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Abstract

This is a tutorial introduction into the evolving algebra approach to

design and veri�cation of complex computing systems. It is written to be

used by the working computer scientist. We explain the salient features of

the methodology by showing how one can develop from scratch an easily

understandable and transparent evolving algebra model for PVM, the

widespread virtual architecture for heterogeneous distributed computing.

Introduction

In 1988 Yuri Gurevich has discovered the notion of evolving algebra in an at-

tempt to sharpen Turing's thesis by complexity theoretic considerations (see

[22]). Through numerous case studies (see [4] for an annotated list which is

complete up to 1994) it has become clear since then that using the notion of

evolving algebras one can develop a powerful and elegant speci�cation method-

ology which has a huge yet unexplored potential for industrial applications. In

this report we are going to explain the basic concepts of this approach to the de-

sign and analysis of complex systems and illustrate its salient features through

a challenging example from real life.

We provide an abstract formal speci�cation of central components of PVM,

the widespread virtual architecture for heterogeneous distributed computing

[20, 32]. We start from scratch without presupposing any knowledge of PVM;

�In BRICS TR (BRICS-NS-95-4), University of Aarhus, July 1995. Preliminary versions of
this paper have been presented by U. Gl�asser at the PVM Users' Group Meeting, Oak Ridge,
TN, May, 1994 and by E. B�orger at the Euro{PVM Users' Group Meeting, Rome, Oct., 1994.
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the fact that we will nevertheless end up with a clear and easily understandable

formal de�nition of the main features of PVM's virtual machine at the level of

the user interface1 is not the worst argument for the speci�cation methodology.

It is for the bene�t of the practitioner that we are going to introduce here

the notion of evolving algebra by a non{toy example from real{life; for a precise

mathematical foundation we refer the interested reader to [23]. Our exposition

is centered around what we consider to be the four outstanding merits of the

proposed approach to the speci�cation and veri�cation of complex systems:

� the freedom of abstraction which allows you to structure a system into a

hierarchy of appropriate subsystems,

� the powerful and simple mechanism for information hiding and de�nition

of precise interfaces,

� the principle of locality for dynamics (state transitions), and

� the satisfactory link to application domains by the construction of appro-

priate ground models.

1 Freedom of Abstraction

It is well known that general abstraction principles are needed to cope with

the complexity of large systems. For data structures the algebraic speci�cation

approach (see [33]) shows a way to deal with abstract data types; for actions the

action semantics approach (see [30]) proposes a scheme for constructing com-

plex operations out of basic components. Evolving algebras o�er the possibility

to choose both, the data and the basic actions, at any level of abstraction and

independently of each other. The way how this is done is very simple and corre-

sponds to common practice in systems engineering: when specifying a software

or hardware system one has to de�ne its basic objects and the elementary op-

erations which the system uses for its actions (dynamical behaviour). In other

words one has to de�ne the basic domains and functions of a system. This leads

in a natural way to the mathematical notion of structures as formalization of

system states, as we are going to explain now.

1.1 Universes

Each system S deals with certain basic objects which might be classi�ed into

di�erent categories. This is reected in an evolving algebra model of S by

corresponding sets (also called universes or domains), one for each category of

objects. These sets can be completely abstract|this is the case if no restriction

1More precisely, we specify the C{interface of the virtual machine of PVM 3, the current
version of PVM [19].
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is imposed on the corresponding category of objects. In case that the objects

are assumed to have certain properties or to be in certain relations with other

objects, we formalize these properties and relations by corresponding conditions

(integrity constraints) which the objects in those sets are required to satisfy. The

evolving algebra approach accepts any precise formalization of such conditions,

in whatever language or framework they are given.

In the remaining part of this subsection we illustrate this data abstraction

principle by a discussion of basic PVM domains.

Under PVM a heterogeneous collection of physically interconnected Unix{

based machines of various kinds of architectures (including serial, parallel, and

vector computers) appears logically as a loosely coupled distributed{memory

computer. The constituting member computers are called host machines and

are formalized as elements of a corresponding set HOST. The architecture of

each host machine is indicated by a function

arch : HOST ! ARCH

where ARCH is the set of possible architectures to be used with PVM 3 as listed

in [19]. An important feature which distinguishes the universe HOST from

ARCH is that the latter is static|i.e. it does not change|whereas the former

is dynamic. Indeed, host machines can be dynamically added to or deleted from

the virtual machine|except for a designated host

master : HOST

on which PVM is started and which maintains the control over the dynamically

changing machine con�guration. Since the main intention of the concept of

evolving algebras is to reect the dynamical system behaviour in a direct and

simple way, there are two basic operations which formalize the growing and

shrinking of universes:

extend A by x1; : : : ; xn with | endextend

where `|' is used to de�ne certain properties or functions for (some of) the new

objects xi of the universe A. For example, if a new host machine of architec-

ture type at has to be added|this can be obtained in PVM using the routine

pvm addhosts()|one can write

extend HOST by x with arch(x) := at endextend :

The corresponding deletion operation has the following form

discard t from A
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where t is a �rst{order term2 and A a universe. One might be tempted to assume

that once t is deleted fromA, each function where t appears as value or in the ar-

guments is automatically unde�ned there; but since this is more a type{checking

or implementation concern (about error detection or garbage collection) than a

semantical concern, we assume here only that `discard t from A' has the e�ect

of setting the characteristic function of A at t to false.

