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Abstract. We describe a method for rigorously specifying and verify-
ing the control of pipelined microprocessors which can be used by the

hardware designer for a precise documentation and justi�cation of the

correctness of his design techniques. We proceed by successively re�ning
a one-instruction-at-a-time-view of a RISC processor to a description of

its pipelined implementation; the structure of the re�nement hierarchy

is determined by standard instruction pipelining principles (grouped fol-
lowing the kind of conict they are designed to avoid: structural hazards,

data hazards and control hazards).

We illustrate our approach through a formal speci�cation with correct-

ness proof of Hennessy and Patterson's RISC processor DLX but the

method can be extended to complex commercial microprocessor design

where traditional or purely automatic methods do not scale up. The spec-

i�cation method supports incremental design techniques; the modular

proof method o�ers reusing proofs and supports the designer's intuitive
reasoning, in particular \local" argumentations typical for upgrading and

optimizing machines. Since our models come in the form of Abstract

State Machines, they can be made executable by ASM interpreters and

can thereby be used for prototypical simulations.

1 Introduction

It is well known that microprocessors are subject to subtle design errors. Conven-

tional methods like simulation to debug processors before fabrication consume

enormous resources in terms of manpower and of machines. In recent years var-

ious formal veri�cation techniques have been proposed to overcome the well-

known theoretical and practical limits of such conventional techniques and have

been applied to the analysis of a certain number of (usually rather simple and

unpipelined) microprocessors. Some typical examples standing for many others

are [JBG86] [Bow87] [C88] [C89] [Hunt89] [LC91] [Her92] [Be93] [Win94] and

[Ta95] which includes an excellent detailed survey.

We develop a practical method which reduces the labor required to do for-

mally supported design and veri�cation of microprocessors by orders of magni-

tude. The method allows one to de�ne a hierarchy of re�nement steps each of

which is focussed on a speci�c feature of the processor to be constructed and



comes with a correctness proof expressing the intuitive reasoning of (i.e. the

justi�cation given by) the designer. The guiding principle of these successively

re�ned speci�cations is to mimic as closely as possible the incremental features

in hardware design. We add to this incremental approach a locality principle

(see the notions of projection and of relevant locations below) which supports

the local reasoning typical for practical hardware design. As a by-product one

can break the proof of the properties of interest into elementary inductions and

a few natural case distinctions corresponding to the di�erent pipelining conict

types and the methods to solve them; in this way we prepare the ground for addi-

tional support by a mechanical veri�cation using automated proof development

systems such as PVS, HOL, IMPS or model checking systems.

We concentrate our attention in this paper on control, where notoriouslymost

errors are found during the design of a processor. We do this for the challenging

case of microprocessors with an instruction pipeline, exempli�ed through the

standard pipelined RISC processor DLXdeveloped by Hennessy and Patterson

[HP90] in order to illustrate the essential features of RISC processors like the

MIPS R3000 (see [Hen93]), Intel i860, Sun SPARC, Motorola M88000. Pipelin-

ing is a key implementation technique used to make fast CPUs. It provides a

simultaneous execution of multiple instructions which exploits the independence

between (parts of) instructions, as a result of which the execution speed for

programs is improved. Since pipelining is not visible to the programmer, the

more it is crucial to ensure that the semantics of instructions is preserved by

the concurrency of operations which is inherent in this technique. We prove

the correctness of Hennessy and Patterson's pipelined processor with respect to

its sequential model (one-instruction-at-a-time view of the processor). The task

therefore consists in starting from a mathematical model for the datapath and

the sequential control of DLX, re�ning this model to the pipelined version of

DLX and proving the correctness of the re�nement process.

The overall structure of our design-driven re�nement hierarchy is determined

by the major instruction pipelining principles which can be grouped following the

kind of conict they are designed to avoid: structural, data and control hazards.

For the crucial transition from the sequential (programmer-view) DLX model

to the parallel execution model of its pipelined variant DLXp we provide a (lo-

cal projection) technique for extracting from certain segments of a concurrent

DLXp{computation|where at each step many operations concerning di�erent

(types of) instructions are performed in parallel|an equivalent sequentialDLX{

subcomputation of the one instruction (type) under analysis (see the notions of

relevant and result locations and of instruction cycles below). For this �rst re-

�nement step we concentrate on the current techniques to make the pipelined

version of DLX free from structural hazards and abstract from the more so-

phisticated data or control hazards and stalls, i.e. for the proofs we assume the

compiler to organize the sequence of instructions in such a way that they are

su�ciently independent upon entering the pipe. In the further re�nement steps

we show that for the re�ned models DLXdata, DLXctrl and DLXpipe of DLXp

the compiler assumption on data and control hazard freeness can piecemeal be



dispensed with. (For a transparent and easily manageable proof it turned out to

be advantageous to distinguish data hazards for not jump instructions|solved

in DLXdata|and data hazards for jumps instructions|solved in two steps in

DLXctrland in DLXpipe.1) Alltogether we therefore justify the following claim.2

Main Theorem (Correctness of DLXpipe with respect to DLX).3

For each DLX program P , the result of the sequential execution of P on the

machine DLX is the same as the result of the pipelined execution of P on the

machine DLXpipe
.

Due to the systematic use of successive re�nements, organized around the dif-

ferent pipelining problems and the methods for their solution4, our approach can

be applied for the design-driven veri�cation as well as for the veri�cation-driven

design of RISC cores (including their rigorous documentation) at any level of ab-

straction. The modularity of the speci�cation and analysis method provides the

possibility to reuse correctness theorems along the re�nement hierarchy. Such a

decomposition of a complex goal into simpler subgoals corresponds to well es-

tablished mathematical and engineering practice. Our method is still practicable

when instead of DLX one has to deal with more complex microprocessors, more

advanced pipeling techniques or more sophisticated memory systems.5

The divide-and-conquer approach to design-driven formal veri�cation ad-

vocated here has proved to be practically viable for complex systems where

traditional approaches failed; see the proofs in [BR95] [BD95] for the correct-

1 We are grateful to So�ene Tahar for pointing out to us that an architecture which

is similar to our DLXpipe has been implemented in [DeTa94].
2 It has been suggested to view our theorem as saying that DLXpipe is sequentially

consistent with respect to DLX in the sense of Lamport [La79]. This is an oversim-
plifying interpretation. Lamport's de�nition is phrased in terms of certain \execution

results" being \the same". One of the major problems we solve in this paper is to

de�ne in a rigorous but transparent manner a) what the computer architect under-
stands by \the result of a DLX execution with pipeling" and b) precisely at which

moments during the pipelined execution of DLX the results of this execution have

to be checked for \being the same" as the result of the sequential DLX computation.
3 This theorem has been announced in [Bo95].
4 This is the basic methodological di�erence between our re�nement hierarchy and the

interesting hierarchical structuring proposed in [W90] and followed also in [WC95]
and [Taku95]. The abstractions in these papers reect some typical compiler hierar-

chy levels, leading from the assembler level through the level of microprogrammed

code to (code formalizing) the electronic block model which constitutes the gate level
of the hardware system. We de�ne our abstractions in order to isolate and reect as

closely as possible the di�erent hazard types and the methods for their solution. It

is of course possible to combine the two structuring methods where this is needed to
break down the complexity of the overall problem into pieces which can be handled

relying on assistance from machines.
5 The work on this paper grew out from a reverse engineering project of a parallel ar-
chitecture (see [BoDC95]) where we faced pipelining together with VLIW parallelism.

In [BoDC95] we have used our abstraction and re�nement technique to structure a

real-life processor into simple and rigorously de�ned basic components.



ness of compiling Prolog programs to the Warren Abstract Machine or Oc-

cam programs to the Transputer and the work on the machine checked ver-

sions of the WAM correctness proof using KIV [A95] and Isabelle [P96]. During

the last years theorem provers have been used to verify also pipelined proces-

sors, but either the processors are simple or the veri�cation is rather complex

[Cy93, BB93, Ro92, SGGH91, SB90]. For two recent projects to formally verify

DLX using HOL and PVS see [TaKu95, Cy95]6. In the model checking veri�-

cation of a subset of the pipelined DLX in [BD94], Dill's goal is an automatic

veri�cation procedure where the human intervention is con�ned to the devel-

opment of operational descriptions of the speci�cation and the implementation.

Our primary concern in this paper is to support the actual design work by a

simple method which can be used by the computer architect to lay down his de-

sign steps and to reason about their e�ect in a rigorous, checkable and falsi�able

way. To this purpose we provide a rigorous simple behavioral modelling of both

the speci�cation and the implementation and relate the two by a hierarchy of

transparent de�nitions and (proofs of) properties; we try to break the complex-

ity of the processor by revealing the structure of the run time interaction of its

main parts and by linking in an understandable hierarchical way the sequential

and the pipelined execution models.

To break the complexity of real-life non-toy systems it is crucial not to be

bound by the straitjacket of an a priori given formal framework and to be able

to separate the speci�cation and its justi�cation from mechanical veri�cation

concerns. One thing is to rigorously support the designer's reasoning and the

structuring of his work into intellectually manageable parts; another thing is the

detailed logical encoding which is unavoidable to make the speci�cation under-

standable and checkable not for a human user, but for a machine. Both forms of

\understanding" and \proving" have their own logic, needs and merits. Combin-

ing the two will enable us to master the complexity of current computer systems.

Once the largely creative and hardly mechanizable decomposition e�ort has led

to a hierarchy of stepwise re�ned rigorous models, related by lemmas stating

the properties of interest, the justi�cation of the desired overall behavior of the

system can be split into separate, possibly mechanizable, proofs of such lemmas.

Flexible and su�ciently expressive systems for machine assisted veri�cation will

incorporate such hierarchical decomposition techniques. We advocate a brain{

AND{brawn approach (see [Bo95]) for both design-driven post-veri�cation and

veri�cation-driven design using on-the-y-veri�cation.

It will help if the reader is familiar with the semantics of Abstract State

Machines de�ned in [G95]7 although what follows can be understood correctly

6 Cyrluk's speci�cation and implementation can be viewed as a PVS formalization of

the semantics of (some of) the rules of our models DLX and DLXp. Cyrluk, Tahar

and Kumar do not de�ne our notions of relevant and of result locations which allow

us to structure and to localize the proof obligations boiling them down to the bare

minimum. Using these notions we can recover the sequential states from successive
pipelined states by simple projections which directly support the way the designer

reasons about the relation between sequential and parallel pipelined execution.
7 Previously Gurevich's ASMs have been called evolving algebras.



by reading our ASM rules as pseudo{code over abstract data types. We therefore

abstain from repeating here the de�nitions of [G95].

