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We develop several simple operational models of Occam at different levels of abstrac-
tion, and relate them by relative correctness proofs, aiming at a transparent mathematical
correctness proof for a general compilation scheme of Occam programs on the Transputer.
Starting from a primary truly concurrent model of the language, we refine its salient con-
current features — communication, parallelism and alternation — to an abstract notion
of processor, running a queue of processes, still close to the abstraction level of atomic
Occam commands. The specification is effected within the framework of evolving algebras
of Gurevich, relying on the theory of concurrency developed recently within that frame-
work by Glavan and Rosenzweig. The model lends itself naturally to refinement down to
the abstraction level of Transputer Instruction Set architecture, foreseen for a sequel to
this paper.
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1. INTRODUCTION

Gurevich [9] has introduced evolving algebras into semantics in order to study the
dynamic and resource-bounded aspects of computation on their own terms. The concept
has turned out to be a remarkably successful tool for formal specification of complex
systems through hierarchies of abstraction levels, stepwise refined. The reader might look
e.g. at simple but precise modeling of full fledged programming languages such as C [10]
and Prolog [3] provided by evolving algebras at various levels of abstraction. In particular
in [4] a formal specification of the Warren Abstract Machine has been derived — refining
stepwise the formal Prolog specification of [3] — and used to prove the correctness of a
general compilation scheme for Prolog programs on the WAM. Here we use the Glavan–
Rosenzweig concurrency theory (developed in the meantime within the framework of
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evolving algebras [7]) which allows us to extend the methodology to a mathematical
correctness proof for a general compilation scheme of Occam programs on the Transputer
[13], [14], [19], wrt a truly concurrent model of the language.

To justify fully the ultimate correctness claim, we start from a primary, high level, truly
concurrent operational semantics for Occam. The model is ‘primary’ in the sense that it
is intended to capture directly, in a mathematical form, the intuitive programmer’s view
of the language and its dynamics.

This is not to say that we would accept any particular implementation as being a
definition of the language. It is the other way round:

. . . unless there is a prior, generally accepted mathematical definition of a language
at hand, who is to say whether a proposed implementation is correct?[18, p. 2]

If the development of a primary model releases us from any obligation of proof — it
however places us under a (much more severe) obligation to abstract into mathematical
form the central common ideas underlying current implementations and verbal descrip-
tions. Here the challenge is that of adequacy , rather than correctness. Thus the model
has to be transparent; the central common ideas should be recognizable by inspection,
so to say. This implies in particular that basic concepts have to be expressed directly,
without encoding, taking the objects of the language as abstract entities, such as they
appear there.

The definition of the primary Occam model Occam0 is presented in Section 2. It is
based on flowcharts of Occam programs. This allows to relegate the standard (sequential
and syntax–directed) part of control to the graph structure1 ; it thus lets the dynamics
of Occam’s distributed features stand out explicitly in the rules through which we make
these features mathematically precise. The rules govern evolution of processes , which we
like to view as represented by agents or daemons walking around the graph, each carrying
along his own environment. Due to the PAR-construct the daemons may be created and
deleted, and they move in a truly concurrent way, independently from each other (unless
they synchronize by communication), each at its own pace, with its own notion of time.

Since it is parallelism, communication and alternation we are interested in, we remain
aloof from the exact syntax and evaluation of Occam expressions, assuming explicitly
only some standard abstract properties. Due to space limits we also skip the datatypes
of Occam, declarations and procedures, as they are not in any way characteristic for the
language (and can be incorporated into the treatment in a standard way).

Note that communication in Occam is synchronous . In the primary model communi-
cation is effected in one blow, while waiting for a ready communicating partner is left
implicit, as built into the evolving algebra execution mechanism [9]. Our primary model
is thus a ‘purely high–level programmer’s view’, closer to the CSP background of Occam
than to its Transputer implementation. An implementation–wise programmer may thus
find one of the following refinements to be closer to his intuition; of course they become
more complex, resembling the Transputer implementation.

Given the basic model, we develop a series of refinements which provide smooth prov-
ably correct transition to the Transputer Instruction Set architecture. In this Part I the

1The description in [11] is parse tree based. This creates a hierarchy of processes (”children reporting to
parent”) and thereby introduces a control structure which is, in general, not present in program execution.
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elaboration is confined to communication, parallelism and alternation, leaving Occam
expressions, values and environments on the abstraction level of the language. At each
step a simple proof of correctness and completeness wrt to the basic model is given. For
the benefit of a reader interested in models rather than proofs , we postpone the latter
to Section 4 which presupposes the theory of [7]. The refinements are developed in Sec-
tion 3. Each refinement comes by refining the signature and/or the rules and by relating
correspondent runs of the two algebras.

The first refinement step provides an implementation of channel communication which
assigns to channels an active role (representing abstractly the external channels of the
Transputer). The second refinement introduces an abstract notion of processor as a par-
tition class of daemons sharing a store. For communication within a processor channels
are optimized to ‘internal’ ones, under the assumption that both reader and writer envi-
ronment are immediately available. Then we finally let the processors become sequential,
running a queue of processes all of which then share the same timer. A sequential proces-
sor runs concurrently to other processors and external channels. The notion of priority
and the completeness–preserving device of time–slicing are introduced on this level of
refinement. The refinements are proved correct and complete under the usual Occam
assumptions on usage of channels. Thus we prove:

Main Theorem. The sequential implementation Occams of Occam0 with time–slicing
is correct and complete.

Due to space limits, for the notion of evolving algebras we refer to [9]. The specification
of Occam semantics can nevertheless be understood because evolving algebra rules can
easily be read as ’pseudocode’ over abstract data. We only remind the reader that in the
rules below, the updates are thought to be executed simultaneously. For comparison of
the evolving algebra approach to SOS [16] see the introduction to [3].