The basic computational units of PVM are constituted by concurrently run-

ning application programs (Unix processes), which can enroll into PVM as tasks.

We formalize these tasks as elements of a dynamic domain

TASK � PROCESS

which is required to consist of the processes enrolled into PVM3. When a process

enrolls into PVM (see below the PVM instruction pvm mytid()) it is registered

by a new task identi�er, i.e. an appropriate set TID|which is left abstract

here|is extended by a new element which is assigned to the given process, say

Process, by an injective function tid as follows:

extend TID by T id with tid(Process) := T id endextend

Note that also the inverse function:

task : TID ! TASK

of tid is used. By requiring task to be the inverse function of tid we avoid to

have to explicitly set task(TID ) := Process when tid(Process) is set to T id.

This formalizes the global addressing of tasks in PVM.

On the basis of this homogeneous global address space TID in which all

tasks are uniformly addressed through tid, when tasks communicate to each

other they do not need to know whether their communication partner resides

on the same host or not. Indeed, the asynchronous message{passing model of

PVM does not distinguish between local and global intertask communication.

However, on each of the hosts there is a local daemon process, called pvmd,

which acts as a local supervisor in operations that require task management or

intertask communication. We formalize this by introducing another dynamic set

DAEMON together with a nullary function pvmd : DAEMON identifying the

concurrently operating PVM daemons. The correspondence between daemons

and their hosts is expressed by a dynamic bijective function:

host : DAEMON ! HOST :

2By �rst{order term we mean any expression built up from constants or variables by using
function symbols.

3Note that there are also other processes which are not running under PVM, for instance,
the PVM system itself is such a process.
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Clearly, each time a host is added, a new daemon has to be created and the

function host to be updated correspondingly. Thus the above HOST {extension

is re�ned as follows:

extend HOST by x with

arch(x) := at

extend DAEMON by d with

host(d) := x

endextend

endextend

For the initialization we have to require that there is a distinguished daemon

demiurge : DAEMON

who resides on the master host (i.e. host(demiurge) = master) and will in

particular be responsible for creation and deletion of hosts.

1.2 Dynamic Functions

Once it has become clear what are the basic objects of a system S, one has to

think about what are the elementary operations which are performed on those

objects in S. Typically, a basic operation consists of setting a certain value,

given the values of certain parameters. The most general framework of such

operations is the following function update:

f(t1; : : : ; tn) := t

where f is an arbitrary n{ary function and t1; : : : ; tn represent the parameters

(arguments) at which the value of the function is set to t. In writing evolving

algebras it is allowed to use arbitrary function updates, for functions f and terms

ti; t of arbitrary complexity or level of abstraction. Note that such functions

f are called dynamic in contrast to static functions which do not change.

Function updates provide the basic notion of destructive assignment at any

level of abstraction. Here are two very simple and well known but character-

istic examples for function updates. The updating of a program counter in an

architecture is expressed by the following function update

pc := next(pc)

where pc represents a 0{ary function and next the monadic function which de-

termines for a given value of pc what is the next value to be stored in pc. The

updating of a bu�er by adding a new datum can be expressed by the following

function update:

cont(bu�er) := append(datum; cont(bu�er))
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where bu�er is a 0-ary function, cont a monadic function providing the bu�er

content and append an abstract function which given a datum and a bu�er

content yields the result of appending this datum to the current content of the

bu�er.

Besides domain extension and deletion of elements, function updates are

the mechanism by which the dynamics of arbitrary systems can be described

in an explicit way. In accordance with usual practice the execution of updates

in evolving algebras can be conditioned by so{called guards, giving rise to so{

called transition rules (also called guarded multi{update instruction in [23]) of

the following form:

if Cond then Updates

Cond is an arbitrary boolean valued expression (�rst{order logic formula) and

Updates a set of updates. The rule can be executed if Cond is true; its e�ect is

to simultaneously execute each update in the set Updates. (The simultaneous

execution of more than one update helps to avoid an explicit description of

intermediate storage, see for example the two updates a := b; b := a.)

A simple example from PVM is provided by the routine pvm mytid(). If

this routine is called by a process Process , the responsible pvmd checks whether

Process is among the tasks which are registered already|the set of those tasks

is stored by a dynamic function tids at argument pvmd. If Process is already

registered, its task identi�er is returned to Process ; if it is not registered yet,

then it gets enrolled into PVM as described in the preceding subsection and its

task identi�er is added to tids(pvmd). Thus we have the following rule:

if tid(Process ) 6= undef

then return tid(Process ) to Process

else extend TID by T id with

tid(Process ) := T id

tids(pvmd) := insert(T id; tids(pvmd))

return T id to Process

endextend

Here \return t to P" is an abstract update which we are not going to specify

furthermore at this level of abstraction.

1.3 States as Algebras

To speak about a system means to speak about its objects in terms of functions

and relations de�ned on them. Domains, functions, and relations constitute

what in mathematics is called a structure. Structures without relations are

traditionally called algebras. Since relations (and in particular sets) can be rep-

resented by their characteristic functions, for simplicity, we deal in the following

only with algebras.
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An evolving algebra can (in a �rst approximation) be de�ned as a �nite set

of transition rules

if Cond then Updates

where Updates consists of �nitelymany function updates (and domain extensions

or deletions of elements; these two update forms can be reduced to function

updates, see [23]). The e�ect of a transition rule R when applied to an algebra

A is to produce another algebra A0 which di�ers from A by the new values for

those functions at those arguments where the values are updated by the rule R.