2 Parallelizing the sequential DLX to DLXp

The one-instruction-at-a-timemachineDLX can be constructed by a straightfor-

ward formalization of the control graphs in [HP90]. We de�ne DLXas Abstract

State Machine in the appendix8 without commenting further and refer to [BM96]

for explanations about how the abstractions of this sequential model make our

proof method uniform with respect to the size of the register �le, the width of

the datapath, the instruction set, the memory access (bandwidth), etc.9 We ex-

plain in the rest of this section the few changes which su�ce to re�ne DLX to

a machine DLXpwhere at each clock cycle simultaneously �ve basic steps are

executed, one for each of �ve instructions.

The �ve basic execution steps appearing in DLX are instruction fetch (IF),

instruction decode including the fetching of operands (ID), execution proper for

ALU operations and (data or branch) address calculation using the ALU(EX),

memory access (MEM) and writing the computed result back into the �nal

register-�le destination (WB). The order in which these basic execution steps

follow each other for the execution of an instruction is described in DLX by

a 0-ary function mode. Ideally one can pipeline DLX by letting the processor

execute during each clock cycle simultaneously �ve basic steps, one for each of

�ve instructions. This can be realized by eliminating from DLX the sequential

control by mode and by replacing where necessary the mode guards by operation

code guards corresponding to the pipe stage of the instruction in question. In

the resulting new machine, at each moment for each of the �ve basic execution

steps a rule is applied (clock synchronized architectural parallelism).

However one has to guarantee that the �ve pipe stages which are active on

every clock cycle do not compete for resources, each functional architectural

unit being available at each step only once. We describe briey how the rules

of DLXcan be re�ned to DLXprules which resolve these structural conicts.

Resolving structural conicts. The simplicity of theDLX instructions

set results in limited resource competition and in simple datapath/control re�ne-

ments to avoid it. Four major groups of resources have to be doubled so that any

8 When using instruction related functions like opcode, fstop, scdop, iop etc., we usually

suppress their standard argument, namely the content of the instruction register IR.
Standard terminology and notation are adopted without explanation from [HP90].

9 In order to concentrate on the essential features of the pipelining parallelism, we start

here not with the instruction set architecture as seen by the programmer (assembly
language one-instruction-at-a-time view), but with its re�nement where it becomes

visible that each instruction is executed in stages (pipelining steps). For reasons of

simplicity we skip the oating point instructions of DLX; although the treatement of
hazards is more complex with the (multicycle) oating point operations, the concepts

are the same as for the integer pipeline. We do care however not to abstract away

crucial control features like the user{requested interrupt handling.



combination of operations can occur in pipe stages which are executed simul-

taneously in one clock cycle, namely the memory access (to fetch instructions),

an addition mechanism (to increment the program counter PC), the memory

data register (for overlapping load and store instructions), and latches for the

instruction register IR, for PC and for the ALU output C (to hold values which

are needed later in the pipeline)10.

Instruction fetching and incrementing PC. A memory access conict

between instruction fetching and load/store instructions is avoided by increas-

ing the memory bandwith, formalized by an additional memory access function

meminstr used only for fetching instructions and supposed to be a subfunction

of the DLX function mem; in this way we abstract from any particular imple-

mentation feature related to using separate instruction and data caches which

we intend to treat in a later re�nement step. 11 Another resource conict which

would appear at each clock cycle concerns the ALU had we to use it for incre-

mentingPC. The usual solution consists in providing a separate PC-incrementer,

namely our abstract function next. Thus we have the new rule FETCH below,

belonging to the pipe stage set IF; the condition jumps, de�ned by12

opcode(IR1 ) 2 JUMP _ (opcode(IR1 ) 2 BRANCH ^ opcode(IR1 )(A) = true);

ensures that PC can be updated by the FETCH{rule only when no jump or

branch rule has to update PC in the execution phase. The new rule OPERAND,

belonging to the pipe stage set ID, is obtained from the DLX homonym by

deleting the mode guards and updates.

FETCH IR  meminstr (PC );

if :jumps then PC  next (PC )

OPERAND A fstop (IR)

B  scdop (IR)

Latches for longer living values. Some of the values which appear during

the execution of an instruction at a certain pipe stage are needed at later pipe

stages and have to be copied in order not to get overwritten by a subsequent

instruction occurring in the pipeline. This is the case for (segments of) IR. For

reasons of simplicity we abstract from instruction format and decoding details

and provide three additional registers IR1, IR2, IR3 to keep copies of a fetched

10 The concept of simultaneous execution of multiple ASM rules allows us to abstract

from the distinction of pipe stages into a writing and a subsequent reading phase

(see [TaKu95]). This justi�es the simultaneous execution of for example the rules
OPERAND and MEM ADDR or Pass B to MDR. It also means that we consider

the simultaneous read and write access of the register �le (by the rules ID and WB)

as not constituting a resource conict. The explicit introduction of phases would
come up to a routine extension of our rules.

11 The DLX processor does not support self-modifying code. That feature, which can

be found in older usually non-pipelined architectures, would require a much more
subtle treatment of control hazards than the one present in pipelined processors.

12 IR1 cointains the value IR had in the previous clock cycle, see below. By opcode(: : :)

we denote the function encoded by opcode(: : :). Registers A, B store outputs from

register �le registers for use in later clock cycles.



instruction through the pipe stages EX, MEM, WB, i.e. with the following new

preservation rules belonging to the rule sets ID, EX, MEM respectively:

Preserv IR IR1  IR; Preserv IRi IR(i + 1 ) IRi with i = 1; 2:

Two 0-ary functions PC1, C1 are needed to save the values of PC, C for

one pipe stage. PC1 provides at pipe stage EX of an instruction I a copy of the

value of PC after the FETCH stage of I (serving in case I is a jump instruction

the execution of which triggers a transfer or an update of that PC{value). C1

provides at pipe stage WB a copy of the ALU output value C computed in

the pipe stage EX of I (for instructions with ALU/SET{operations, for JLINK

instructions and for MOVS2I).

Preserv PC PC1  PC Preserv C C1  C

For reasons to be explained in the next section the rule for copying the current

value of PC into PC1 will have this form only in the last two models DLXctrl

and DLXpipe and a slightly extended form in DLXp and DLXdata .

Doubling MDR. In DLX the memory data register MDR is the only in-

terface between the register-�le and the memory and serves for both loading

and storing. In the pipelined version for DLX a load instruction I which in

the pipeline immediately precedes a store instruction I0 would compete with

I0 for writing into MDR in its pipe stage MEM (when I0 in its pipe stage EX

wants to write B intoMDR). This resource conict is resolved by doublingMDR

into two registers LMDR and SMDR and by re�ning as follows the DLX{rules

MEM ADDR and Pass B to MDR, both belonging to the set EX:13

if opcode (IR1 ) 2 LOAD [ STORE

then MAR  A+ ival (IR1 )

if opcode (IR1 ) 2 STORE

then SMDR  B

The DLX{rule MEM ACC is divided in DLXp into the following two re�ned

rules, one for LOAD and one for STORE, both belonging to the set MEM:

STORE if opcode (IR2 ) 2 STORE

then mem (MAR) SMDR

LOAD if opcode (IR2 ) 2 LOAD

then LMDR  mem (MAR)

The new rule Pass B to MDR requires a new direct link from the exit of B to

the entry of SMDR in order to avoid the use of the ALU for this data transfer.

Speeding up the pipe stages. Since all pipe stages proceed simultane-

ously and the time which is needed for moving an instruction one step down

the pipeline is a machine cycle, the length of the latter is determined by the

time required for the slowest pipe stage. The two DLX{rules ALU, ALU' are

combined into the following DLXp{rule ALU (belonging to the set EX), thus

eliminating the intermediate step to put the right second operand into TEMP.14

13 The register MAR stores the address for the memory access. The function ival yields

the immediate value encoded in an instruction.
14 The function iop detects operation code for immediate operations.



if opcode (IR1 ) 2 ALU [ SET thenif iop (opcode (IR1 )) = true

then C  opcode (IR1 ) (A; ival (IR1 ))

else C  opcode (IR1 ) (A; B)

The DLX{rule SUBWORD (which selects and outputs to C the required

portion of the word loaded from the memory) is incorporated into the following

WRITE BACK{rule under the guard that the value to be written comes through

a loading instruction; if this value has been computed by executing anALU/SET,

JLINK, MOVS2I instruction, it comes from C1. The price for this re�nement

is linking the exit of LMDR directly (without passing through C1) to the entry

of the register-�le and adding to the latter a selector for choosing among C1

and (the required portion of) LMDR. Transfering a subword of LMDR into a

destination register in the following rule can be realized without using the ALU

by relying upon the usual shift functions of registers like LMDR.

WRITE BACK if opcode (IR3 ) 2 ALU [ SET [ fMOVS2I g [ JLINK

then dest (IR3 ) C1

if opcode (IR3 ) 2 LOAD

then dest (IR3 ) opcode (IR3 ) (LMDR)

The remainingDLXp{rules|namelyMOVESPECIAL, JUMP, BRANCH|

all belong to the pipe stage EX and are obtained from their DLX-homonyms by

deleting the mode guards and updates and by replacing the arguments IR, PC

by IR1, PC1 respectively. This concludes the speci�cation of the ASM model

DLXpwhich is spelled out in full in the appendix.

3 Justifying the correctness of the parallelization

For the proof of the correctness of DLXpwith respect to DLXwe start by de�n-

ing the notions of result location, of used location and of relevant location which

will allow us to recover DLX{states from successive pipelined DLXp{states by

simple projections. We consider only computations which are reachable from

appropriate initial states. We say that two computations C in DLX and Cp in

DLXp
correspond to each other if their initializations coincide on the common

signature except where explicitly stated otherwise. For DLX{initializations we

assume reg (IR) = undef and mode = FETCH, for DLXp{initializations reg

(PC1) = reg (C1) = reg (IRi) = undef for i=1,2,3. We often use f (undef) =

undef, for each function f. We say that a computation is initialized or starts with

an instruction instr if mem (PC) = meminstr (PC) = instr .

Instruction Cycles. We can justify the correctness claim by a series of sim-

ple local arguments|one for each instruction (class)|be decomposing compu-

tations into segments each of which constitutes a subcomputation during which

a given instruction is executed completely. In DLX computations, an instruc-

tion cycle for instr is any subcomputation which starts with mode = FETCH

and meminstr (PC) = instr and leads to the next state with mode = FETCH;



in DLXp computations, an instruction cycle for instr is any subcomputation

which starts with instr and ends with the �rst following pipe stage of instr at

the end of which the values of all the result locations of instr, as de�ned below,

are computed. We call this pipe stage the end (pipe) stage of instr; whether it is

EX(instr),MEM(instr) or WB(instr) depends on instr and is de�ned in table 1.