2. OCCAM — A TRULY CONCURRENT MODEL

Our primary model of Occam is abstract, truly concurrent and machine–independent.
Occam objects, expressions and their evaluation are represented abstractly. We concen-
trate on the fragment of Occam consisting of assignment, time, stop, skip, seq, while, if ,
communication, alt (including guarded alternation with time–delay) and par. The syntax-
directed and sequential aspects of Occam are rendered trivial, by relying on the usual
flowchart–scheme. The dynamics of Occam is represented by agents (or processes, or
‘daemons’, as we prefer to call them) walking around the flowchart, each carrying along
his own environment, executing commands associated to the nodes.

2.1. Flowcharts, or Transition Diagrams of Occam Programs
The flowcharts are given as directed graphs, with nodes taken ¿from a universe NODE ,

and the edges represented by a partial function next : NODE × N → NODE . The
nodes come decorated by instructions , which may be either atomic Occam statements
(assignment, time, input, output, skip, stop), Occam booleans, or pseudoinstructions of

form end, alt(~G) (where ~G is a sequence of guards), par k, k ∈ N.
To describe this layout of Occam syntax into flowchart dynamically, we may allow also

composite Occam programs as instructions. Then single steps of flowchart generation are
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given by the following pictures (noting that nodes decorated by boolean tests are depicted
as ovals).

Any configuration S
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The flowcharts will be accessed using the abbreviations: next(n)
def
= next(n, 0), yes(n)

def
=

next(n, 0), no(n)
def
= next(n, 1) where the instruction decorating a node is given by a

function cmd defined on NODE . We refer to the appendix for a simple formalization of
flowchart generation in form of a ‘parsing’ evolving algebra2.

2.2. Dynamics of Occam
To represent Occam dynamics, we introduce a universe DAEMON of agents (processes),

which walk around the graph carrying their own environments, and may also be sleeping,
as given by: loc : DAEMON → NODE , env : DAEMON → ENV , mode : DAEMON →
{running, sleeping}.

The function loc represents the ‘program counter’ of the daemon, the place he is just
visiting in the flowchart. The function env represents the current environment of the
daemon. Since we want the dynamics of Occam’s distributed features — parallelism,

2In [15] slight variants of the above pictures are interpreted as compiling occam statements into field-
programmable gate arrays.
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communication, alternation — to stand out explicitly, we abstract from details of expres-
sion syntax and their evaluation in environments and stores by using abstract functions:
bind : ID ×ENV → VAR ∪CHANNEL, eval : EXP ×ENV → VAL which abstractly
represent binding of identifiers in a given environment, and evaluation of expressions in a
given environment.

In writing the rules, we will use the following abbreviations: ‘x does C’, ‘proceed x’
abbreviate, respectively, the condition ‘mode(x) = running ∧ cmd(loc(x)) = C’ and
update ‘loc(x) : = next(loc(x))’. We write c̄ instead of bind(c, e) where we suppose the
environment e to be clear from the context.

The dynamics of sequential control in our base model is then given by the following
rules for Sequential control:

skip(x)
if x does skip then proceed x

stop(x)
if x does stop mode(x) : = sleeping

ass(x)
if x does v : = t
then write eval(t, env(x)) to x at v

proceed x

time(x)
if x does TIME ? v
then write timer(x) to x at v

proceed x

if (x, b)
if x does b
thenif eval(b, env(x) then loc(x) : = yes(loc(x)) else loc(x) : = no(loc(x))

As said above in the primary model for Occam we want to abstract from details of
environment, binding of variables and channels and of expression evaluation. Therefore
instead of updates of form eval(v, env(x)) := α we use the intuitive verbal equivalent
“write α to x at v”. The external function3 timer : DAEMON → N indicates the
local time of each daemon. For each x, the value timer(x) is supposed to grow.

Communication in Occam is via channels — here elements of an abstract domain
CHANNEL — each of which requires exactly one reader and one writer for the commu-
nication to take place. After some hesitation we have chosen to start with what seems
to be the prevailing viewpoint of Occam programmers, i.e. with instantaneous channel
communication. This is reflected in our communication rule below: if one communication
partner is not ready, then the rule is simply not applicable, and the ready partner is
standing still. (We shall make this waiting more explicit in the next section, where we
refine it to a more implementation–oriented view of channel.)

com(x, c, v; y, d, t) if x does c?v ∧ y does d!t ∧ c̄ = d̄
then write eval(t, env(y)) to x at v, proceed x, proceed y

where c̄, d̄ mean the binding of (channel) identifier c, d in env(x), env(y) respectively.
Alternation: In executing an alt-instruction the daemon can proceed if at least one

of the guards is satisfied. A guard is either boolean or boolean plus time requirement or

3The notion of ‘external’ function is the evolving algebra way of describing an interface with the ‘outside
world’ — its values are to be considered as not determined by our rules or initial state (cf. [9] for
discussion), but might be subject to change due to actions of the environment.
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boolean with an input request. This is reflected by the following rules. Instead of writing
three rules which differ only in parts pi of their guards and in updates ui, we write one
rule of form:

if p1 | p2 | p3
∧ . . .

then u1 | u2 | u3
. . .

alt com(~G, i;x; y, d, t) | alt time(~G, i;x) | alt skip(~G, i;x)
if x does alt(G1, . . . , Gk)
∧Gi = b : c?v | Gi = b : TIME?AFTER t | Gi = b : SKIP
∧ eval(b, env(x))
∧ y does d!t ∧ c̄ = d̄ | timer(x) > eval(t, env(x)) |

then
loc(x) : = next(loc(x), i)
write eval(t, env(y)) to x at v, proceed y | |

where ~G = G1, . . . , Gk

Parallelism: A daemon executing par k spawns k ‘child-daemons’ and goes to sleep at
the next location. Child daemons will vanish when reaching an end; the father may wake
up as soon as the countdown of children expected to terminate, as recorded by count ,
is through. Therefore in the rules for PAR we use two additional functions: father :
DAEMON → DAEMON , count : DAEMON → Z.

par(x, k)
if x does par k
then create x1 . . . xk

. . .
mode(xi) : = running
father(xi) : = x
loc(xi) : = next(loc(x), i)
env(xi) : = env(x)
. . .
count(x) : = k
put x asleep at next(loc(x))

end(x)
if x does end
then count(father(x)) −= 1

delete x

count(x)
if x sleeps ∧ count(x) = 0
then count(x) : = −1

wakeup x

Here ‘x sleeps’ abbreviates mode(x) = sleeping and count(father(x)) − = 1 stands for
decrementing a distributed counter, as discussed in [7]. Different child–daemons can
terminate independently. Since the effect of their execution consists in modifying the
unique store (suppressed at this level of abstraction), no result needs to be explicitly
communicated back to the father.