We will construct the PVM rules in such a way that the guards imply con-

sistency of simultaneously executable updates. Note that no rule changes the

type of the functions; only the incarnation (the concrete interpretation) of a

function changes by changing some of its values. We speak therefore of algebras

also as static algebras, to distinguish them from evolving algebras. The latter

are transition systems which transform the former.

Thus, the abstraction principle which is built into the notion of evolving

algebra consists in proposing

� (static) algebras as the mathematical notion of \state" and

� guarded destructive assignments for abstract functions as basic dynamic

operations

This is the most general notion of state and of dynamic changes of states modern

mathematics o�er. As a consequence evolving algebras are the most general

notion of a (discrete) dynamic system. A priori no restriction is imposed on the

abstraction level where one might want to place an evolving algebra description

of a system. This freedom explains the success of the simple and transparent

evolving algebra models for the semantics and the implementation of numerous

complex programming languages like Prolog [15, 16], C [24], VHDL [11], Occam

[9, 8], for protocols [12, 27], architectures [6, 5, 13], real{time algorithms [25, 26],

etc.

The importance of the freedom of abstraction which is o�ered through the

notion of evolving algebra is also con�rmed by a common experience in the de-

sign of algorithms. Namely, the need to model phenomena of the real world,

which are given a priori, leads the designer of programs to use `abstract struc-

tures', as has been well expressed a long time ago by N. Wirth:

\... Data in the �rst instance represent abstractions of real phe-

nomena and are preferably formulated as abstract structures not

necessarily realized in common programming languages." (see [34],

page 10)

Furthermore, the reciprocal dependency of algorithms and data structures

makes it important for the designer not to be hindered by inappropriate re-

strictions of the framework; to say it again with Wirth's words:
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\It is clear that decisions about structuring data cannot be made

without knowledge of the algorithms applied to the data and that,

vice versa, the structure and choice of algorithms often depend

strongly on the structure of the underlying data. In short, the sub-

jects of program composition and data structures are inseparably

interwined." (see [34], page 9)

The framework of evolving algebras o�ers the freedom the designer needs to

`tailor' his models to the given level of abstraction.

2 Information Hiding and Interfaces

The basic idea of information hiding, as introduced by D. Parnas in [31], ad-

dresses the modular structuring of systems and can be summerized as follows:

\A module achieves program simpli�cation by providing an abstrac-

tion. That is, its function can be understood through its interface

de�nition without any need to understand the internal details." [29].

In a practical speci�cation methodology information hiding has to go hand in

hand with a good discipline to handle interfaces. The evolving algebra approach

o�ers both in a most general way through the concept of external functions.

Each function f which appears in an update f(t1; : : : ; tn) := t of some tran-

sition rule R is called internal for R; for a given evolving algebra A a function

g of the vocabulary of A which is not internal for any of the rules of A is called

external for A.

For a function f which is internal for A all the information on (the dynamical

behaviour of) f is available through the rules of A; the programmer who knows

the rules of A can use that information about f . In contrast, for an external

function g for A the rules of A give no information on the behaviour of g.

An external function g cannot be modi�ed (`written') by A, but it can be used

(`read') in the rules of A to determine arguments at which an internal function is

changed dynamically or to determine the new values in such updates. External

functions can in particular be used to represent the environment in which an

evolving algebra is intended to work. It is the task of the system designer to

provide exactly that information on g which he wants the programmer to know

and to use. In the evolving algebra methodology this interface information can

range from nothing at all|this is the case of an external function for which

only the number and the types of its arguments and values are known|to a full

speci�cation by some axioms or by a set of equations or by another evolving

algebra (module), etc. Note that due to the abstraction principle explained in

the previous section the evolving algebra approach imposes no restriction at all

on the choice of external functions and the way they are described. The use of

evolving algebras does not trivialize the di�cult task of \designer control of the
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distribution of information" ([31]:pg. 344), but at least it does not hinder this

task by extraneous formal overhead and o�ers a exible and open framework to

guarantee information hiding and the de�nition of precise abstract interfaces.

In the following subsections we explain some outstanding examples for the

use of external functions in evolving algebra descriptions of complex systems.

2.1 The PVM Event Mechanism

PVM realizes a distributed computation model which is characterized by the

reactive behaviour of the concurrently operating PVM daemon processes, one

on each host computer of the virtual machine. The daemons e�ectively carry

out the PVM instructions of their local tasks and may interact with each other

through asynchronous message{passing communication. There are in principle

two di�erent kinds of operations requiring the activity of a daemon (pvmd): a

request of a local task to carry out some PVM instruction and the reception of a

message from another pvmd. The daemon cannot inuence from where, when,

and which request or message will reach him, rather he has to wait for the next

such event to come whenever he is idle. We can model this intuition faithfully

by introducing an external function event which for some given pvmd might

yield a PVM instruction or message as value. If event(pvmd) is de�ned and has

the value instr/mssg, then the pvmd is going to execute/read instr/mssg. This

is formalized in our PVM model by a rule of form

if event(pvmd) = instr/mssg then execute instr/read mssg

for each individual PVM instruction instr or PVM message mssg, where exe-

cute instr/read mssg represents the corresponding updates. An integrity con-

straint on the function event is that a de�ned value of event(pvmd) remains

stable until the pvmd has evaluated the function. However, we assume `destruc-

tive reading' such that event(pvmd) is reset to undef (resp. indicates the next

event) as soon as the pvmd has read the current value.