We prove the correctness of DLXp with respect to DLX instructionwise by

showing that in every pair (C; Cp) of correspondingDLX=DLXp{computations,

corresponding instruction cycles compute the same result. The correspondence

between instruction cycles in C and in Cp is de�ned by the order in which they

occur: if I1; I2,...and I
0

1; I
0

2;...are the instruction cycles of C and Cp respectively

(in the order in which they appear there), then Ii and I0

i
correspond to each

other. By I0; I
0

0 we indicate the initial state. We say that I0; I
0

0 formalise the

\result" of \no computation step". In particular we will show below that Ii and

I0

i
are instruction cycles for the same instruction.

Result Locations. The simplicity of the DLX instruction set makes it

easy to localize, uniformly for a few classes of instructions, where and when the

result of an instruction belonging to a class becomes visible in a DLX=DLXp{

computation, namely in certain registers or memory locations. The pair < reg,

PC > is de�ned to be a result location for each instruction instr. The other result

locations for instr are determined by table 1.15 We assume dest (instr) = R31

in case instr 2 JLINK. reg (fstop (instr)) + ival (instr) is supposed to be a

memory address if instr 2 LOAD [ STORE.

The result of instr is given by the values f(a) assigned to the result locations

<f, a> for instr through the execution of instr. In DLX{computations it can

be read o� from the �nal state of the inspected instruction cycle for instr. In

DLXp{computations the result of (an occurrence of) instr is smeared over the

whole instruction cycle of instr and must be collected from di�erent pipe stages,

depending on the instruction type. Table 1 de�nes which result is collected after

which pipe stage16. This completes the de�nition of the result of the execution of

occurrences of instr. The result of instr is also called the result of the instruction

15 In DLX every instruction has only one result proper and this result is written at
the end of the instruction's execution.

16 In this way we provide a simple explicit and local de�nition of the global and implicit

data and time abstraction functions which are introduced in [WC95] to "collect dif-
ferent pieces of the pipelined state stream at di�erent times and package them into

a state record to appear in the non{pipelined state stream at a particular time".

[W90] could make successful use of the orthogonality of data and temporal abstrac-

tion functions in his hierarchical approach to microprogrammed (non pipelined) mi-

croprocessor veri�cation. When pipelining is present these two abstractions are not

orthogonal any more. [WC95] de�ne an new abstraction function in order "to pre-

serve the illusion that instructions execute sequentially in the architectural model

even though the pipelined implementation performs operations in parallel". By us-

ing the notion of result locations de�ned here, together with the notion of relevant
locations de�ned below, we reduce the complexity of such an abstraction function

and boil it down to the consideration of local features which are familiar from the

design practice.



cycle of (the given occurrence of) instr. For notational convenience, the result of

a computation is de�ned as the sequence of the results of its instruction cycles.

Result Location Updated by instr in to be collected after

the end of the pipe stage

< reg, dest (instr) > ALU [ SET [ LOAD WB(instr)

[JLINK [ fMOV S2Ig

< reg, IAR> fTRAP; MOV I2Sg EX(instr)

< mem, arg> STORE MEM(instr)

< reg, PC> JUMP [BRANCH EX(instr)
62 JUMP [BRANCH IF(instr)

Table 1. Result locations and their collection time. arg is an abbreviation for the value

of reg (fstop (instr)) + ival (instr) at the moment of fetching instr in DLX.

Used Locations and Hazards. Given an instruction cycle for I in a DLXp

computation, denote by I
1;2;3

< I0 that an instruction cycle for I0 is starting

1,2 or 3 steps after the one for I. Hazards can arise if I
1;2;3

< I0 and I0 uses

a result of I. Table 2 de�nes what is \used" by an instr in a run, namely|

besides static information like the one encoded in instr and accessed using the

functions opcode, nthop, dest, iop, ival|the content of operand registers in the

register �le, of PC, of memory locations and of the interrupt address register

IAR. The table also de�nes the critical pipe stage during which the machine

needs the correct value of that location. A simple analysis of the DLXp{rules

(see the de�nition of Irrelev 1,2 below) shows that conicts can arise in two

ways, namely a) if I0 uses, as one of its operands, the content of the destination

register of a preceding instruction I in the pipe, b) if I0 enters in the pipe shortly

after a jump or branch instruction. For the analysis of these data and control

hazards we distinguish whether or not the data dependence concerns a jump or

branch instruction.

De�nition. I' is data dependent on I i� I
1;2;3

< I0
and one of (i), (ii) holds.

(i) dest (I) 2 f fstop (I'), scdop (I') g and I0 62 JUMP [ BRANCH,

(ii) dest (I) = fstop (I') and I0 2 JUMP [ BRANCH.

A DLXp computation is data hazard free if it contains no occurrence of an

instruction which is in the pipe together with an occurrence of an instruction on

which it is data dependent.

When a jump or branch instruction I is fetched, the two instruction cycles

starting 1 and 2 steps later generate results which would spoil the continuation of

the computation once the jump has been executed (after the stage EX(I) which

updates PC to its correct value). In order to separate the correctness proof

for the parallelization of DLX from the concern about such control hazards, we

assume in this section that in the transformationP p of P the compiler places two



empty instructions (formalized by the value undef) after each jump or branch

instruction occurring in the DLX-program P ; we stipulate that these empty

instructions do not start an instruction cycle. Without loss of generality we

assume that the empty instructions are put into new locations which are linked

by the extended next function to the old locations in the standard way.

Letting the \compiler" avoid control conicts by arranging the instructions

of P into P p{code, we have to work with a slightly extended PC{preservation

rule. When a jump or branch instruction I is fetched at address l = reg (PC),

PC is updated to l' = next (l) which in P p is the address of undef. But in the

EX(I){stage the new value of PC must be computed on the basis of the value

of next (next (l')), i.e. the value of next (l) for the DLX{program P . Therefore

PC1 has to store this value when PC|in case a jump or branch instruction

has been fetched| contains the address of the empty instruction. Therefore the

PC{preservation rule in DLXp is PC1  next (next (PC )) .

DLXpCorrectness Theorem. Let P be an arbitrary DLX{program, P p

its transformation obtained by inserting two empty instructions after each oc-

currence of a jump or branch instruction. Let C be the computation of DLX

started with program P and Cp
the corresponding computation of DLXp

started

with P p
. If Cp

is data hazard free, then C and Cp
have the same result.

Proof . The decomposition of DLX=DLXP {computations into instruction cy-

cles allows us to prove the theorem instructionwise, using an induction over the

given DLX{computation. For the inductive step we need a stronger inductive

hypothesis than what is stated in the theorem. For its formulation we introduce

the notion of relevant locations which allows us to de�ne locally the relation

between sequential states and their pipelined counterparts, avoiding the ushing

technique used in [BD94] and [Cy95].

DLXp{Lemma. Let P , P p
, C, Cp

be as in the DLXp
Correctness Theorem.

For n � 0 let ICn, IC
p

n
be the n-th instruction cycle in C, Cp

respectively. a)

If Cp
is data hazard free, then ICn; ICp

n
are instruction cycles for the same

(occurrence of a) DLX{instruction instr and start with the same values for the

relevant locations used by instr. b) If IC; ICp
are instruction cycles for instr

in C, Cp
respectively which start with the same values for the relevant locations

used by instr and if instr is not data dependent on any instruction in the pipe,

then IC; ICp
compute the same result.

A location l used by instr is called relevant except in the following two cases:

Irrelev 1. l = < reg; IAR > and instr = MOVS2I enters the pipe 1, 2 or

3 stages after an occurrence of MOVI2S or of TRAP; 17

Irrelev 2. l = < mem; arg > and instr 2 LOAD enters the pipe 1, 2, or 3

stages after an occurrence of a STORE instruction for the same value arg.18

17 No conict can arise from using < reg; IAR > because MOVS2I, the only instruction

which uses IAR, can never be in conict with any preceding instruction. If I writes
into IAR, then I 2 fTRAP;MOV I2Sg and I writes into IAR in its third pipe

stage; therefore if I
1;2;3

< I 0, then I has already written into IAR when I 0 uses it.
18 No conict can arise from using a memory location because load instructions|the



The projection of relevant and of result locations, out of sequences of com-

putation steps of the pipelined processor, represents the state information which

characterizes the sequential execution of the instruction under investigation. As

we will see below it is easily shown to be semantically correct in case no po-

tential conict does occur.19 Our de�nition of relevance will be re�ned in the

subsequent upgraded machines by admitting as additional irrelevant locations

all those where in a hazardous situation the re�ned architecture will take care of

providing the right values for them when needed. In this way we make it explicit

where and how the compiler assumptions can be weakened if the hardware is

strenghthened (to solve a given type of conicts). This illustrates the potential of

ASM modelling to deal with hardware/software co-design problems in a rigorous

but nevertheless simple and transparent way20.

The lemma clearly implies the theorem. The proof of the lemma is by in-

duction on n. For n = 0 the claim holds by the assumption that C and Cp

correspond to each other and therefore are initialized with the same static func-

tions and with the same dynamic functions reg and mem. In the induction step,

by inductive hypothesis, for each i � n, the i-th instruction cycle IC
p

i
in Cp

starts with the same values for the relevant locations used by instr i as does the

i-th instruction cycle ICi in C and they both compute the same result. Therefore

ICn+1 and IC
p

n+1 are instruction cycles for the same instruction instr and start

with the same values for the relevant locations used by that instruction. Due to

the absence of stalls, the n + 1-th instruction cycle in Cp starts after the �rst

step of ICp

n
in case the instruction instrn is neither a branch instruction with

only ones which use memory locations|can never be in conict with preceding

store instructions|the only ones which write into memory locations. Indeed if I 2

STORE and I 0
2 LOAD, then I updates its result location < mem, reg (fstop (I))

+ ival (I)> in its fourth pipe stage and I 0 reads the value of the location < mem,

reg (fstop (I)) + ival (I)> in its fourth pipe stage too. Therefore if I
1;2;3

< I 0 and
I 0 loads the value of the result location of I as updated by I, then I has already

updated this result location when I 0 loads from there. We remind the reader that

DLX does not support self-modifying code.
19 Our localization constitutes a di�erent way to separate the two concerns which are

dealt with in [Taku95:pg.1] by splitting the correctness proof into two independent

steps, namely a) showing "that each architectural instruction is implemented cor-
rectly by the sequential execution of its pipeline states", and b) showing that "under

certain constraints from the actual architecture, no conicts can occur between the

simultaneously executed instructions". A similar separation, into the concern about

the correct functionality and the concern about the correct processing of instructions

by the pipelining, is suggested also in [Taku93, AL95].
20 [TaKu95] separate the hardware part EBM from the software constraints SW Constr

for their contribution to imply the pipelining correctness property. The correctness

proof can then be split into two steps, namely a) EBM implements each instruc-

tion correctly by the sequential execution of its pipelined stages, b) the software
constraints SW Constr guarantee that in EBM no conicts can occur between any

simultaneously executed instructions. Our stepwise re�nements of (ir)relevant loca-

tions make the hw/sw-interplay between EBM and SW Constr directly visible.