In the initial state we assume the main daemon, Demiurge (of undefined father), to
be at Begin of code — the program will terminate when Demiurge arrives to its End .
Note that all children of Demiurge will have vanished by that time. Any nonterminating
state in which no rule is applicable means deadlock 4. The initial state is thus completely

4If the guard of a rule depends on external function such as timer, this should be extended to the guard
of the rule remaining false for all possible values of external function.
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determined by the program. Talking about runs, we shall in the sequel tacitly understand
runs started in such a static algebra.

Let us note the form that the usual assumptions on Occam programs take in our model.

Channel Assumption. Any two daemons, which in any two states would both input or
both output on the same channel, are connected by a father chain.

Shared Variables Assumption. If a daemon changes the value of a variable (by as-
signment or input), then any other daemon which either uses or changes the value of that
variable is connected to it by a father chain.

Therefore they cannot be simultaneously running . These assumptions are in no way
necessary for our algebra to run — it could accommodate other notions of concurrent
programming. Under the above assumptions, however, it is easy to see that the above
Occam0–algebra enjoys the following independence property (for the notion of indepen-
dence defined in [7] which roughly speaking says that two rules are independent if none
of them modifies what the other uses).

Independence Property. Any two simultaneously possible rule instances are indepen-
dent unless they are of form alt . . . (~G, i;x . . .) with the same parameters ~G and x.

The model is thus truly concurrent. Nondeterminism in a strong sense, i.e. one not
reducible to arbitrariness of interleaving of independent actions, is fully confined to alter-
nation.

3. REFINING THE MODEL

In this section we start a sequence of refinements, intended to lead, in a sequel to this
paper, to a mathematical model of the Transputer Instruction Set architecture. Every step
of refinement comes together with a local proof of correctness and completeness wrt the
preceding abstraction level—the local proofs shall compose to a mathematical correctness
proof for a general compilation scheme of Occam programs on the Transputer.

In this section we effect three steps of refinement. In 3.1. we provide an implementation
of the abstract programmer’s view of channel communication and alternation; communi-
cation partners are permitted to arrive asynchronously to the point of synchronization –
channels which thus become active. In 3.2. we introduce an abstract notion of processor,
and the related distinction between internal and external channels. In 3.3. the alge-
bra modeling a single processor becomes sequential, mimicking abstractly the Transputer
implementation of parallelism by a queue. It is here that the notions of priority and
global timing are introduced, as well as the related completeness–preserving mechanism
of time–slicing .

3.1. Descheduling Processes
Communication. If x does c?v with no input available or c!t with nobody listening,

no rule is applicable to x. This reflects the abstract programmer’s view of the previous
section; other daemons proceed independently. However, such an x would have to be
descheduled in a sequential implementation, in order to enable other daemons to execute.
To smoothen the transition to sequential implementation, such a waiting daemon x will
be ‘descheduled’ already under concurrency, by putting him explicitly to sleep. This will
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have the pleasant consequence that a running daemon can indeed do something—has a
rule applicable to it—go to sleep at least. Then deadlock will be equivalent to all daemons
sleeping, without a way to wake anyone up.

In Occam0, com (and alt) rules are global—they magically detect communication readi-
ness of any daemons whatsoever, and the channels serve just to select the communication
partners. In the new algebra Occam1, the channels become more active—daemons will use
them to announce their readiness to communicate, while the communication proper will
be executed by the channels. Readiness to communicate through a channel is represented
by functions: reader ,writer : CHANNEL→ DAEMON ∪ {nil}.

It is characteristic for this view of channel communication that (i) reader and writer
can arrive independently to the point of synchronization, and (ii) the channel, once both
reader and writer have arrived, decides independently when the communication is to take
place. Therefore communication is now decomposed into three separate actions: input
request, output request and firing of the channel.

A daemon wishing to communicate on a channel will indicate his wish by recording his
identity at the channel, as well as the message he wants to send or the place where he
wants to receive one, and go to sleep, waiting for the channel to pass the message. When
a channel has both a reader and a writer recorded, it transmits the message, wakes up
reader and writer, and clears his record. To model this mechanism, we need the following
two functions: mssg : CHANNEL→ VAL, place : CHANNEL → ID .

Since in the rules for the ALT construct, we have to distinguish ‘ordinary’ input from
that under alternative, we will also use a function: c mode : DAEMON → {input ,
alt sleep, alt running} which takes value input for ordinary communication. In the rules
of communication we will use the following abbreviations:

ready C
def
= reader(C) 6= nil ∧ writer(C) 6= nil

idle C
def
= reader(C) = nil ∧ writer(C) = nil

clear C
def
= reader(C) : = nil , writer(C) : = nil

This corresponds to the description of ‘external channels’ in [19].

in(x, c, v)
if x does c?v
then put x asleep at next(loc(x))

reader(c̄) : = x
place(c̄) : = v
c mode(x) : = input

out(x, c, t)
if x does c!t
then put x asleep at next(loc(x))

writer(c̄) : = x
mssg(c̄) : = eval(t, env(x))

chan(C)
if ready C ∧ c mode(reader(C)) = input
then write mssg(C) to reader(C) at place(C)

wakeup reader(C), wakeup writer(C), clear C

Intuitively com(x, c, v; y, d, t) gets implemented as (in(x, c, v) | out(y, d, t)) chan(c̄) (see
4.1 for detailed arguments)5; | here indicates independence, including arbitrariness of

5Note that there is no need to reset c mode(reader(C)) in the chan(C) rule because before its next use it
will be updated to the appropriate value.
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sequencing, rather than simultaneity (cf. [7]). Note that the Independence Property is
preserved, and that it is the Channel Assumption which allows in and out to execute
without asking whether reader resp. writer is nil .