As example we de�ne the four rules which de�ne the task administration

and administration of message bu�ers in PVM.

2.1.1 PVM Task Administration

We complete the formalizationof the PVM routine pvm mytid() by the following

rule de�ning the reaction of the pvmd when the routine is called by a given

process Process :
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pvm mytid()

if event(pvmd) = mytid() from Process

thenif tid(Process ) 6= undef

then return tid(Process ) to Process

else extend TID by T id with

tid(Process ) := T id

tids(pvmd) := insert(T id; tids(pvmd))

return T id to Process

endextend

Similary, we have the following rule for the PVM routine pvm exit() by

which a Task can leave PVM through a request to the responsible pvmd:

pvm exit()

if event(pvmd) = exit() from Task

then

discard tid(Task ) from TID

tids(pvmd) := delete(tid(Task ); tids(pvmd))

2.1.2 PVM Message Bu�ers

For the speci�cation of PVM's message{passing interface|which o�ers point-

to-point communication from one task to another as well as multicast to a set of

tasks|we extend the basic model by abstract domains related to messages and

bu�ers: MESSAGE , TAG , DATA , BUFID , ENCODING . To send a message,

a task �rst packs the message into a send bu�er and then calls one of the

send functions. To selectively receive messages, a task invokes one of various

receive functions specifying the receive context. Though PVM does not explicitly

specify any limit to the size or number of messages, our speci�cation could easily

incorporate conditions which reect constraints coming from physical limitations

of the underlying hardware and software components.

The basic message-passing routines of PVM apply a simple communication

model4 that is based on two fundamental assumptions: for each task there is

only one send bu�er and one receive bu�er; any message transfer between tasks

is handled by the responsible pvmds. The following description of the message-

passing model assumes two basic integrity constraints that are guaranteed by

4or more sophisticated communication mechanisms additional routines and options, not
discussed here, allow to tailor the basic model to individual application requirements; for
example, this includes direct task-to-task communication, speci�c group functions, or multiple
send and receive bu�ers.
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the corresponding routines embedded in the virtual machine: message-passing

is reliable and order-preserving.

Message bu�ers are addressed through unique identi�ers from BUFID ,

0 =2 BUFID . The content of a bu�er may be any sequence of DATA objects

and is accessed by cont : BUFID ! DATA
�. An encoding : BUFID !

ENCODING = fPvmDataDefault;PvmDataRaw;PvmDataInPlaceg, asso-

ciated to send bu�ers, speci�es the method used for packing mes-

sages: PvmDataDefault refers to External Data Representation (XDR);

PvmDataRaw to the original data format; PvmDataInPlace means that the data

items have to be copied directly out of the user's memory (for details cf. [19]).

Two injective functions sendbuf and recvbuf from TASK into BUFID yield the

current send and receive bu�ers of tasks.

The routine pvm initsend() creates, for the task which wants to start

a sending operation, an empty send bu�er with the speci�ed encoding

scheme and returns a corresponding bu�er identi�er. A class of routines

pvm pk*(Pointer ;Nitem; Stride)|there is one pack routine for each individ-

ual data type � 2 fbyte; cplx; dcplx; double; float; int; long; shortg5|packs the

number Nitem of data into the send bu�er; Pointer refers to the location of the

�rst data item and Stride to the relative distance to the next one. The formal

de�nitions of these routines are given by the rules:

pvm initsend()

if event(x) = initsend(Encoding) from Task

then

extend BUFID by b with

sendbuf (Task ) := b

cont(b) := hi

encoding(b) := Encoding

return hbi to Task

endextend

pvm pk*()

if event(x) = pk�(Pointer ;Nitem; Stride) from Task

then

cont(b)) := append(data�(Pointer ;Nitem; Stride); cont(b))

where b � sendbuf (Task )

We will complete the formalization of the PVM message{passing system in

Section 3.
5For packing strings a simpler routine is used which we do not describe here.
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2.2 Further Examples of External Functions

The external function event in our PVM model is dynamic and thus directly

reects the way in which tasks interact with their local pvmd when they want

PVM routines to be invoked. No pvmd has an own �xed PVM program; the

instructions or messages which reach a pvmd come for him as determined by his

environment to which he reacts. Using the external dynamic function event we

abstract from the speci�c way how the daemon's walk through his sequence of

instructions/messages is determined by the activities of his tasks.

The power of abstraction which is o�ered through the introduction of ex-

ternal functions does not depend on their being dynamic. Consider as example

the formal de�nition given in [15] for the programming language Prolog as seen

by the programmer. The four simple rules which de�ne the full behaviour of

Prolog for user{de�ned predicates make crucial use of two external functions

procdef and unify.

The function procdef is supposed to provide for a given literal l and the

given program db exactly the clauses in db which are relevant for l in the order in

which they have to be applied. The whole non{trivial backtracking behaviour of

Prolog (including optimizations like determinacy detection) can be described on

the basis of such a function procdef without being more speci�c about the latter.

procdef plays for that model the role of a \well{de�ned whole." If we consider

Prolog without operations like assert, retract which modify the program, then

procdef is a static external function. If we want to model also Prolog's program

modi�cation features then procdef becomes an internal dynamic function (see

[7, 14]). Note that during the re�nement process by which the Prolog model of

[15] is linked in a provably correct way to the WAM implementation model in

[16] the function procdef receives an explicit de�nition.