Location Used by instr in Critically in stage

ALU [ SET[

<reg, nthop> BRANCH [ fMOV I2Sg EX(instr)

JUMP-fTRAPg

LOAD [ STORE MEM(instr)

< reg, IAR> fMOV S2Ig EX(instr)

< mem, arg> LOAD MEM(instr)

< reg, PC> JUMP [BRANCH EX(instr)
62 JUMP [BRANCH IF(instr)

Table 2. Critical stages for usage of locations.

true branching condition nor a jump; otherwise the n+1{th instruction cycle in

Cp starts after the third step of ICp

n
due to the following Jump Lemma (which

is easily proved by induction on the number of fetched jumps).

Jump Lemma. If a jump or branch instruction I is fetched in a DLXp
{

computation, then the following two fetched instructions are empty and at stage

ID(I) the register PC1 is updated by the correct value to be used for the compu-

tation of the possible new PC{value in stage EX(I).

Since the other result locations depend on the instruction type we are led

to a natural case distinction. For each case it is routine to show that through

corresponding updates in IC and ICp, the same value is computed for the result

location. (The details are carried out in [BM96]).

4 Data hazards for non jump/branch instructions

In this section we enrich the architecture so that it can handle data hazards

for non jump or branch instructions freeing the compiler from its work to avoid

these conicts; we show how one can weaken the data hazard freeness assump-

tion in the DLXpcorrectness theorem and guarantee nevertheless the correctness

of the architecture by enriching the rules with three standard features, namely

the forwarding technique, new hardware links coming with appropriate addi-

tional control logic (multiplexers), and stalling. Technically speaking we re�ne

the DLXp machine to a machineDLXdata which is shown to work correctly also

for the execution of non jump or branch instructions I0 with data dependence

on a previous instruction I in the pipe, i.e. such that condition (i) holds:

(i) I
1;2;3

< I0
^ (dest (I) = fstop (I0) _ dest (I) = scdop (I0))

^ I 0 62 JUMP [ BRANCH

InDLX no write after write hazard can occur, because writing is allowed only

in one pipe stage, namelyWB, and because together with any stalled instruction



every later instruction in the pipe is also stalled. DLX has also no write after

read hazard because the read stage, namely ID, precedes the write stage.

We will specify the rule re�nements piecemeal, following the case distinctions

whether the data hazard to be handled involves a memory access or not and

whether the distance between the data dependent instructions in the pipe is 1,

2 or 3. This case analysis will justify the correctness of the re�ned architecture

and therefore establish the following theorem.

DLXdata Correctness Theorem. Let C be the computation of DLX started

with program P and Cdata
the corresponding computation of DLXdata

started

with P p
. Assume that in Cdata

no occurrence of a jump or branch instruction

is in the pipe together with an occurrence of an instruction on which it is data

dependent. Then C and Cdata
compute the same result.

Proof method.We de�ne DLXdata by incrementingDLXp , technically speak-

ing as a conservative extension of DLXp, so that whenever an instruction I 0

without data dependence to any previous instruction I satisfying (i) occurs in

the pipe, DLXdata computes I 0 the same way as DLXp does. This conservativ-

ity of the re�nement allows us to prove the correctness of DLXdata by a case

analysis in which instructions without data dependency in the pipe are dealt

with by reusing the DLXp
{Lemma whereas the remaining instructions are dealt

with by rule re�nements corresponding to the cases under analysis.

Since the value of any result location di�erent from < reg; PC > is deter-

mined by the values of the arguments which are used in stage EX or MEM, it

su�ces to locally modify the relevant DLXp{rules in such a way that even in

the case of data dependence the correct arguments are provided. One can then

weaken the assumption in the DLXdata{correctness statement below that cor-

responding instruction cycles in DLXp and DLXdata start with the same values

of the relevant locations used by their instruction; namely we take the hazardous

locations out of the set of the relevant ones (exactly because in DLXdata they

are taken care of by the architecture). This is a typical example how we use con-

servative re�nements together with the localization or projection technique to

mimic the way the computer architect proceeds when he enriches the processor.

Proof. As in the preceding section it su�ces to prove the following lemma.

DLXdata{Lemma. Let P , P p
, C, Cp

, Cdata
, ICn be as in the DLXp

{

Lemma and in the theorem and let ICdata

n
be the n-th instruction cycle in Cdata

.

a) If Cdata
is free of data hazards for jump or branch instructions, then ICn and

ICdata

n
are instruction cycles for the same DLX{instruction I0

and start with

the same values for the relevant locations used by I'.

Let IC, ICp
, ICdata

be instruction cycles for any I0
in C, Cp

, Cdata
respectively

which start with the same values for the relevant locations used by I'. Then the

following two properties hold:

b) If I0
is not data dependent on any I in the pipe, then ICdata

and ICp
, and

therefore also IC, compute the same result.

c) If I 0 62 JUMP [ BRANCH is data dependent on some I
1;2;3

< I0
, then ICdata

and IC compute the same result.



The DLXdata
{Lemma is proved by induction on the number n of instruction

cycles. For n = 0 the claim is satis�ed by the assumption that C;Cp and C;Cdata

correspond to each other. The inductive step for a) is proved in the same way

as shown for the DLXp
{Lemma; the Jump Lemma is true also for DLXdata

because the same program modi�cation P p of P is used for Cdata as for Cp.

For b) let I0 be data independent of any I which precedes it in the pipe. Then

it is easily checked that for each DLXdata{rule which is applied in ICdata for the

execution of (this occurrence of) I', in any of its �ve pipe stages, the branch is

taken which constitutes the DLXp{part of that rule. Since by assumption ICp

and ICdata start with the same values for the relevant locations used by I', the

e�ect of these DLXdata{rules applications to I0 in Cdata is the same as that of

the DLXp{rules in ICp and in particular the values of the result locations of I0

computed in ICp and ICdata coincide. From the DLXp
{Lemma it follows that

also IC and ICdata compute the same result.

For c) assume we have instructions I, I0 in Cdata satisfying (i). By the as-

sumption on jump/branch instructions we know that the following holds: a) I 2

ALU [ SET [ LOAD [ JLINK [fMOVS2Ig and

b) I' 6= fMOVS2Ig, i.e. I' 2 ALU [ SET [ LOAD [ STORE [fMOVI2Sg. The

reason is that only in these cases, dest (I), fstop (I'), scdop (I') respectively are

de�ned (see table 3 and remember that dest (I) = R31 for I 2 JLINK). Therefore

it is natural to distinguish three cases depending on whether the data hazard

involves a memory access or not. We distinguish two subcases depending on the

distance between data dependent instructions in the pipe. For each case we are

going to show that the values of the result locations of I0 in IC are the same

as the ones produced by executing I0 through the re�ned rules in ICdata. Let

MEM = LOAD[STORE and REG = INSTRUCTION � MEM . In going

through these cases we explain also the required re�nement of DLXp{rules to

DLXdata{rules (which are fully spelled out in the appendix).

function instructions

dest (instr) instr 2 ALU [ SET [ LOAD [ JLINK

[ fMOV S2Ig

fstop (instr) instr 2 ALU [ SET [MEM [ JLINK

[ fMOV I2Sg [BRANCH [ PLAINJ

scdop (instr) instr 2 ALU [ SET [ STORE

Table 3. Domain of de�nition of dest, fstop, scdop.

4.1 Case I 2 REG

In this case it follows from a) that I 2 ALU [ SET [ JLINK [ fMOV S2Ig.

dest (I) receives its correct value, to be used by I0, when it is updated in the



WB{stage of I by the value in C1; the latter has been copied in the MEM{stage

of I from C where it has appeared in the EX{stage of I (as the result of an

ALU [ SET{operation or as content of PC1 or of IAR). If I0 enters the pipe

3 or 2 steps after I, then the ID{stage of I0|in which the operands of I0 are

read|overlaps with the WB{stage or with the MEM{stage of I during which

the expected operand value is available in C1 or C respectively.

In case I0 enters the pipe one step after I, the expected operand value is

computed during the ID{stage of I0 and is available in the EX{stage of I0 but

not before. As a consequence the data hazard can be resolved in those two cases

by re�ning the ID{rules OPERAND (for the �rst case) and the EX{rules ALU,

MOVI2S, MEM ADDR, Pass B to MDR (for the second case).

Subcase I
2;3

< I 0. In this case the architecture can resolve the data hazard

between I0 and I by the following re�nement of the DLXp{OPERAND rule

which guarantees that in case of conict the correct value of A or B is taken

from C1 or C and not from nthop (I'):

if nthop (IR) 2fdest (IR3 ); dest (IR2 )g
then if nthop (IR) = dest (IR3 ) 6= dest (IR2 ) then nthReg  C1

if nthop (IR) = dest (IR2 ) then nthReg  C

else nthReg  nthop (IR)

In case of two successive updates of dest (I), the last one counts (due to the

sequentiality of the execution of P in DLX). In the sequel we will refer to the

above case distinction in the re�ned rule OPERAND by the following notation

(where nth 2 ffst ; scdg; fstReg = A; scdReg = B ):

C
0 =

8<
:
C1 if nthop (IR) = dest (IR3) and nthop (IR) 6= dest (IR2)

C if nthop (IR) = dest (IR2)

Reecting the strengthening of the architecture by the rule re�nement, in

the DLXdata
{Lemma we weaken the assumptions by enlarging the set of non

relevant I0{used locations by:

Irrelev 3. < reg; nthop(I0) > such that I0 62 JUMP [ BRANCH and for

some I
3;2

< I0 with I 2 REG holds nthop (I') = dest (I).

Therefore the DLXdata
OPERAND rule guarantes that the correct argu-

ments for the EX{or MEM{stage rules of I0 are loaded into A, B in both cases,

a) when I0 has no data dependency from any instruction in the pipe and b) in

the case of data dependence on I 2 REG ^ I
3;2

< I0. The price for this hazard

resolution is a direct link between the register �le{exits A, B and C, C1. For

the case I
3

< I 0 our solution avoids the introduction of two �le accesses (one for

writing followed by one for reading [HP90]) per clock cycle.

