz J. Rammig, and Simon Read for

their valuable comments when reviewing this work.

34 Chapter 1

REFERENCES

[1] C. Bayol, B. Soulas, F. Corno, P. Prinetto, and D. Borrione. A process

algebra interpretation of a veri�cation oriented overlanguage of vhdl. In

EURO-DAC'94/EURO-VHDL'94. IEEE CS Press, 1994.

[2] J.-M. Berge, A. Fonkoua, S. Maginot, and J. Rouillard. VHDL'92. Kluwer
Academic Publishers, Dordrecht, Netherlands, 1993.

[3] E. B�orger, U. Gl�asser, and W. M�uller. The semantics of behavioral

VHDL'93 descriptions. In EURO-DAC'94/EURO-VHDL'94. IEEE CS

Press, 1994.

[4] E. B�orger, U. Gl�asser, and W. M�uller. Formal de�nition of an ab-

stract VHDL'93 simulator by EA{Machines. In C. Delgado Kloos

and P. T. Breuer, editors, Formal Semantics For VHDL. Kluwer,

Boston/London/Dordrecht, 1995.

[5] D. Borrione, H. Eveking, and L. Pierre. Formal proofs from HDL descrip-

tions. In J.P. Mermet, editor, Fundamentals and Standards in Hardware
Description Languages. Kluwer Academic Publishers, Dordrecht, Nether-

lands, 1993.

[6] D. Borrione and J.L. Paillet. An approach to the formal veri�cation of

VHDL descriptions. Technical Report 683-I, IMAG/ARTEMIS, Grenoble,

1987.

[7] P.T. Breuer, L. Sanchez, and C. Delgado Kloos. Clean formal semantics

for VHDL. In European Design and Test Conference '94, 1994.

[8] P.T. Breuer, L. Sanchez, and C. Delgado Kloos. Hard models for hardware:

relating functional and denotational semantics for VHDL. In PROCOMET
'94, 1994. Submitted preliminary version.

[9] P.T. Breuer, L. Sanchez Fernandez, and C. Delgado Kloos. Proof

theory and a validation condition generator for VHDL. In EURO-
DAC'94/EURO-VHDL'94. IEEE CS Press, 1994.

[10] T. Breuer, L. Sanchez Fernandez, and C. Delgado Kloos. A functional se-

mantics for macro-time VHDL. In C. Delgado Kloos and P. T. Breuer, ed-

itors, Formal Semantics For VHDL. Kluwer, Boston/London/Dordrecht,
1995.

[11] W. Damm, B. Josko, and R. Schloer. A net-based semantics for VHDL.

In EURO-DAC'93/EURO-VHDL'93. IEEE CS Press, 1993.

De�nition of VHDL'93 by EA{Machines 35

[12] W. Damm, B. Josko, and R. Schloer. Speci�cation and veri�cation of

VHDL-based system-level hardware designs. In E. B�orger, editor, Speci�-
cation and Validation Methods. Oxford University Press, Oxford, 1994. to

appear.

[13] K.C. Davis. A denotational de�nition of the VHDL simulation kernel. In

Computer Hardware Description Languages and their Application, Ams-

terdam, 1993. North-Holland.

[14] A. Debreil and Ph. Oddo. Synchronous designs in VHDL. In EURO-
DAC'93/EURO-VHDL'93. IEEE CS Press, 1993.

[15] H. Eveking. (V)HDL-based veri�cation of heterogeneous syn-

chronous/asynchronous systems. In EURO-DAC'94/EURO-VHDL'94.
IEEE CS Press, 1994.

[16] M. Fuchs and M. Mendler. Functional semantics for delta-delay VHDL

based on FOCUS. In C. Delgado Kloos and P. T. Breuer, editors, Formal
Semantics For VHDL. Kluwer, Boston/London/Dordrecht, 1995.

[17] Y. Gurevich. Evolving algebras { a tutorial introduction. In Bulletin of
the EATCS, volume 43, pages 264{284. EATCS, 1991.

[18] Y. Gurevich. Evolving algebra 1993: Lipari guide. In E. B�orger, editor,

Speci�cation and Validation Methods. Oxford University Press, Oxford,

1994.

[19] Japan Electronic Industry Development Association. UDL/I Language
Reference Manual|Version 2.0.3, September 16 1993. Translation from

the Japanese Language Reference Manual.

[20] B. H. Levy, I. V. Filippenko, L. G. Marcus, and T. K. Menas. Using the

state delta veri�cation system (SDVS) for hardware veri�cation. In IFIP
TC10/WG 10.2 International Conference on Theorem Provers in Circuit
Design: Theory, Practice and Experience, pages 337{360. North-Holland,
1992.

[21] L. G. Marcus and B. H. Levy. Specifying and proving core VHDL de-

scriptions in the state delta veri�cation system (SDVS). Technical Report

ATR-89(4778)-5, The Aerospace Corporation, 1989.

[22] P.J. Menchini. VHDL. In J.P. Mermet, editor, Fundamentals and Stan-
dards in Hardware Description Languages. Kluwer Academic Publishers,

Dordrecht, Netherlands, 1993.