In this implementation of alternation, the daemon doing alt will announce, for each of
the input guards ci?vi allowed by their boolean conditions, its readiness to select it once
the corresponding input is ready. This is done by ‘enabling’ the channel—setting its
reader to oneself. Also the smallest among the time requirements TIME ? AFTER tj
allowed by their boolean guard is recorded into min time(x), to be checked against the
daemon‘s current time. If none of the inputs is ready and none of the time requirements
is satisfied yet, the selecting daemon goes to sleep (and records the fact by setting its
‘communication mode’ to alt sleep); it can be waken up by any relevant channel getting
ready for communication (chan wakeup rule) or by the daemon’s time having grown beyond
min time (time wakeup rule). If, when enabling, the daemon finds at least one input to
be ready or the time requirement to be satisfied — the latter is immediately true in case
of the empty requirement, denoted by SKIP — he proceeds immediately to selection and
sets c mode to alt running .

Selection is then done among alternatives with ready communication or satisfied time
requirement (disabling all channels involved6). The Shared Variables Assumption en-
sures that the values of boolean guards do not change during the execution of alt. The
refinement of the flowchart for alt is as follows: alt (~G) is ‘compiled’ to

? ?
.

?

..

?

? ?

c1?v1 ck?vk. . .

S1 . . . Sk

.

?

. ?

?

.

?

.

? ?

? ?

In

Out

. . .Sk+1 Sk+l

alt a( ~G)

alt s(~G)

With new abbreviations: enable(b, x, C)
def
= if eval(b, env(x)) then reader(C) := x,

disable(b, x, C)
def
= if eval(b, env(x)) then reader(C) := nil , the rules take the following

6Note that there is no need to reset min time(x) to undef because before its next use it will be updated
in rule alt a to the appropriate new value.
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form where for notational convenience guards of the same type are grouped together:

alt a(~G, x)

if x does alt a(~G)
then enable(b1, x, c̄1) . . . enable(bk, x, c̄k), min time(x) : = tmin

if ∀i (eval(bi, env(x))⇒ idle c̄i) ∧ timer(x) ≤ tmin ∧ not SKIP
then put x asleep at next(loc(x)), c mode(x) : = alt sleep
else proceed x, c mode(x) : = alt running

where Gi = bi : ci?vi (1 ≤ i ≤ k)
tmin : = minj{eval(tj, env(x))|eval(bj, env(x)) = true}
(∞ if the set is empty)
Gj = bj : TIME?AFTER tj (k + 1 ≤ j ≤ k +m)

SKIP
def
= there is at least one SKIP in the guards,

i.e. m < l for Gj′ = bj′ : SKIP (k +m+ 1 ≤ j′ ≤ k + l)

alt s com(~G, i, x) | alt s time(~G, i, x) | alt s skip(~G, i, x)

if x does alt s(~G) ∧ eval(bi, env(x))
∧ writer(c̄i) 6= nil | timer(x) > eval(ti, env(x)) |

then disable(b1, x, c̄1) . . . disable(bk, x, c̄k)
loc(x) : = next(loc(x), i)

where Gi = bi : ci?vi | Gi = bi : TIME?AFTER ti | Gi = bi : SKIP

chan wakeup(C)
if ready C
∧ c mode(reader(C)) = alt sleep

then c mode(reader(C)) : = alt running
wakeup reader(C)

time wakeup(x)
if timer(x) > min time(x)
∧ c mode(x) = alt sleep
then c mode(x) : = alt running

wakeup x

where ‘put x asleep at n’
def
=mode(x) : = sleeping, loc(x) : = n and ‘wakeup x’

def
=mode(x)

: = running.
In 4.1 we will prove how these new rules implement the previous alt–rules. alt skip(~G, i, x)

gets implemented by ALT SKIP
def
= alt a(~G, x) alt s skip(~G, i, x). For alt time(~G, i, x)

there are two cases, depending on whether or not, when alt a(~G, x) is executed, pro-
cess x is ready for selection (by satisfaction of a time requirement or by readiness of

an input guard channel). The former case is implemented by ALT TIME
def
= alt a(~G, x)

alt s time(~G, i, x) or by out(z, e, u) ALT TIME for some Gj = b : e?u in ~G and some z,

the latter by alt a(~G, x) WAKE UP alt s time(~G, i, x) where WAKE UP is time wakeup(x)
or out(z, e, u) chan wakeup(bind(e, env(z))) for some z, e, u.

Similarly, the implementation of alt com(~G, i;x; y, d, t) breaks into two cases:
(i) READY COM SEL COM with READY COM being the composition of out(y, d, t)

and alt a(~G, x) in any order and SEL COM
def
= alt s com(~G, i, x) in(x, ci, vi) chan(c̄i),

(ii) alt a(~G, x) WAKE UP SEL COM where WAKE UP is time wakeup(x) or out(y, d, t)
chan wakeup(c̄i) or out(z, e, u) chan wakeup(c̄j) out(y, d, t) for some z, e, u, j. Note that in
the last case j is one of the alternatives enabled by alt a (given that bind(e, env(z)) = c̄j)
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with j 6= i—if several alternatives become available, nothing compels the alt s rules to
select exactly that one which has woken the daemon up.

In 4.1., following the above intuitive reasoning, we provide explicit meaning and a proof
of

Theorem 1. The implementation, in algebra Occam1, of communication and alternation
in algebra Occam0, is correct and complete.