Subcase I
1

< I0. If I0 immediately follows I in the pipe, then the I0{operand

value, to be computed by I, comes out of the ALU and goes into C at the end

of the EX{stage of I. Thus by forwarding the ALU{result as next ALU{input



directly without passing through C and A, B, the ALU is enabled to compute

the EX{stage of I0 with the correct arguments.

The formalization of this forwarding technique consists in a re�nement of

the EX{rules for the cases with can arise here for I', namely I0 2 ALU [ SET,

I0 2 MEM, I 0 = MOV I2S. In each case we add to the corresponding EX{

rule of DLXp a clause which in the data hazard case provides the argument C

instead of A or B respectively. This is at the expense of introducing a direct

link between C and both ALU ports (for I0 2 ALU [ SET) and IAR (for I0

2 = MOV I2S) and MAR and SMDR (for I0 2 MEM ) together with some

control logic (multiplexers) for selecting the forwarded value as the ALU input

rather than the value from the register �le. For example for I0 2 MEM we

obtain the following rule re�nements (both rules will be furthermore re�ned by

an additional clause below):

MEM ADDR

if opcode (IR1 ) 2 LOAD [ STORE
thenif fstop (IR1 ) = dest (IR2 )

then MAR  valfst + ival (IR1 )

else MAR  A+ ival (IR1 )

Pass B to SMDR

if opcode (IR1 ) 2 STORE
thenif scdop (IR1 ) = dest (IR2 )

then SMDR  valscd
else SMDR  B

where valnth =

(
C if nthop (IR1) = dest (IR2)

nthReg otherwise

and nth 2 ffst ; scdg; fstReg = A; scdReg = B :

Similarly one proceeds for the re�nements of the rules ALU and MOVI2S,

see the DLXdata appendix. Since the re�nement of these EX{rules solves the

data conict under study, we add the following non relevant I0{used locations:

Irrelev 4. < reg; nthop(I0) > such that for some I
1

< I0 with I 2 REG one

of the following holds: a) opcode (I') 2 ALU [ SET, iop (opcode (I')) = true,

dest (I) = fstop (I'), nth = fst;

b) opcode (I') 2 ALU [ SET, iop (opcode (I')) = false, dest (I) = nthop (I');

c) opcode (I') 2 MEM [ fMOV I2Sg, dest (I) = fstop (I'), nth = fst;

d) opcode (I') 2 STORE, dest (I) = scdop (I'), nth = scd.

Therefore the re�ned EX{rules of DLXdata provide the correct arguments

for the EX{stage rules of I0 in both cases, through A, B when I0 has no data

dependency on any instruction in the pipe, and through the forwarded freshly

computed I{result in the data dependency case I 2 REG and I
1

< I0.

4.2 Case I 2 MEM and I0 2 REG

I 2 MEM, I 0 2 REG and (i), (a), (b) above yield I 2 LOAD and I' 2 ALU [

SET [ fMOVI2Sg. The value val loaded by an instruction I is available only at

the end of I's MEM{stage, namely in LMDR. Therefore non{MEM{instructions

I0 which enter the pipe 3 or 2 steps later than I and use val as operand, can grep

it from LMDR in their ID or EX{stage respectively. As for the case I 2 REG,

it su�ces to re�ne the rule OPERAND and the relevant EX{stage rules (here



ALU andMOVI2S) furthermore. If however I0 enters the pipe immediately after

I, then the pipeline has to be stopped for one stage, starting at the latest just

before the EX{stage of I0, in such a way that after the pipeline takes o� again,

I 0 can grep from LMDR the value I meantime has loaded there.

Subcase I
3;2

< I 0. For the re�nement of the OPERAND{rule, making use of our

abbreviated notation above it su�ces to re�ne C0 by adding the case of data

dependency of the ante{ante{preceding instruction:

C 0 =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

C1 if nthop (IR) = dest (IR3) last modification in

and nthop (IR) 6= dest (IR2) ante � ante � preceding

and opcode (IR3) 62 LOAD not load instr

LMDR if nthop (IR) = dest (IR3) last modification in

and nthop (IR) 6= dest (IR2) ante � ante � preceding

and opcode (IR3) 2 LOAD load instr

C if nthop (IR) = dest (IR2) last modification in

ante� preceding instr

where nth 2 f fst, scd g, fstReg = A, scdReg= B, LMDR = opcode(IR3) (LMDR) .

Similarly an additional clause is introduced in the preceding re�nement for the

rules ALU, MOVI2S for which we re�ne the de�nition of valnth as follows (see

the DLXdata appendix for details):

valnth =

8>>>>><
>>>>>:

C if nthop (IR1) = dest (IR2)

LMDR if nthop (IR1) = dest (IR3) and opcode (IR3) 2 LOAD

and nthop (IR1) 6= dest (IR2)

nthReg otherwise

where nth 2 f fst, scd g, fstReg = A, scdReg= B.

This further re�nement of the rules OPERAND, ALU, MOVI2S comes to-

gether with adding the following nonrelevant locations.

Irrelev 5. < reg; nthop(I0) > such that for some I 2 LOAD with I0 2 REG �

(JUMP [BRANCH) and nthop (I') = dest (I) one of the following holds:

a) I
3

< I0; b) I
2

< I0, iop (opcode (I')) = true, nth = fst; c) I
2

< I0, iop (opcode

(I')) = false.

Therefore the furthermore re�ned ID{rule OPERAND of DLXdata guarantees

that the correct arguments for the EX{or MEM{stages rules for I0 are loaded

into A, B in case of non data dependency of I0, but also in the data dependency

case with an I
3

< I0, I0 2 REG, I 2 LOAD; the re�ned EX{rules ALU, MOVI2S

provide the correct arguments for the EX{stage rule applications through A, B

(in case of no data conict) or through the forwarded value freshly loaded by I

in case of data dependence on I
2

< I 0, I0 2 REG, I 2 LOAD.



Subcase I
1

< I0. In this case the pipelined execution of I0 (and therefore also

of later instructions) has to be stopped at the latest just before the EX{stage

of I0, until the value to be loaded by I becomes available, namely in LMDR. It

is common practice to add a pipeline interlock which detects this situation and

stops the pipelining until the situation has been resolved. We formalize this by

introducing a new function load risk, de�ned by:

opcode (IR2) 2 LOAD and reg (IR1) 2 REG � (JUMP [BRANCH)

and dest (IR2) 2 ffstop (IR1) , scdop (IR1)g.

By putting the rules of stage EX, ID and IF under the additional guard

:load risk we obtain that in case of load risk they are not executed whereas the

MEM{and WB{rules are executed. By adding to the FETCH{rule the clause

if load risk then IR2  undef, we obtain that immediately after the execution

of this FETCH{rule the condition load risk will be false (because opcode (IR2)

2 LOAD is false by opcode (undef) = undef) and the full pipelined execution

will be resumed. At this point I0 = reg (IR1) still holds but I has been copied

by Preserv IR2 from IR2 to IR3; therefore the subcase of data dependency

considered here is reduced to the previous subcase and resolved by the re�ned

EX{rules in DLXdata.

By the introduction of the load risk guard to the rules in IF [ ID [ EX

and of the new load risk rule, the architecture takes care of providing the right

arguments for the execution of any I0 2 REG � (JUMP [BRANCH) which

is data dependent on a load instruction I
1

< I0, without changing the behavior

for instructions without data conict. This yields the following additional non

relevant location:

Irrelev 6. < reg; nthop(I0) > such that I0 2 REG � (JUMP [ BRANCH)

and some I 2 LOAD satis�es I
1

< I0^ nthop (I') = dest (I).

4.3 Case I, I0 2 MEM

Subcase I
2;3

< I0. The data conict can be resolved by using the OPERAND{

rule or the once more re�ned EX{stage rules in order to provide the value loaded

by I as operand for I0. The OPERAND rule as re�ned in the previous case

already resolves the conict if I
3

< I0. If I
2

< I0, the two EX{rules for the

MEM{instruction I0 are MEM ADDR and Pass B to SMDR; their re�nement is

obtained by including into the guard, for the forwarding case, as new disjunct

fstop (IR1) = dest (IR3) and opcode (IR3) 2 LOAD for MEM ADDR and

scdop (IR1) = dest (IR3) and opcode (IR3) 2 LOAD for Pass B to MDR. This

yields the two �nal EX{stage rules of DLXdata shown in the appendix. This

re�nement implies introducing direct links between LMDR and MAR, SMDR

and the following new non relevant locations:

Irrelev 7. a) < reg; nthop(I0) > for I0 2 MEM and some I 2 LOAD satisfying

I
3

< I 0 and nthop (I') = dest (I);



b) < reg; fstop(I0) > for I0 2 MEM and some I 2 LOAD satisfying I
2

< I 0 and

fstop (I') = dest (I);

c) < reg; scdop(I0) > for I0 2 STORE and some I 2 LOAD satisfying I
2

< I 0

and scdop (I') = dest (I).

Subcase I
1

< I0. The MEM{instruction I0 can use the value loaded by the

preceding instruction I in two ways, as datum to be stored (case a) or as address

for the load or store operation (case b).

Case a: dest (I) = scdop (I'). In this case I0 2 STORE and the value loaded

by I is needed by I0 in its MEM{stage|during which it is available in LMDR.

Therefore this case can be handled again by forwarding, formalized through

re�ning the STORE{rule (see the DLXdata{appendix) at the expense of a direct

link between LMDR and the memory input port. Since the re�ned rule resolves

the data conict for the case under study, the claim of the lemma follws if we

add the following non relevant locations:

Irrelev 8. < reg; scdop(I0) > for I0 2 STORE and some I 2 LOAD satisfying

I
1

< I0 and scdop (I') = dest (I).

Case b: dest (I) = fstop (I'). In this case I0 needs its �rst operand during

its EX{stage when the memory address is computed. But dest (I) is loaded into

LMDR only during the MEM{stage of I so that the pipeline must be interrupted

again for one clock cycle, namely we have to uphold the execution of the rules

for the EX{stage of I0 and therefore also for the two preceding stages ID and IF.

This can be formalized by re�ning the guard load risk through the additional

case dest (IR2) = fstop (IR1) and reg (IR1) 2 MEM. Thereby the modi�ed

rules resolve the data conict in this case, establishing the claim of the lemma

with the following additional non relevant locations:

Irrelev 9. < reg; fstop(I0) > for I0 2 MEM and some I 2 LOAD satisfying

I
1

< I0 and fstop (I') = dest (I).

5 Handling control hazards

We extend now DLXdata to a machine DLXpipe which|as we will show|

handles also control hazards correctly without help from the compiler.