36 Chapter 1

[23] W. Mueller. Approaching the denotational semantics of behavioral

VHDL92 descriptions. In First Asian Paci�c Conference on Hardware
Description Languages, Standards & Applications, 1993.

[24] S. Olcoz and J.M. Colom. Toward a Formal Semantics of IEEE Std. VHDL

1076. In EURO-VHDL/EURO-DAC'93. IEEE CS Press, 1993.

[25] S. Olcoz and J.M. Colom. VHDL through the looking glass. In VHDL-
FORUM, 1993.

[26] S. Olcoz and J.M. Colom. The discrete event simulation semantics of

VHDL. In International Conference on Simulation and Hardware De-
scription Languages, San Diego, CA, 1994. SCSI.

[27] S. Read and M. Edwards. A formal semantics of VHDL in Boyer-Moore

logic. In 2nd International Conference on Concurrent Engineering & EDA,
San Diego, CA, 1994. SCSI.

[28] R. Reetz and Th. Kropf. Simplifying deep embedding: A formalised code

generator. In International Workshop on High Order Logic Theorem Prov-
ing and its Applications. Springer, 1994.

[29] R. Reetz and Th. Kropf. Correct system level design with VHDL. In

C. Delgado Kloos and P. T. Breuer, editors, Formal Semantics For VHDL.
Kluwer, Boston/London/Dordrecht, 1995.

[30] D.M. Russino�. Speci�cation and veri�cation of gate-level VHDL models

of synchronous and asynchronous circuits. In E. B�orger, editor, Speci�ca-
tion and Validation Methods. Oxford University Press, Oxford, 1994.

[31] A. Salem. Veri�cation formelle des circuits digitaux decrits en VHDL.
PhD thesis, Universite Joseph Fourier, Grenoble, October 1992.

[32] A. Salem and D. Borrione. Formal semantics of VHDL timing constructs.

In J.P. Mermet, editor, VHDL for simulation, synthesis, and formal proof.
Kluwer Academic Publishers, London, 1993.

[33] The Institute of Electrical and Electronics Engineers, New York, NY, USA.

IEEE Standard VHDL Language Reference Manual{IEEE Std 1076-1987,
1988. Order Code SH11957.

[34] The Institute of Electrical and Electronics Engineers, New York, NY, USA.

IEEE Standard VHDL Language Reference Manual{IEEE Std 1076-1993,
1994. Order Code SH16840.

De�nition of VHDL'93 by EA{Machines 37

[35] J.P. van Tassel. Femto-VHDL: The Semantics of a Subset of VHDL and
its Embedding in the HOL Proof Assistant. PhD thesis, University of

Cambridge, July 1993.

[36] P. Van Tassel, J. An operational semantics for a subset of VHDL. In

C. Delgado Kloos and P. T. Breuer, editors, Formal Semantics For VHDL.
Kluwer, Boston/London/Dordrecht, 1995.

[37] E. Villar and P. Sanchez. Synthesis applications of VHDL. In J.P. Mermet,

editor, Fundamentals and Standards in Hardware Description Languages.
Kluwer Academic Publishers, Dordrecht, Netherlands, 1993.

[38] P.A. Wilsey. Developing a formal semantics description of VHDL. In First
European Conference on VHDL, Vol.2, 1990.

38 Chapter 1

APPENDIX A

ELABORATED EXAMPLE

p5: process begin

stimuli <= '0' after 0 ns, '1' after 5 ns, '0' after 10 ns,

'1' after 15 ns, '0' after 20 ns, '1' after 25 ns, ...;

wait;

end process;

example: block port (X: in bit; Y: out bit vector(0 to 2));

port map (X=>stimuli);

signal S: bit vector(0 to 2);

begin

p4: process begin

Y <= S after 1 ns;

wait on S;

end process;

one: block

port((X: in bit; Y: out bit); port map(X=>X,Y=>S(0));

begin

p1: process begin

wait until X='0';

Y<='1' after 1 ns;

wait until X='0';

Y<='0' after 1 ns;

end process;

end block one;

two: block

port((X: in bit; Y: out bit); port map(X=>S(0),Y=>S(1));

begin p2: process begin ... end process;

end block two;

three:block

port((X: in bit; Y: out bit); port map(X=>S(1),Y=>S(2));

begin p3: process begin ... end process;

end block three;

end block example;

De�nition of VHDL'93 by EA{Machines 39

APPENDIX B

VHDL EXAMPLE

entity cont 1 is

port (X: in bit; Y: out bit);

end cont 1;

architecture beh of cont 1 is

begin

process

begin

wait until X='0';

Y <= '1' after 1 ns;

wait until X='0';

Y <= '0' after 1 ns;

end process;

end beh;

entity cont 3 is

port (X: in bit; Y: out bit vector(0 to 2));

end;

architecture structural of cont 3 is

component cont 1

port(X: in bit; Y: out bit);

end component;

for all: cont 1 use entity work.cont 1(beh);

signal S:bit vector (0 to 2);

begin

Y <=S after 1 ns;

one: cont 1 port map(X, S(0));

two: cont 1 port map(S(0), S(1));

three: cont 1 port map(S(1), S(2));

end structural;