3.2. Processors and Internal Communication
The Transputer supports concurrent execution of several processes on one processor.

Here a ‘processor’ will be an abstract object, element of a domain PROCESSOR, and
the association of processors to daemons (‘placement’ of processes) will be represented
by a function p : DAEMON → PROCESSOR. The placed par construct of Occam can
now be realized by a rule identical to par, setting in addition p(xi) to explicitly listed
processors.

We concentrate here on refining the action of a single processor. We can thus suppress
the processor from the notation.

Processes residing on the same processor will communicate by internal channels (im-
plemented in the Transputer as memory locations). For internal channels the execution
of communication can be optimized, since reader and writer share the store, and their en-
vironments may be assumed to be both ‘immediately available’. The daemon that wants
to communicate with a nonidle internal channel may thus complete the communication in
one blow, making the chan rule spurious. Therefore reader and writer may be merged to
an agent . Also, mssg and place may be reasonably attached to the channel’s agent rather
than to the channel—we thus have (homonymous) functions mssg , place with domain
DAEMON (it is a memory–saving device in the Transputer implementation, allowed by
the Channel Assumption).

Communication over internal channels can then be optimized in the sense that new ver-
sions of in and out rules may perform immediately also the work of chan and chan wakeup.
Rules for input and output will refine to special rules for a) input from an idle or external
channel, b) input from a ready internal channel, c) output to an idle or external channel,
d) output to a ready internal channel, e) output to an internal channel enabled by alt.

We shall occasionally, in order to avoid repetition in the rules, rely on notation and ab-
breviations from the ‘external channels’ model, under the convention that, for any internal
channel C, reader(C), writer(C) should both be read as agent(C). Also, mssg(C), place(C)
should, for internal C, be read as mssg(agent(C)), place(agent(C)) respectively. Corre-
spondingly we have to refine the definitions of enable/disable as follows:

enable(b, x, c)
def
= if eval(b, env(x)) ∧ agent(c) = nil then agent(c) : = x

disable(b, x, c)
def
= if eval(b, env(x)) ∧ agent(c) = x then agent(c) : = nil

Minding the notation from [7], of R? and R! for, respectively, guards and updates of a
rule R, we have the following new in/out rules:

in idle(x, c, v)
if x does c?v
∧ (internal c̄ ∧ idle c̄) or external c̄

then in(x, c, v)!

out idle(x, c, t)
if x does c!t
∧ (internal c̄ ∧ idle c̄) or external c̄

then out(x, c, t)!
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in ready(x, c, v)
if x does c?v
∧ internal c̄ ∧ not idle c̄

then write mssg(agent(c̄)) to x at v
wakeup agent(c̄)
proceed x
clear c̄

out ready(x, c, t)
if x does c!t
∧ internal c̄ ∧ not idle c̄
∧ c mode(agent(c̄) = input

then write eval(t, env(x)) to agent(c̄)
at place(agent(c̄))

wakeup agent(c̄)
proceed x
clear c̄

The implementation of communication by (in(x, c, v) | out(y, d, t)) chan(c̄) gets, in case
of internal c̄, optimized to in idle(x, c, v) out ready(y, d, t) or out idle(y, d, t) in ready(x, c, v).

In case of output to an internal channel enabled by alt a, which is then by defini-
tion also ready, the corresponding output rule is not allowed yet to do the output, but
must announce its readiness as if the channel were idle, and in addition do the work of
chan wakeup. The corresponding rule is

out alt(x, c, t)
if x does c!t ∧ internal c̄ ∧ not idle c̄ ∧ c mode(agent(c̄)) 6= input
then put x asleep at next(loc(x))

mssg(x) : = eval(t, env(x)), agent(c̄) : = x
if c mode(agent(c̄)) = alt sleep then wakeup agent(c̄)

c mode(agent(c̄)) : = alt running

The implementation of alt time(~G, i, x) involving internal channels is the same as in
3.1, replacing in the first case out(z, e, u) by out idle(z, e, u), and replacing in WAKE UP
out(z, e, u) chan wakeup(bind(e, env(z))) by out alt(z, e, u).

Also the implementation of alt com(~G, i, x), for an internal selected channel, is as in
3.1 but with the following definition of READY COM and WAKE UP: READY COM is
out idle(y, d, t) alt a(~G, x) or alt a(~G, x) out alt(y, d, t), WAKE UP is time wakeup(x) or
out alt(y, d, t) or out alt(z, e, u) out alt(y, d, t) for some z, e, u.

An explicit meaning and a proof of the following theorem can be found in 4.2.

Theorem 2. The refinement of Occam1 to the algebra Occam2 with internal channels is
correct and complete.

3.3. Sequential Processors
Here we describe the sequential implementation of concurrent processes using a simple

queue of daemons. Such a queue structure will be given by functions fst , last : QUEUE →
DAEMON , rest : QUEUE → QUEUE ; we denote the operation of adding a daemon
to the (back of the) queue as q.x and assume the usual queue axioms. We use the
abbreviations enqueue x, q

def
= q : = q.x and dequeue q, a

def
= (a : = fst(q), q : = rest(q)).

A sequential processor may then be, at this level of abstraction, viewed as carrying
a queue of active (non-sleeping) processes, all of them sharing the (external) timer :
PROCESSOR → N7, and a single process being really executed—its agent .8 These data

7Formally this means to replace everywhere timer(x) by timer(p(x)).
8Note that at this level of abstraction, we still consider the processor and the agents for the chan-rule
and the wakeup-rules to be concurrent.
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will be represented by functions: Q : PROCESSOR → QUEUE , A : PROCESSOR →
DAEMON . Concentrating on a single processor P , we write just Q,A for Q(P ), A(P ).