Control hazards are those created by jump instructions (under which we

subsume also branch instructions). They present two problems, namely

a) to guarantee that after fetching a jump instruction I', the next instruction

which will be fetched is the one I0 requires to jump to, i.e. the instruction

whose address is the value of PC as updated through the execution of I' ,

b) the data dependence of a jump instruction on a preceding instruction in the

pipe.

As part of our divide and conquer approach we have postponed these two prob-

lems up to now by a) assuming, for the correctness proofs, that DLXdata{

computations are always started with the \compiled" version P p of P into which

two empty instructions are inserted after each jump instruction in P (allowing



us to use the Jump Lemma), and by b) assuming that there are no data depen-

dent jump instructions in DLXdata{computations. In this section we transform

DLXdata �rst to a model DLXctrl with the same functionality as DLXdata

but which does not need any more the compilation of empty instructions after

jumps. Then we re�ne DLXctrl to DLXpipe and prove that it handles also data

dependent jump instructions correctly.

5.1 Computing jump addresses in the ID phase

The problem here is to guarantee at run time that when a JUMP or BRANCH

instruction I is fetched, no other instruction I0 is fetched before the computation

of the new value of PC, to be determined by I, is done. Since after fetching I

it needs at least one clock cycle for I to compute the new value for PC [HP90],

fetching has to be stopped for at least one pipe stage. One can avoid to stall

the pipe for a second pipe stage by a special decoding which permits to detect

jump instructions immediately after the IF{stage, combined with anticipating

the computation of the new PC{value in the ID{stage (instead of the EX{stage

used in DLXdata). As e�ect we will obtain that in DLXctrl , one pipe stage after

the IF{stage of a jump instruction I, the value of PC is already the correct PC

result value of I.

Formally we replace the EX{rules JUMP, BRANCH and the PC{updating

part of TRAP in DLXdata by new ID{rules which are obtained by substitut-

ing IR1, PC1, A by IR, PC, fstop (IR) respectively. The IAR{updating part

TRAPIAR ofTRAP and the LINK{rule remain in EX{stage, because they update

result locations di�erent from PC whose computation needs not to be changed

in going to DLXctrl . The zero{test in BRANCH{instructions can be done with-

out using the ALU by relying upon the usual standard output of registers. (See

below for one more addition to the BRANCH{rule.)

The FETCH{rule of DLXdata is re�ned by introducing an additional guard

pc risk 21 which prevents IR and PC to be updated in case a jump instruction,

fetched one clock cycle ago, triggers the correct update of PC through one of

the new ID{stage rules JUMP, BRANCH or TRAPPC . In this case IR is set

to undef so that in the next clock cycle pc risk will be false and the FETCH{

rule will have again the same e�ect in DLXdata and in DLXctrl. We de�ne

pc risk as opcode (IR) 2 JUMP [ BRANCH and delete the guard :jumps in

the FETCH{rule. Since only the rules TRAPIAR and LINK in DLXctrl still use

PC1, we can replace the DLXdata{rule for preservation of PC by its else-branch

PC1  PC. For the complete rule set of DLXctrl see the appendix.

The DLXctrl Correctness Theorem is the same as for DLXdata with

Cdata replaced by the corresponding computation Cctrl of P by DLXctrl . The

proof is by reduction to the DLXdata correctness theorem and relies upon

the fact that corresponding applications of homonymous rules in DLXdata and

DLXctrl compute the same result. (We consider the update guarded by :jumps

21 Using this guard (and similar guards load-update-risk etc. below) is similar to the

introduction of SW-constraints in [TaKu95].



in the FETCH{rule of DLXdata as homonymous to the corresponding new up-

date in the FETCH{rule of DLXctrl .) The proof follows by induction on the

lenght n of C from the following analogue of the DLXdata{Lemma.

DLXctrl{Lemma. Let P, P p
, C, Cdata

, ICn; IC
data

n
be as in the DLXdata

{

Lemma and let ICctrl

n
be the nth instruction cycle in the computation Cctrl

of P

by DLXctrl
.

a) If Cctrl
(and therefore also Cdata

) is free of occurrences of jump or branch

instructions which are data dependent on any instruction in the pipe , then ICctrl

n

and ICdata

n
(and therefore also ICn) are instruction cycles for the same DLX{

instruction I and start with the same values for the relevant locations used by I.

Let IC, ICdata
, ICctrl

be instruction cycles for any I in C, Cdata
, Cctrl

resp.

which start with the same values for the relevant locations used by I. Then the

following two properties hold:

b) If I is not data dependent on any instruction in the pipe, then ICdata
and

ICctrl
compute the same result, namely the result of the computation of I in IC.

c) If I 62 JUMP [ BRANCH is data dependent on some I0
1;2;3

< I, then ICctrl

and ICdata
(and therefore IC) compute the same result.

Proof: The proof is by induction on n. For n=0 the claim holds because C and

Cdata, Cctrl are initialized correspondingly. For the inductive step of a) the proof

for ICctrl

n
and ICdata

n
goes along the same lines as for the DLXp

{Lemma.

For b) and c) we have only to show that ICdata and ICctrl compute the

same result. By the DLXdata
{Lemma we can then infer that this is the result

computed by IC in DLX. Since DLXctrl has the same rules as DLXdata except

for those which update the result location < reg; PC >, it su�ces to check that

ICctrl and ICdata compute the same value for < reg; PC >.

We distinguish two cases depending on whether the non empty instruction I

fetched at the beginning of ICctrl and ICdata is or is not in JUMP [ BRANCH.

Case 1. I 2 JUMP [ BRANCH

The Jump Lemma guarantees that I is followed in Cdata by two empty instruc-

tions and that PC1 is updated in the stage ID(I) by the correct value to be

used in the stage EX(I) for the computation of the new PC{value. As a result

of the execution of I in Cdata the new value to be computed for the register

PC is ready after the rules for the EX(I) pipe stage have been executed. This

value is the correct value because by assumption I is not data dependent on any

instruction in the pipe, therefore in stage ID(I) in ICdata the correct values are

loaded into A and B and then used in stage EX(I) together with reg (PC1) to

compute the new value by which PC is updated in this stage. The two empty

instructions which follow any jump or branch instruction in P p guarantee that

during the ID{stage of I, :jumps holds so that PC is again updated by next

(PC) and therefore IR is updated in stage ID(I) and EX(I) with undef (when

the FETCH rule is applicable at all), thus \stalling" the pipe for two stages.

In Cctrl the correct next PC{value is ready after the rules for the pipe stage



ID(I) have been executed; indeed the new JUMP{, TRAP{ and BRANCH{rules

update the register PC in stage ID(I) by the correct value, due to the assumption

that I is not data dependent on any instruction in the pipe. (Remember the

assumption made when de�ning P p that if l is the value of PC from where I

has been fetched, then the value of next (l) in DLX|which is used in DLXctrl

through PC as basis for the computation of the new value to which PC is then

updated in EX(I)|coincides in DLXdata with the value next (next (l')) where

l' = next (l) in DLXdata . Through PC1 this value is used in DLXdata as basis

for the computation of the same new value of PC).

TRAPIAR and the LINK rule are the only ones in DLXctrlwhich still use

PC1. Since theDLXctrl{computations start with P instead of P p, TRAPIAR and

LINK need the value to which PC was updated when I was fetched. Therefore

the simple copying rule PC1  PC in DLXctrl provides the correct value which

in DLXdata was provided by next (next (next(PC))).

The guard pc risk in the FETCH{rule prevents, in the case under consider-

ation, a possibly inconsistent update of PC by next (PC) and updates IR by

undef. This guarantees that except for copying undef into IRi, no rule is appli-

cable in ID(undef), EX(undef), MEM(undef), WB(undef).

Case 2. I 62 JUMP [ BRANCH

Since I is not empty, by the Jump Lemma in the two previous clock cycles no

jump instructions have been fetched in Cdata; therefore the register PC is cor-

rectly updated to next (PC) when I is fetched in Cdata (in which moment not

load risk is true). The same e�ect is obtained in Cctrl by applying the not pc risk

? IF{rule. (Since I 62 JUMP [ BRANCH , in this case we need not consider

the e�ect of the rules JUMP, BRANCH and TRAP.)

5.2 Data hazards for jump instructions

In this section we re�ne DLXctrl to our �nal model DLXpipe which takes care

also of jump instructions I0 2 JUMP [ BRANCH with data dependence|

namely dest (I) = fstop (I')|on an instruction I preceding I0 in the pipe by 1,

2 or 3 steps. From table 3 we know that in this case

I 2 ALU [ SET [ LOAD [ JLINK [ fMOVS2Ig.

We distinguish two cases depending on the distance between I and I0 in the

pipe and on whether I is a LOAD instruction or not. For distance 3 and for

distance 2 to a non{load instruction I, the forwarding technique can be applied;

distance 2 to a load{instruction I and distance 1 create a stall.

Case I
3

< I0 or (I
2

< I 0 and I 62 LOAD). If I0 is fetched 3 clock cycles later

that I, then it reads its �rst operand in its ID{stage when I is in its WB{stage

and has the new value for dest (I) available in C1 (if I 62 LOAD) or in LMDR (if

I 2 LOAD). Therefore it su�ces to forward this value|at the expense of direct



links between PC and C1, LMDR|in a re�nement of the two rules for JUMP

and BRANCH by the following additional clauses; for JUMP:

if fstop (IR) = dest (IR3 )

then if opcode (IR3 ) 62 LOAD then PC  C1

if opcode (IR3 ) 2 LOAD then PC  LMDR

For a short display of the jump rule we will abbreviate this as follows:

if fstop(IR) = dest(IR3 ) then PC  PC
0

PC 0 =

8<
:

C1 if opcode (IR3) 62 LOAD

LMDR if opcode (IR3) 2 LOAD

where LMDR = opcode(IR3 )(LMDR): In the BRANCH{rule we add the clause:

if fstop (IR) = dest (IR3 ) then if reg (PC 0) = 0
then PC  PC +PC ival(IR)

The same forwarding technique allow us to cope with the data hazard in

case I0 is fetched 2 steps after a non{load instruction I on which it depends. In

this case the expected new value of dest (I) can be forwarded from C for use in

JUMP and BRANCH which are therefore re�ned once more as follows:

BRANCH if not load risk

then if opcode (IR) 2 BRANCH

then if fstop (IR) 2 fdest (IR3 ); dest (IR2 )g

thenif reg (PC 0) = 0

then PC  PC +PC ival(IR)

else if reg (fstop (IR)) = 0

then PC  PC +PC ival (IR)

JUMP if not load risk

then if opcode (IR) 2 PLAINJ [ JLINK
thenif iop (opcode (IR)) = true

then PC  PC +PC ival (IR)

else if fstop (IR) 2fdest (IR3 ); dest (IR2 )g
then PC  PC 0

else PC  fstop (IR)

where PC 0 =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

C1 if fstop (IR) = dest (IR3) last modification in

and fstop (IR) 6= dest (IR2) ante� ante � preceding

and opcode (IR3) 62 LOAD not load instr

LMDR if nthop (IR) = dest (IR3) last modification in

and fstop (IR) 6= dest (IR2) ante� ante � preceding

and opcode (IR3) 2 LOAD load instr

C if fstop (IR) = dest (IR2) last modification in

ante � preceding instr



These re�ned rules guarantee that DLXctrl provides the correct argument

for the branching test and also the correct PC{value the machine has to jump to,

even in case of the data dependency considered here. This justi�es the claim for

the corresponding case in the DLXctrl{lemma below for which we can enlarge

the set of irrelevant locations as follows:

Irrelev 10. < reg; fstop(I0) > such that I0 2 JUMP [BRANCH and fstop

(I') = dest (I) for some I satisfying I
3

< I0 or (I
2

< I0
and I 62 LOAD).