The function unify is supposed in [15] to provide for each pair of literals

either a unifying substitution or the information that there is no such uni�ca-

tion. This function describes the abstract behaviour of uni�cation without being

bound to any concrete uni�cation algorithm. It also hides from the program-

mer the details about the representation of termes which appear in the re�ned

WAM models of [16]. As a result the abstract PROLOG model of [15] and its

re�nement to the WAM model of [16] could easily be extended to constraint

logic programming languages with or without types where uni�ability appears

as a particular case of constraints (see the formal evolving algebra de�nitions of

PROLOG III [18], Protos{L [1], and CLP(R) [17]).

Other examples of external functions which contributed in a crucial way to

the simplicity of the models under consideration are the following:

� the static �nd{catcher function de�ned in [15] leads to a concise formal-

ization of the error{handling predicates catch and throw of Prolog.

� In the evolving algebra model for the IEEE VHDL Standard we have

obtained a simple and uniform rule set for signal assignments by intro-
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ducing for the inertial delay an external static function reject for which we

give a natural and easily understandable recursive de�nition. Similarly,

a transparent description is obtained for the propagation of signal values

by introducing external functions for the so{called driving and e�ective

values; the former is determined by a recursion on the signal sources, the

latter by a recursion on port association elements from ports to signals.

In both cases the recursive de�nitions replace rather complex algorithmic

characterizations in the VHDL'93 language reference manual [28].

� In the abstract evolving algebra models of Occam (see [9]) which are

the starting point for the correctness proof of a compilation scheme into

Transputer instructions in [8] we have taken great advantage of the usual

owchart layout of programs; we de�ne it by external functions which in

the later re�nement steps are replaced by recursive de�nitions of the com-

piling function. Considerable simpli�cations for both the speci�cations

and the proofs have also been obtained there by leaving the evaluation

and compilation of expressions and the implementation of values abstract,

realized by appropriately restricted external functions.

� In the more theoretical example constituted by Lamport's mutual exclu-

sion protocol, known as bakery algorithm, a tremendous simpli�cation of

the correctness proofs in the literature has been achieved in [12] by in-

troducing two external functions, namely Ticket and Go, on which three

natural conditions and an induction principle are imposed which imply

the correctness of the protocol.

In all these cases the external functions allowed us to de�ne a precise inter-

face with respect to which the model under discussion works in a simple and

transparent way. Clearly, if for such an abstract model we want to prove general

properties about the behaviour of the system where external functions play a

role, we have to state and assume their properties which we use. In order to

guarantee an unchanged interface behaviour these properties have to be proved

to be satis�ed when the external functions are de�ned explicitly or implemented

in later re�nement steps or modi�ed by changing requirements.

The most general concept of modularity which is present through the no-

tion of external functions is deliberately kept open in the de�nition of evolving

algebras. The resulting exibility in using and dealing with di�erent module

structures is an advantage for real{life speci�cation endeavours. Nothing pre-

vents us from restricting this notion to speci�c and even syntactic concepts of

compositionality where the need arises; an example where it turned out to be

useful to stick to a simple automaton{theoretic concept of composition of evolv-

ing algebras through sequencing, juxtaposition, and feedback can be found in

[5].
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3 Locality for Dynamics

It is typical for large systems that their overall dynamical behaviour is deter-

mined by the dynamic behaviour of their components, i.e. by local changes. The

evolving algebra methodology allows us to reect this characteristic interplay

between global and local dynamic system behaviour in a direct and faithful

way by viewing (global) system states as static algebras and by providing the

possibility to express local updates f(t1; : : : ; tn) := t in a uniform way at any

level of abstraction. This becomes particularly evident with attempts to model

distributed systems. We are going to illustrate this through a formalization of

the PVM message{passing interface.

Interactions between Pvmds Certain PVM instructions result in dis-

tributed operations involving two or more pvmds which perform some inter-

action through message{passing. We model inter{pvmd communication in the

transition rules below by abstract updates of the form

`forward hRequestMsgi to y' respectively `return hReplyMsgi to x'

where x and y refer to the interacting pvmds. They are supposed to trigger

corresponding events for the receiving pvmds. For that reason we will have a

number of communication related transition rules, distinguished by the su�x

` req msg' for request messages and ` rep msg' for reply messages, describing

the reaction of a pvmd x when receiving a message from another pvmd y.

Distributed operations in which a pvmd requests another pvmd for service

may produce considerable delays. In order to avoid blocking while waiting for

the response to come, the requesting pvmd stores the \wait context" using a

structure accessed by a unique wait-id (wid) from a domainWID . This wait-id

is passed along with the request and returned with the reply. The wait context

typically includes information about the requesting task (req info : WID !

TASK ), the reply data (rep info : WID ! REPLY �), and a request count

(waitcount : WID ! INT , indicating the number of replies a pvmd is still

waiting for).

The preceding concepts su�ce to formalize the status information related to

subroutines of PVM, as we are going to do in the next subsection.