The mode of processes can now be dropped, since we view a process as running iff it
is in the queue, i.e. reachable as fst(restn(Q)) for some n ≥ 0. This interpretation of
‘running’ and ‘sleeping’ will be realized if we refine the actions of ‘putting to sleep’ to
‘put A asleep at n′ (which by definition means loc(A) : = n, A : = nil) and ‘waking up’
to ‘wakeup x′

def
= enqueue x,Q9.

Sequentiality is realized by allowing only A to execute (that is why only A may be put
to sleep), i.e. by refining the notion of ‘doing’ an instruction to making it applicable only
to A: x does C

def
= x = A ∧ cmd(loc(x)) = C.

We add a rule for dequeuing whenever A gets nil :

dequeue if A = nil ∧ not empty Q then dequeue Q,A.

Due to the fact that all processes which are run by the processor share the timer,
min time now associates to the processor the list of pairs of daemons and the time
they are waiting for, sorted according to the latter: min time : PROCESSOR →
(DAEMON × N)∗. Correspondingly the min time update in the alt a rule becomes:
min time : = insert(min time, < x, tmin >) ( with an insert function which respects the
ordering). The time wakeup rule is changed to:

if min time 6= < > ∧ timer > twait ∧ c mode(dwait) = alt sleep
then c mode(dwait) : = alt running , wakeup dwait, min time : = delete(min time, dwait)

where twait is the minimal waiting time in min time and dwait is any daemon waiting
for it.10 In all alt s rules we have to add the update: min time : = delete(min time, x)
meaning that if there is a pair with first component x in min time, then it is deleted.

The rules for parallelism and stop now take the form:

par(x, k)
if x does par k
then create x1 . . . xk

Q : = Q.x1. . . . .xk
. . .
father(xi) : = x
loc(xi) : = next(loc(x), i)
env(xi) : = env(x)
. . .
count(x) : = k
put x asleep at next(loc(x))

end(x)
if x does end
then x : = nil

k : = k − 1
if k = 1
then wakeup father(x)
where k = count(father(x))

stop(x)
if x does stop then x : = nil

Note that there is no more need for distributed counting.
The evolving algebra corresponding to one processor implements daemons sequentially

— by allowing at most one daemon to execute his rule at any time, as can be easily
verified by inspecting the guards. In 4.3. we prove the following theorem:

9Any implementation certainly dequeues the next daemon immediately. For the sake of clarity and
modularity of the description, at this level of abstraction we separate ‘putting to sleep’ and dequeuing.
10Many processes might be waiting for the same time moment. At this level of abstraction we still
disregard the order in which they are put into min time and ¿from there into the queue of processes.
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Theorem 3. The sequential implementation Occams of Occam2 is correct. Given non-
divergence, it is also complete.

3.3.1. Time-slicing
The active daemon (one at A) will remain active as long as it is not descheduled or

interrupted. Since descheduling is always caused by communication, a divergent daemon
(one that can execute infinitely many steps without ever communicating with the outside
world) might run forever, preventing thereby other daemons from becoming active. This
might cause incompleteness of our implementation of parallelism—some runs may not be
implemented in presence of a divergent daemon (cf. 4.1).

In the Transputer such incompleteness is prevented by time–slicing—permitting any
daemon to be active just for a finite period of time. When his time has elapsed, he is
forcibly enqueued, and another daemon gets his chance.

To represent timeslicing we introduce a function start holding the starting time of the
low priority active process (the value of timer when the daemon was dequeued and became
active). A function period defines the amount of time each daemon is allowed to remain
active: period, start ∈ N.

The dequeue rules have to include updating the start function to (the current value of)
timer when the new low priority daemon becomes active.

The following abbreviation is used for checking whether the active daemon has spent
its time: elapsed

def
= timer − start > period. We can prevent the active daemon from

doing anything after its time is elapsed by refining the abbreviation ‘x does C’ by the
conjunct ‘not elapsed’. Enqueueing of the active daemon will have to be done explicitly,
by a dedicated time-slicing rule:

time–slice if elapsed ∧ A 6= nil then Q : = Q.A, A : = nil

Since time–slicing prevents divergent behavior, theorems 1,2,3 prove the main theorem.

3.3.2. Priority
The notion of priority , embodied in the pri par construct of Occam, can be easily realized

by associating to each process its priority, introducing, for each processor, two queues,
Qhigh and Qlow and a 0-ary function Alow for holding the interrupted low priority agent .
Correspondingly timer and min time split into low and high versions with appropriate
insertion and deletion. The par rule should now let the children inherit also the priority
of their father , and the enqueue update is refined to enqueue each process according to
its priority:

enqueue x
def
= if priority(x) = high then Qhigh : = Qhigh.x else Qlow : = Qlow.x.

Priority is usually explained by ‘low priority process being allowed to execute only if no
high priority process is running’. For this purpose the notion of ‘doing’ should be refined
yet another time, as

x does C
def
= x = A ∧ cmd(loc(x)) = C

∧ (priority(A) = high ∨ (empty Qhigh) ∧ not elapsed)
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refining also the dequeue rule so as to reflect the priority, and adding a rule to interrupt
a low priority A when Qhigh is not empty:

dequeue
if A = nil thenif not empty Qhigh

then dequeue Qhigh, A

elsif Alow 6= nil
then A : = Alow, Alow : = nil
elsif not empty Qlow then dequeue Qlow, A

interrupt
if priority(A) = low ∧ not empty Qhigh then A : = nil , Alow : = A

Since time–slicing is done only for low–priority processes, the time–slicing rule is refined
by adding the conjunct priority(A) = low to the guard and by replacing Q by Qlow. By the
above interpretation of ‘does’, a low–priority daemon is frozen as soon as a high–priority
daemon is enqueued—the only action possible in such a situation is interrupt followed by
dequeue, which ‘store the state’ and ‘service the interrupt’.

4. RELATING THE MODELS

In this section we prove the theorems stated above, using the framework of [7].
We shall say that (possible) runs ρ, σ are equivalent , ρ ∼ σ, if 〈ρ〉φ ⇔ 〈σ〉φ for any

formula φ.