Case (I
2

< I0 and I 2 LOAD) or (I
1

< I0 and I 62 LOAD). In this case

I0 needs its �rst operand in its ID{stage when I, in its MEM{or EX{stage, is

providing the expected new value in LMDR or C respectively. Therefore the

pipe has to be stopped for one clock cycle to prevent the ID{stage of I0 and the

preceding IF{stage from proceeding further. This can be done by putting the

IF{and ID{rules under an additional guard pc data risk: BOOL which formalizes

this case22, and by adding the new rule if pc data risk then IR1  undef. We

incorporate this additional rule into the re�ned FETCH{rule. We prove now

that this re�nement resolves the data hazard between I0 and I.

After I0 has been fetched, pc data risk is true. Therefore during the following

clock cycle, the rules for the pipe stage of I (MEM or EX respectively) and in

the �rst case also for the instruction preceding I in the pipe are executed, but

FETCH loads undef into IR1, keeping IR and PC unchanged, and none of the ID{

rules can �re; moreover IR2 is loaded with IR1|which in the case under study

is a non{load instruction. We show now that as a result of that, pc data risk

becomes false after one clock cycle: reg (IR1) = undef implies dest (reg (IR1)) =

undef 6= fstop (reg (IR)), so that the second or{condition of pc data risk is not

satis�ed; by IR2 62 LOAD also the �rst or{condition of pc data risk not satis�ed.

Therefore the pipeline restarts and the data dependency has developed into a

conict which has been dealt with already in the preceding case. This establishes

the corresponding case in the proof of the DLXctrl-lemma below for which we

enlarge the set of irrelevant locations as follows, anticipating already the next

subcase I
1

< I0 and I 2 LOAD:

Irrelev 11. < reg; fstop(I0) > such that I' 2 JUMP [ BRANCH and fstop

(I') = dest (I) for some I satisfying (I
2

< I0 and I 2 LOAD) or I
1

< I 0.

Case I
1

< I 0 and I 2 LOAD. In this case I0 has to wait two clock cycles

during which I can load the needed value. The pipelining is stopped in this case

22 i.e. pc data risk = opcode (IR) 2 BRANCH [ JUMP and [(fstop (IR) = dest (IR2)
and opcode (IR2) 2 LOAD) or fstop (IR) = dest (IR1) ]. Anticipating the next

subcase, we have formulated the condition fstop (IR) = dest (IR1) for both subcases,

namely reg (IR1) 62 LOAD or reg (IR1) 2 LOAD.



for two clock cycles during which pc data risk is true (�rst through its second

or{clause, then through its �rst clause.)

This concludes the upgrade DLXctrl of DLXpipe , see the appendix. We can

prove now our main theorem by induction over the given DLX{computation

using the following lemma and the DLXctrl{Correctness Theorem.

DLXpipe{Lemma. Let P, C, Cctrl
, ICn, IC

ctrl

n
be as in the DLXctrl

{

Lemma and let ICpipe
be the n{th instruction cycle in the computation Cpipe

of

P by DLXpipe
.

a) ICctrl

n
and ICpipe

n
(and therefore ICn) are instruction cycles for the same

DLX{instruction I' and start with the same values for the relevant locations

used by I'.

Let IC; ICctrl; ICpipe
be instruction cycles for any I in C, Cctrl; Cpipe

respec-

tively which start with the same values for the relevant locations used by I'. Then

the following two properties hold:

b) If I' is not data dependent on any I in the pipe or I0 62 JUMP [BRANCH

is data dependent on some I
1;2;3

< I 0
, then ICpipe

and ICctrl
(and therefore IC)

compute the same result.

c) If I 0 2 JUMP [BRANCH is data dependent on some I
1;2;3

< I0
, then ICpipe

and IC compute the same result.

Proof. The proof of the lemma is by induction on n. For n = 0 the claim follows

from the assumption that C, Cp, Cctrl are initialized correspondingly. For the

inductive step, a) is proved as in the DLXp{Lemma.

b) follows from the DLXctrl-Lemma and the conservativity of the extension

DLXpipe of DLXctrl ; namely the same branches are taken, in the rules of Cctrl

and of Cpipe, by all instructions I0 62 JUMP [ BRANCH which are data

dependent on some I
1;2;3

< I0 and also by instructions I0 which depend on no

other instruction in the pipe. This is the case because in re�ning DLXctrl to

DLXpipe , only the rules JUMP and BRANCH have been extended, and only for

a data dependence case, and because the additional guard pc data risk, which

has been introduced for the rules in IF and in ID, does concern only instructions

in JUMP [ BRANCH with a data dependence.

For c) we distinguish the three possible cases, namely that for some I, a)

I
3

< I0 or (I
2

< I0 and I 62 LOAD), b) (I
2

< I0 and I 2 LOAD) or (I
1

< I0 and

I 62 LOAD), c) I
1

< I0 and I 2 LOAD. For each case we have shown above that

the values of the result locations, as produced by executing I0 in ICpipe and IC

respectively, are the same; in fact as part of the explanation of the re�nement of

the DLXctrl{rules to the DLXpipe{rules we have proved that the data hazard

is resolved correctly by the DLXpipe{re�nement of the JUMP and BRANCH

rules (and the additional guard pc data risk for the rules in IF and ID) and that

the result of executing I0 in DLXpipe coincides with the result of executing I 0

in IC.



Conclusion. We have developed a practical method to handle aspects of mod-

ern processor design which are most susceptible to errors. Our method supports

modular design and analysis techniques and provides the possibility to pinpoint

design errors at an early stage. The models we de�ne are Abstract State Ma-

chines in the sense of Gurevich and therefore can be (implemented and) executed

using ASM interpreters, providing the possibility to use the models as prototypes

for simulation (see also the discussion of the falsi�ability property of ASM pro-

totypes in [Bo95]). Using ASMs is economical and quickly learnt: it requires no

special theoretical training and directly supports the designer's operational view

at the appropriate level of abstraction.

Our method is applicable to more complex processors than DLX, to more

advanced pipelining techniques than the basic ones discussed in this paper, and

to more sophisticated memory systems. Applications of the method become re-

ally interesting where mechanical tool oriented methods face intrinsic limitations

(see for example the \major bottleneck" for model checking techniques, identi-

�ed in [BD94] as the computational e�ciency of logical decision procedures).

We have given some hints indicating that the approach to hardware design and

analysis proposed in this paper and in [BoDC95] can also be turned into a prac-

tical framework which can be used by the computer architect to formulate and

analyse hardware/software co-design problems in a rigorous yet transparent way.
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A The sequential machine DLX

FETCH

if mode = FETCH

then IR mem (PC )
PC  next (PC )

mode := OPERAND

ALU if mode = ALU

then if iop (opcode) = true
then TEMP  ival

else TEMP  B

mode := ALU 0

OPERAND

if mode = OPERAND

thenA fstop B  scdop
mode := new mode

where new mode =

ALU ifopcode 2 ALU [ SET
IAR ifopcode 2 fMOVS2I ;MOVI2Sg

JUMPS ifopcode 2 JUMP [BRANCH

MEM ADDR ifopcode 2 LOAD
[ STORE

ALU'

if mode = ALU 0

thenC  opcode (A; TEMP)
mode :=WRITE BACK

WRITE BACK

if mode = WRITE BACK
thendest  C

mode := FETCH

MEM ADDR

if mode = MEM ADDR

thenMAR  A+ ival

if opcode 2 STORE
then mode := Pass B to MDR

else mode :=MEM ACC

Pass B to MDR

if mode = Pass B to MDR

thenMDR  B

mode :=MEM ACC

STORE

if mode = MEM ACC

^ opcode 2 STORE

thenmem (MAR) MDR

mode := FETCH

LOAD

if mode = MEM ACC ^ opcode 2 LOAD

thenMDR  mem (MAR)

mode := SUBWORD

SUBWORD

if mode = SUBWORD

thenC  opcode (MDR)

mode :=WRITE BACK

TRAP

if mode = JUMPS ^ opcode = TRAP
then IAR PC

PC  ival

mode := FETCH

BRANCH

if mode = JUMPS
^opcode 2 BRANCH

thenif reg (A) = 0

then PC  ival + PC

mode := FETCH

JUMP

if mode = JUMPS
and opcode 2 PLAINJ [ JLINK

thenif iop (opcode) = true

then PC  PC + ival

else PC  A

if opcode 2 PLAINJ

then mode := FETCH

else C  PC

mode :=WRITE BACK

MOVS2I

if mode = IAR ^ opcode =MOVS2I
thenC  IAR

mode :=WRITE BACK

MOVI2S

if mode = IAR ^ opcode = MOVI2S
then IAR A

mode := FETCH



B The parallel machine DLXp

IF Let jumps = opcode (IR1) 2 JUMP _ (opcode (IR1) 2 BRANCH ^ reg (A) = 0)

FETCH IR  meminstr (PC ); if :jumps then PC  next (PC )

ID Preserv IR

IR1  IR

Preserv PC

PC1  next (next (PC ))

OPERAND

A fstop;B  scdop

EX

ALU if opcode (IR1 ) 2 ALU [ SET

then if iop (opcode (IR1 )) = true

then C  opcode (IR1 ) (A; ival (IR1 ))

else C  opcode (IR1 ) (A; B)

Preserv IR1

IR2  IR1

MEM ADDR

if opcode (IR1 ) 2 LOAD [ STORE

then MAR  A+ ival (IR1 )