3.1 PVM Status Information

PVM o�ers various kinds of routines providing status information about the

virtual machine. To obtain the status of a host, a call of pvm mstat() yields:

PvmOk if the host is running, PvmHostFail if it is unreachable, or PvmNoHost if

this host is not in the virtual machine. Since a host failure is to be considered

as an external event, outside the scope of PVM, the resulting e�ect is modeled

using an external dynamic function hstatus. When triggered by a requesting
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pvmd, hstatus does not immediately yield a result, as it usually takes some

time to perform the distributed operation required to determine the status of

a remote host. After a delay|corresponding to the duration of the simulated

operation|hstatus replies by generating an ext hstatus report event, returning

the requested status information to the calling pvmd.

Note that an interaction between a pvmd and the external function hstatus

appears to the pvmd almost the same way as an interaction with a remote pvmd.

That is, it also requires to create a wait context structure, the wid of which

is passed over in the function call and returned with the ext hstatus report:

hstatus : HOST �WID ! frunning; unreachableg �WID .

To �nd out whether a particular host is in the virtual machine, a pvmd

simply performs a look up on the host table. This test is expressed through the

predicate is in htable : HOST ! BOOL :

pvm mstat()

if event(pvmd) = mstat(Host) from Task

thenif is in htable(Host)

thenif Host = host(x)

then

return hPvmOki to Task

else

extend WID by wid with

rep info(wid) := Task

trigger hstatus(Host; wid)

endextend

else return hPvmNoHosti to Task

ext hstatus report

if event(pvmd) =

ext hstatus reporthStatus;Wid i

thenif Status = running

then

return hPvmOki to Task

else

return hPvmHostFaili to Task

where Task � rep info(Wid )

We can now also explain the send and receive instructions of PVM.
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3.2 PVM Send Routines

A message consists of receiver and sender tid, an integer tag, and the actual

message data; these components are accessible through functions de�ned on

MESSAGE with values in TID (recvtid; sendtid), TAG (msgtag), DATA �

(msgdata). Thus each pvmd x holds a sequence msgseq(x) of messages

waiting|in the order of their arrival at x|to be received by one of its lo-

cal tasks. An additional function msgbuf : MESSAGE ! BUFID is used to

hold the addresses of local bu�ers which are used by the pvmd to store the

message data until these messages are delivered to the receiving tasks.

The routine pvm send(Tid ;Tag ) puts the information, stored in the send

bu�er of the sending task, into a newly created message that is sent to Tid with

labelTag . If the daemon of the receiver task is the same as that of the the sender

task, sending the message in principle means to enqueue it into the daemon's

message queue; otherwise, the message will be forwarded as intertask{message

to the remote pvmd identi�ed through Tid (causing a corresponding event for

that pvmd).

Each time the pvmd x receives a message, it has to check whether the receiver

task has speci�ed a receive context that matches the labels of the message.

The receive context of a task is expressed by a function expecting : TASK !

h(TID + f�1g)� (TAG + f�1g)i as a combination of options for the message

Tag and sender Tid, where `�1' indicates matching every possible combination.

If for some given task t of pvmd x expecting(t) has a de�ned value, this means

that t has been suspended on an attempt to receive a message which was not

yet available; that is, a message of the speci�ed type was not yet contained in

msgseq(x).

Note in the de�nition of pvm send() that the message data are simply stored

in a local bu�er in case that sender and receiver work under the same pvmd;

otherwise, they are stored as part of the message using the function msgdata.

This meaning is formally de�ned by the following rules:
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pvm send()

if event(pvmd) = send(Tid ;Tag ) from Task

then

extend MESSAGE by m with

recvtid(m) := Tid

msgtag(m) := Tag

sendtid(m) := tid(Task )

if pvmd(Tid ) = pvmd

then

Enqueue(m;msgseq(pvmd);Type;Data;Receiver)

else

msgdata(m) := cont(sendbuf (Task ))

forward intertask msghmi to pvmd(Tid )

endextend

where Type � htid(Task );Tag i;

Data � cont(sendbuf (Task ));

Receiver � task(Tid )

Enqueue(mssg;mssgs; type; data; receiver)

� extend BUFID by b with

cont(b) := data

msgbuf(mssg) := b

if matching(type; expecting(receiver))

then

recvbuf (receiver) := b

expecting (receiver) := undef

endextend

mssgs := append(mssg;mssgs)

intertask msg()

if event(pvmd) = intertask msghmi from pvmd0

then Enqueue(m;msgseq(pvmd);Type;Data;Receiver)

where Type � hsendtid(m);msgtag(m)i;

Data � msgdata(m);

Receiver � task(recvtid(m))
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The corresponding multicast routine pvm mcast() can be handled in almost the

same way.