Sequentialization of runs is defined by: the sequentialization of a simple rule R is R;
if ρ′, σ′ are any sequentializations of, respectively, ρ, σ, then ρ′ σ′ is a sequentialization of
ρ σ, and any interleaving of ρ′, σ′ is a sequentialization of ρ | σ.

Strong equivalence, ', is the smallest equivalence relation which puts any run together
with all its sequentializations.

Strongly equivalent runs are equivalent (see [7]). Under strong equivalence we forget
rearrangements of actions allowed by independence. These notions are, of course, always
to be understood as relative to a static algebra in which the runs considered are possible.

We shall relate runs of different Occam models by ‘implementation maps’ mapping runs
of the ‘more concrete’ algebra to those of the ‘more abstract’ one. We always consider
runs possible in the initial states, determined by Occam programs. Implementation maps
will be constructed incrementally, proceeding in a uniform way, by defining an ‘increment
map’: ∆f : B × B∗ → A∗ where A∗, B∗ are, respectively, sets of runs of the abstract
algebra A and concrete algebra B, so that ∆f(R, ρ) will be defined whenever 〈ρR〉. Note
that, for any nonempty ρ (σ), we have ρ ' Rρ′ and ρ | σ ' (R | S) (ρ′ | σ′) for
some R, ρ′, (S, σ′), as soon as the left hand sides are possible. In order to define an
implementation map f : B∗/ ' → A∗/ ' it will then suffice to stipulate

f(ε) = ε f(ρR) = f(ρ) ∆f(R, ρ) f(ρ (R | S)) = f(ρ) (∆f(R, ρ) | ∆f(S, ρ))

as soon as we establish, inductively, the Increment Properties

〈ρR〉 ⇒ 〈f(ρ) ∆f(R, ρ)〉 〈ρ〉I(R, S) ⇒ 〈f(ρ)〉I(∆f(R, ρ),∆f(S, ρ)).
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By simple induction we can then see that f preserves possibility and independence,

〈ρ〉 ⇒ 〈f(ρ)〉 I(ρ, σ) ⇒ I(f(ρ), f(σ)).

The f ’s relating our Occam algebras will also preserve the sets of daemons together
with their environments and locations, communication traces, termination, deadlock and
divergence.

In this context we say that a run ρ of Occam0 is convergent if, for some k and any
continuation τ of ρ of length ≥ k one of the following holds:

ρ τ ' ρ τ1 com(x, c, v; y, d, t) τ2 ρ τ ' ρ τ1 alt(~G, i;x; y) τ2.

A non–convergent run is divergent—it is possible, after a divergent run, to run indefinitely
(by König’s lemma) without ever again communicating with the outside world. A program
is divergent if it has a divergent run.

4.1. Descheduling Processes
In view of the Independence Property and the Channel Assumption we have:

Lemma 1.1. If, in Occam1, 〈ρ alt s time(~G, i, x)〉, then for some σ and with WAKE UP
as defined in 3.1., one of the following holds:
(1) ρ ' σ alt a(~G, x) or ρ ' σ out(z, e, u)alt a(~G, x) for some Gj = b : e?u in ~G and z

(2) ρ ' σ alt a(~G, x) WAKE UP

Lemma 1.2. If in Occam1, 〈ρ chan(C)〉, then for some σ, x, c, v, y, d, t such that
bind(c, env(x)) = bind(d, env(y)) = C, either (1) ρ ' σ(in(x, c, v) | out(y, d, t)) or for

some ~Gi, i such that c = ci, one of the following holds: (2) ρ chan(C) ' σ READY COM

SEL COM or (3) ρ chan(C) ' σ alt a(~G, x) WAKE UP SEL COM with READY COM,
SEL COM and WAKE UP as defined in 3.1.

Since by the Channel Assumption x, y are unique, ∆f : Occam1×Occam∗1 → Occam∗0
can be defined by:

∆f(alt s skip(~G, i, x), ρ) = alt skip(~G, i, x)

∆f(alt s time(~G, i, x), ρ) = alt time(~G, i, x)

∆f(chan(C), ρ) =

{
com(x, c, v; y, d, t) in case (1) of lemma 1.2

alt com(~G, i;x; y, d, t) in cases (2),(3) of lemma 1.2

∆f(R, ρ) =


ε if R ∈ {in, out, alt a, alt s com,

chan wakeup, time wakeup}
R otherwise

The Increment Properties hold and the implementation map f is well defined by Lemma
1.

Lemma 2. For any ρ and ALT TIME, WAKE UP, READY COM, SEL COM as in 3.1:

〈ρ alt a(~G, x) alt s skip(~G, i, x)〉 ⇔ 〈f(ρ) alt skip(~G, i, x)〉 (1)

〈ρ ALT TIME〉 or (2)



505

〈ρ alt a(~G, x) WAKE UP alt s time(~G, i, x)〉 ⇔ 〈f(ρ) alt time(~G, i, x)〉
〈ρ (in(x, c, v) | out(y, d, t)) chan(c̄)〉 ⇔ 〈f(ρ) com(x, c, v; y, d, t)〉 (3)

〈ρ READY COM SEL COM〉 or (4)

〈ρ alt a(~G, x) WAKE UP SEL COM〉 ⇔ 〈f(ρ) alt com(~G, i;x; y, d, t)〉

The new ‘intermediate states’, in which some channel is not idle, do not correspond very
well to any states of Occam0. Let us then distinguish those states in which all channels
are idle as significant . Runs which preserve significance of states, i.e. which have already
completed every communication they had started, will also be called significant. It is easy
to see that all maximal nondeadlocking runs, finite and infinite, are significant, and that
significant runs are dense up to strong equivalence. We then have

Proposition 3. On significant runs f preserves communication traces, the set of dae-
mons, their locations, environments and modes.

Proposition 4. f preserves termination, deadlock and divergence.

Proposition 5. f is surjective, i.e. every run of Occam0 is strongly equivalent to f(σ)
for some (significant) σ ∈ Occam∗1.

Propositions 3 and 4 establish correctness of ‘implementing’ Occam0 by Occam1 — Propo-
sition 5 establishes its completeness , in a rather strong sense. This proves Theorem 1.

4.2. Internal Channels
Mapping runs of Occam2 to those of Occam1 is simple: if R is one of in(x,c,v) or

out(x,c,t), we set

∆f(R idle, ρ) = R ∆f(R ready , ρ) = R chan()̧
∆f(out alt(x, c, t), ρ) = out(x, c, t)

Otherwise ∆f(R, ρ) = R. Propositions 3-5 then extend to Occam2.

4.3. Sequential Processors
We relate Occams to Occam2 as follows. ∆f(dequeue, ρ)

def
= ε,

∆f(ends(x), ρ)
def
=

{
end(x) if 〈ρ〉(k > 1)
end(x) count(y) if 〈ρ〉(k = 1)

where y = father(x). ∆f(time wakeup, ρ) is defined as the sequence of time wakeup(x)
for all x = dwait. ∆f(R, ρ) = R′ for other rules, where R′ is the Occam2 homonym of R.

The Increment Properties hold, and we have f preserving possibility and independence.
In view of the Independence Property, (any) sequentialization shuffles the runs only up
to '. Since Propositions 3 and 4 are formulated in terms of ', they hold also here, i.e.
the sequential implementation of Occam2 is correct .

Without time–slicing however completeness would be lost. An action, possible in
Occam2, will namely have its analogon somewhere in the queue, which need not however
be immediately possible, being way back in the queue. If the active daemon generates a
divergent run, it might never get possible. However,
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Lemma 3. If ρ is a run of Occams under time–slicing, the agent current after ρ will even-
tually get descheduled, i.e. if 〈ρ〉(A = x), there is some k such that, for any continuation
σ of ρ of length ≥ k,ρ σ ' ρ σ1 σ2 for some σ1, σ2 so that 〈ρ σ1〉(A 6= x).

Iterating the lemma along the queue, we obtain

Lemma 4. If ρ is a run in Occams under time–slicing, then, for some k, whenever in
Occam2 〈f(ρ)R〉, there is in Occams a continuation σ of ρ of length ≤ k such that for
some τ holds f(ρ σ) ' f(ρ)Rτ .

Iterating Lemma 4 along runs of Occam2, we obtain

Proposition 6. Given time–slicing, every run of an Occam2 algebra is covered, up to
strong equivalence, with runs in the image of f .

This establishes the Main Theorem.

5. CONCLUSION

The scope of the evolving algebra methodology is not exhausted by high-level descrip-
tions, such as the one produced here for Occam. In [4] we have shown how such a
description can be transformed (provably correctly) to a low level abstract machine like
the WAM. The models of the present paper provide the starting point for further refine-
ment all the way to a formal description of the Transputer Instruction Set architecture,
accompanied by an incremental mathematical correctness proof for a general compilation
scheme of Occam. We undertake to complete such a proof in a sequel to this paper.

Unlike formal studies of implementations of Occam sublanguages [1], [12] based on “The
laws of Occam Programming” [17], we interpret the Occam programs as they are without
reducing them to normal form. Note that we could have presented our rules in the form
of Horn clauses and interpret them as ”compiling” the described Occam constructs into
Prolog; see [2] where the compiling specifications, obtained for the sequential sublanguage
of Occam via ”laws of Occam programming”, are transformed into logic programs.

Our proofs show the correctness of a compilation scheme. This is different from proving
a concrete compiler to be correct, an approach investigated in [6].

The framework developed here could also be used to recast and compare other proposals
for a “correct” implementation of Hoare’s CSP. One example is [5] where also output
statements are allowed in the guards for alternative and iterative commands.
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6. APPENDIX: GENERATING FLOWCHARTS

Given two nodes, Begin and End , such that next(Begin) = End , the following rules
will generate the flowchart for an Occam program S = cmd(Begin) (assuming that there
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are no further nodes or function values, and that S belongs to the fragment of Occam
treated in the main text).

if cmd(n) = seq S1 . . . Sk

then create n2, . . . , nk

. . .
cmd(ni) : = Si

next(ni) : = ni+1

. . .
(1 ≤ i ≤ k)

where n1 = n, nk+1 = next(n)

if cmd(n) = while B S
then cmd(n) : = B

no(n) : = next(n)
create n1

yes(n) : = n1

cmd(n1) : = S
next(n1) : = n

if cmd(n) = ifB1 S1 . . . Bk Sk

then create n1, n2,m2, . . . , nk,mk,mk+1

. . .
cmd(mi) : = Bi

yes(mi) : = ni

no(mi) : = mi+1

cmd(ni) : = Si

next(ni) : = next(n)
. . .
(1 ≤ i ≤ k)
cmd(mk+1) : = stop

where m1 = n

if cmd(n) = alt G1 S1 . . . Gk Sk

then cmd(n) : = alt(G1, . . . , Gk)
create n1, . . . , nk

. . .
next(n, i) : = ni

cmd(ni) : = Si

next(mi) : = next(n)
. . .

if cmd(n) = par S1 . . . Sk

then cmd(n) : = par k
create n1,m1 . . . , nk,mk

. . .
next(n, i) : = ni

cmd(ni) : = Si

next(ni) : = mi

cmd(mi) : = end
. . .

The rule for alt should be modified in the obvious way to fit its refinement. This
could be viewed as a ‘compiler algebra’ for the Occam fragment. Note that there are
no rules for ‘compiling’ atomic commands and boolean tests—when all composite com-
mands are ‘compiled’, the algebra halts. In a sequel to this paper the ‘compiler algebra’
will be replaced by compilation function and refined to a ‘real’ compiler making further
decomposition of atomic commands and boolean tests.
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