3.3 PVM Receive Routines

PVM supports blocking and non{blocking receive routines. Blocking recv() re-

quested from Task sets the receive bu�er of Task to the bu�d of an expected

message and returns bu�d to Task , if an appropriate message is actually wait-

ing in the message queue; otherwise, the given receive context is used to update

the expecting function of Task . Non{blocking nrecv() does the same except for

returning 0 to Task instead of suspending the task, in case there is no message

of the expected type in msgseq(x). Formally this is expressed by two rules,

where the function

d : MESSAGE
�
� hTID � (TID + f�1g)� (TAG + f�1g)i !MESSAGE

�

selects, out of msgseq(x), the messages corresponding to expecting:

pvm recv()

if event(pvmd) = recv(Tid ;Tag ) from Task

thenif msgseq(pvmd)dhtid(Task );Tid ;Tag i = [ ]

then expecting (Task ) := hTid ;Tag i

else RecvMsg(Tid ;Tag ;Task )Through pvmd

pvm nrecv()

if event(pvmd) = nrec(Tid ;Tag ) from Task

thenif msgseq(x)dhtid(Task );Tid ;Tag i = [ ]

then return h0i to Task

else RecvMsg(Tid ;Tag ;Task ) Through pvmd

RecvMsg(Tid ;Tag ;Task ) Through pvmd

� let msgseq(pvmd)dhtid(Task );Tid ;Tag i = [mjMssgs]

return hbu�di to Task

recvbuf (Task ) := bu�d

msgseq(pvmd) := delete m from msgseq(x)

where bu�d � msgbuf (m)

We conclude this section with two signi�cant examples for the formalization

of process control constructs in PVM, namely the creation and the deletion of

tasks.
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3.4 PVM Task Creation

The routine pvm spawn() enables dynamic subtask creation. On initiating a

spawn operation the spawning task becomes parent of the (Ntask many) new

subtasks to be created, each of which is assumed to run a copy of a given

executable File (possibly with a list of Arguments). The spawning task may

a�ect the selection of hosts to spawn on through a mode parameter: in trans-

parent mode tasks are automatically executed on the most appropriate hosts

w.r.t. certain load measures; in architecture-dependent mode the calling task

speci�es the architecture; in low-level mode it speci�es a particular host.

Parameters Flag and Where are used to specify a combination of options as

a sum of: 0 PvmTaskDefault|PVM chooses where to spawn the processes; 1

PvmTaskHost|the Where argument speci�es a particular host to spawn on; 2

PvmTaskArch|Where speci�es a type of architecture to spawn on using ARCH;

4 PvmTaskDebug|starts these processes up under debugger; 8 PvmTaskTrace|

the PVM calls in these processes will generate trace data6.

In assigning tasks to hosts upon spawning, PVM's in principle non{

deterministic choice depends in particular upon the environment (e.g. the oper-

ating system) and the internal load balancing scheme (which is transparent to

the user). We abstract from details of this complex selection procedure by using

a dynamic external function hostselect which we assume, as integrity constraint,

to be consistent with the options set by the user (through Flag, Where, Ntask).

For the result of hostselect, which is a list of the form

hpvmd0; n0i; hpvmd1; n1i; : : : ; hpvmd
m
; nmi

specifying a collection of pvmds and the number of tasks to be spawned by each

of these pvmds, we require that the sum of the ni, i = 0; : : : ;m, is less than or

equal to Ntask and that 8i; j 2 f0; : : : ;mg : i 6= j ) pvmdi 6= pvmdj .

The outcome of an attempt to spawn a task which has been assigned to a

host depends on the availability of resources, and on whether a suitable copy of

the relevant File is present on that host. We model the behaviour of the sys-

tem using again a dynamic external function try to spawn which provides the

necessary SPAWNREPORT. Since computing this function may be rather time

consuming and thus is not an atomic action, spawning has two phases, modeled

by separate rules: a spawn operation is triggered by calling try to spawn with

the appropriate argument values computed using hostselect. On completion of

this operation try to spawn returns, to the calling pvmd, the resulting list of

pids, one for each successfully created process required to spawn a new task, by

generating an ext spawn report event.

6This feature is not yet implemented, cf. [19].
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pvm spawn()

if event(pvmd) = spawn(File; Args; F lag;Where ;Ntask ) from Task

thenif hostselect(F lag;Where ;Ntask ; pvmd) = hlocal; remotei

& local = hpvmd; n0i

& remote = hpvmd1; n1i; : : : ; hpvmd
m
; nmi

then

let tid = tid(Task )

extend WID by wid with

spawning task(wid) := tid

tasks to be spawned(wid) := hi

waitcount(wid) := m + signum(n0)

if n0 > 0

then trigger try to spawnhParams; n0; widi

var i ranges over f1; : : : ;mg

if m > 0

then forward spawn req msghParams; ni; wid; tidi to pvmd
i

endextend

where Params � File; Args; F lag;Where

20



ext spawn reporthi

if event(pvmd) = ext spawn reporthWid ; hPid1; :::; P idnii

then

let tid = spawning task(Wid )

extend TID by tid1; : : : ; tidn with

let Tids = tid1; : : : ; tidn
extend TASK by t1; : : : ; tn with

.

.

.

pvmd(tidj) := pvmd

Enroll(tj; tidj; tid; P idj)
.
.
.

endextend

if pvmd(tid) = pvmd

then SpawnRepInfo (Tids ;Wid )

else return spawn rep msghTids ;Wid i to pvmd(tid)

endextend

where Enroll(Task ;Tid ; Parent; P id)

� tid(Task ) := Tid

pid(Task ) := Pid

parent(Task ) := Parent

When receiving an ext spawn report, the pvmd enrolls the reported pro-

cesses as tasks. Depending on whether the task that has initiated the

spawn request is local or not, the resulting list of new tids either is ap-

pended to the local wait context (in SpawnRepInfo) or it is returned to the

corresponding remote pvmd. We omit the straightforward formalization of

SpawnRepInfo(Wid ;Tids ) : the returned wait identi�er Wid provides access

to the local wait context where the request counter waitcount(Wid ) and the

list rep info(Wid) of tids of successfully spawned tasks are updated; upon �nal

completion, the result of the distributed spawn operation is returned to the

calling task req info(Wid ).

The rules for interaction between the spawning task pvmd and the pvmds

on selected remote hosts are:
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spawn req msghi

if event(pvmd) = spawn req msghParams;Wid ;Tid i from pvmd0

then

extend WID by wid with

req info(wid) := Tid

rep info(wid) := Wid

trigger try to spawnhParams;widi

endextend

where Params � File; Args; F lag;Where ; N

spawn rep msghi

if event(pvmd) = spawn rep msghTids ;Wid i from pvmd0

then SpawnRepInfo(Tids ;Wid )

Remark Note that the function hostselect used above is a particular inter-

esting example which shows the integration potential of the evolving algebra

methodology. This function is an external dynamic function for the PVM model

constituted by our rules. It contains however a static subfunction which is de-

�ned by conditions on host selection which are given in the PVM manual.

3.5 PVM Task Deletion

The routine pvm kill(Tid ) causes the pvmd to kill the task identi�ed by Tid .

In the formal description a symbolic system command, kill process, is used to

express the resulting required interaction between PVM and the operating sys-

tem. If the task to be killed resides on a remote processor, the local pvmd

forwards a kill message to the corresponding remote pvmd. Upon receiving a

kill msg() a pvmd acts as if it had received a pvm kill by one of its local tasks.

pvm kill()

if event(pvmd) = kill(T id) from Task

thenif pvmd(Tid ) = pvmd

then

delete Tid from TID

kill process(pid(task(Tid )))

else

forward kill msghTid i to pvmd(Tid )
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kill msghi

if event(pvmd) = kill msghTid i from pvmd0

then

delete Tid from TID

kill process(pid(task(Tid )))

4 Appropriate Ground Models

As has been observed in [3, 21] evolving algebras �t in a special way when it

comes to link a non{formal system description S (requirements speci�cation)

to a formal model S0 which has to be recognized as faithful formalization of S.

This is because one can tailor the level of abstraction of the formal model S0 to

be built in such a way that its domains and functions directly correspond to the

basic objects and operations of S; this correspondence must be understandable

by inspection because by de�nition there is no possibility to prove any correct-

ness statement about S. Further re�nements of the model S0, once this ground

model has been recognized as \correct", are obtained through possibly formal

transformations leading to an implementation; since at this level only formal

models are involved, in the ideal case the correctness of the transformations can

be proved (by mathematical or theorem proving methods).

For an interesting although small example of such a system see the evolving

algebra speci�cation of the steam{boiler control which has been re�ned leading

from the ground model to a running C++ program (see [2]). A more involved

example is constituted by the problem of faithfully de�ning the standard for a

programming language, i.e. in an easy to understand but precise and complete

way. For the ISO Prolog Standard published in 1995 and the IEEE VHDL'93

Standard evolving algebra ground models appear in [15, 11].

5 Distributed Evolving Algebras

In this section we resume the preceding discussion by the de�nition of distributed

evolving algebras, taken from [23] to which we refer for details.

A distributed evolving algebra A comes as a �nite set of sequential evolving

algebra programs, called modules, together with a �nite set of concurrently

operating agents executing these modules, and a collection of initial states of A.

The vocabulary of A is obtained by combining the vocabularies of the sequential

evolving algebra programs of all modules. A functionMod speci�es the mapping

from agents to modules where the latter are identi�ed through module names.

In contrast to the function Mod and the set of agents, which may both change

dynamically,module names are static nullary functions. In addtion toMod there
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is a special nullary function Self which each agent interprets in a di�erent way:

an agent a interprets Self as a.

A distributed computation of A starting in some initial state S0 of A and

running through a sequence of states S1 S2 : : : is de�ned by the collective actions

of the various agents. (Note that each agent a has its own partial view of a given

state Si as reected by the vocabulary ofMod(a).) In a single computation step

leading from state Si to state Si+1 one or more agents may participate such that

each of these agents contributes to the local state changes by making his own

move. Since the moves of the subcomputations of the individual agents are

linearly ordered in time, a run of A in principle is characterized by a partially

ordered set of moves together with the associated agents and the resulting states.

A rigorous semantical de�nition of the notion of runs of distributed evolving

algebras is given in [23].

The Distributed PVM Algebra In our PVM model the agents are repre-

sented by the concurrently operating PVM daemons as identi�ed through the

function pvmd (taking the role of Self). The set of pvmds increases or decreases

depending on the dynamically changing con�guration of the virtual machine.

As there are only two di�erent kinds of pvmds, the demiurge on the master host

(see Section 1.1) and the ordinary pvmds on the other hosts, we have only two

di�erent types of modules. For the the PVM features that have been discussed

here, the di�erences in the functional behaviour of these two types of pvmds are

irrelevant.

6 Conclusions

Continuing the work started in [10] we have de�ned a formal model for PVM

from scratch. The goal was to illustrate some outstanding merits of the evolving

algebra methodology to design and analysis of complex computer systems. This

text has been written for the practitioner; we advice the theoretically inclined

to study [23] where Gurevich provides a rigorous mathematical foundation of

the semantics of evolving algebras.
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