Pass B to MDR

if opcode (IR1 ) 2 STORE

then SMDR  B

MOVS2I

if opcode (IR1 ) =MOVS2I

then C  IAR

MOVI2S

if opcode (IR1 ) =MOVI2S

then IAR A

JUMP

if opcode (IR1 ) 2 PLAINJ [ JLINK

thenif iop (opcode (IR1 )) = true

then PC  ival (IR1 ) + PC1

else PC  A

TRAP

if opcode (IR1 ) = TRAP

then IAR PC1

PC  ival (IR1 )

BRANCH if opcode (IR1 ) 2 BRANCH

then if reg (A) = 0
then PC  PC1 + ival (IR1 )

LINK

if opcode (IR1 ) 2 JLINK

then C  PC1

MEM

STORE if opcode (IR2 ) 2 STORE

then mem (MAR) SMDR

LOAD if opcode (IR2 ) 2 LOAD

then LMDR  mem (MAR)

Preserv C C1  C Preserv IR2 IR3  IR2

WB WRITE BACK if opcode (IR3 ) 2 ALU [ SET [ fMOVS2I g [ JLINK

then dest (IR3 ) C1

if opcode (IR3 ) 2 LOAD

then dest (IR3 ) opcode (IR3 ) (LMDR)



C Data hazards handling machine DLXdata

IF

FETCH if not load risk

then IR meminstr (PC )
if:jumps then PC  next (PC )

else IR2  undef

jumps = opcode (IR1) 2 JUMP or (opcode (IR1) 2 BRANCH and reg (A) = 0)

load risk = opcode (IR2) 2 LOAD and

[(dest (IR2) 2 ffstop (IR1), scdop (IR1)g
or (dest (IR2) = fstop (IR1) and IR1 2 MEM)].

ID

Preserv IR

if not load risk

thenIR1  IR

Preserv PC

if not load risk

then PC1  next(next(PC ))

OPERAND

if not load risk

then if nthop (IR) 2

fdest (IR3 ); dest (IR2 )g
then nthReg  C 0

else nthReg  nthop (IR)

where C 0 =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

C1 if nthop (IR) = dest (IR3) last modification in

and nthop (IR) 6= dest (IR2) ante � ante � preceding
and opcode (IR3) 62 LOAD not load instr

LMDR if nthop (IR) = dest (IR3) last modification in

and nthop (IR) 6= dest (IR2) ante � ante � preceding

and opcode (IR3) 2 LOAD load instr

C if nthop (IR) = dest (IR2) last modification in

ante � preceding instr

and nth 2 f fst, scd g, fstReg = A, scdReg= B, LMDR = opcode(IR3) (LMDR).

EX

ALU

ifnot load risk and opcode (IR1 ) 2 ALU [ SET
then ifiop (opcode (IR1 )) = true

then if fstop (IR1 ) = dest (IR2 )

or [fstop (IR1 ) = dest (IR3 ) and opcode (IR3 ) 2 LOAD]

then C  opcode (IR1 ) (valfst; ival (IR1 ))

else C  opcode (IR1 ) (A; ival (IR1 ))

else if dest(IR2 ) 2 ffstop(IR1 ); scdop(IR1 )g

or [dest(IR3 ) 2 ffstop(IR1 ); scdop(IR1 )g

and opcode(IR3 )2 LOAD]

then C  opcode (IR1 ) (valfst ; valscd)

else C  opcode (IR1 ) (A; B)



where valnth =

8>>>>><
>>>>>:

C if nthop (IR1) = dest (IR2)

LMDR if nthop (IR1) = dest (IR3) and opcode (IR3) 2 LOAD

and nthop (IR1) 6= dest (IR2)

nthReg otherwise

MEM ADDR

if not load risk

then if opcode (IR1 ) 2 LOAD [ STORE
then if fstop(IR1 ) = dest(IR2 )

or [fstop(IR1 ) = dest(IR3 )

and opcode(IR3 ) 2 LOAD]
then MAR  valfst + ival (IR1 )

else MAR  A+ ival (IR1 )

Pass B to MDR

if not load risk and

opcode (IR1 ) 2 STORE
thenif scdop(IR1 ) = dest(IR2 )

or [scdop(IR1 ) = dest(IR3 )

^ opcode(IR3 )2 LOAD]
then SMDR  valscd
else SMDR  B

MOVI2S

if not load risk

then if opcode (IR1 ) =MOVI2S
thenif fstop (IR1 ) = dest (IR2 )

or [fstop (IR1 ) = dest (IR3 )

and opcode (IR3 ) 2 LOAD]
then IAR  valfst
else IAR  A

MOVS2I

if not load risk

then if opcode (IR1 ) = MOVS2I
then C  IAR

Preserv IR1 if not load risk then IR2  IR1

TRAP

if not load risk

then if opcode (IR1 ) = TRAP

then IAR  PC1
PC  ival (IR1 )

JUMP

if not load risk

then if opcode (IR1 ) 2 PLAINJ [ JLINK

then if iop (opcode (IR1 )) = true
then PC  ival (IR1 ) + PC1

else PC  A

LINK

if not load risk

then if opcode (IR1 ) 2 JLINK

then C  PC1

BRANCH

if not load risk

then if opcode (IR1 ) 2 BRANCH

then if reg (A) = 0
then PC  PC1 + ival (IR1 )

MEM

STORE

if opcode (IR2 ) 2 STORE

thenif opcode (IR3 ) 2 LOAD and dest (IR3 ) = scdop (IR2 )

then mem (MAR) (LMDR)
else mem (MAR) SMDR

LOAD

WRITE BACK

Preserv IR2

Preserv C

as in DLXp



D Machine DLXctrl precomputing control code

IF

FETCH if not load risk then if not pc risk

then IR  meminstr (PC )

PC  next (PC )
else IR  undef

else IR2  undef

where pc risk = opcode (IR) 2 JUMP [ BRANCH

load risk = as in DLXdata.

ID

Preserv PC if not load risk then PC1  PC

BRANCH

if not load risk

thenif opcode (IR) 2 BRANCH
then if reg (fstop (IR)) = 0

then PC  PC + ival (IR)

JUMP

if not load risk and

opcode (IR) 2 PLAINJ [ JLINK
then if iop (opcode (IR)) = true

then PC  PC + ival (IR)

else PC  fstop (IR)

TRAPPC

if not load risk

then if opcode (IR) = TRAP

then PC  ival (IR)

Preserv IR OPERAND as in DLX data

EX

TRAPIAR if not load risk

then if opcode (IR1 ) = TRAP
then IAR PC1

Other rules of group EX as in DLXdata.

MEM

STORE LOAD Preserv C Preserv IR2 as in DLXdata

WB

WRITE BACK as in DLXdata



E The fully pipelined machine DLXpipe

IF

FETCH if not load risk

then if not pc data risk
then if not pc risk

then IR  meminstr (PC )

PC  next (PC )
else IR  undef

else IR1  undef

else IR2  undef

pc data risk = opcode (IR) 2 BRANCH [ JUMP and

[(fstop (IR) = dest (IR2) and opcode (IR2) 2 LOAD)

or (fstop (IR) = dest (IR1)) ].

pc risk = opcode (IR) 2 JUMP [ BRANCH.
load risk = opcode (IR2) 2 LOAD and

[(dest (IR2) 2 ffstop (IR1), scdop (IR1)g

and IR1 2 REG - (JUMP[BRANCH)
or (dest (IR2) = fstop (IR1) and IR1 2 MEM)].

ID

Preserv IR

if not load risk and not pc data risk

then IR1  IR

Preserv PC

if not load risk ^ not pc data risk

then PC1  PC

OPERAND

if not load risk and not pc data risk

thenif nthop (IR) = dest (IR3 )

or nthop (IR) = dest (IR2 )
then nthReg  C 0

else nthReg  nthop (IR)

TRAPPC

if not load risk ^ not pc data risk

then if opcode (IR) = TRAP

then PC  ival (IR)

BRANCH if not load risk and not pc data risk

then if opcode (IR) 2 BRANCH
then if fstop (IR) 2 fdest (IR3 ); dest (IR2 )g

then if reg (PC 0) = 0

then PC  PC +PC ival(IR)
else if reg (fstop (IR)) = 0

then PC  PC +PC ival (IR)

JUMP if not load risk and not pc data risk
then if opcode (IR) 2 PLAINJ [ JLINK

thenif iop (opcode (IR)) = true

then PC  PC +PC ival (IR)
else if fstop (IR) 2 fdest (IR3 ); dest (IR2 )g

then PC  PC 0

else PC  fstop (IR)



where PC 0 = C 0 =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

C1 if nthop (IR) = dest (IR3) last modification in

and nthop (IR) 6= dest (IR2) ante � ante� preceding

and opcode (IR3) 62 LOAD not load instr

LMDR if nthop (IR) = dest (IR3) last modification in

and nthop (IR) 6= dest (IR2) ante � ante� preceding

and opcode (IR3) 2 LOAD load instr

C if nthop (IR) = dest (IR2) last modification in

ante� preceding instr

nth 2 ffst, scdg, fstReg = A, scdReg= B, LMDR = opcode (IR3) (LMDR).

EX

ALU

if (not load risk) and opcode (IR1 ) 2 ALU [ SET
then if iop (opcode (IR1 )) = true

then if fstop(IR1 ) = dest(IR2 )

or [fstop(IR1 ) = dest(IR3 ) and opcode(IR3 ) 2 LOAD]

then C  opcode(IR1 ) (valfst; ival (IR1 ))

else C  opcode(IR1 ) (A; ival (IR1 ))
else if dest (IR2 ) 2 ffstop (IR1 ); scdop (IR1 )g

or [dest(IR3 ) 2 ffstop(IR1 ); scdop(IR1 )g

and opcode(IR3 ) 2 LOAD]

then C  opcode (IR1 ) (valfst; valscd)

else C  opcode(IR1 ) (A; B)

MEM ADDR

if (not load risk) and opcode (IR1 ) 2 LOAD [ STORE

then if fstop (IR1 ) = dest (IR2 )

or [fstop (IR1 ) = dest (IR3 ) and opcode (IR3 ) 2 LOAD]

then MAR  valfst + ival (IR1 )

else MAR  A+ ival (IR1 )

Pass B to MDR

if (not load risk) and opcode (IR1 ) 2 STORE

then if scdop (IR1 ) = dest (IR2 )

or [scdop (IR1 ) = dest (IR3 ) and opcode (IR3 ) 2 LOAD]

then SMDR  valscd
else SMDR  B

MOVI2S

if (not load risk) and opcode (IR1 ) = MOVI2S

then if fstop (IR1 ) = dest (IR2 )

or [fstop (IR1 ) = dest (IR3 ) and opcode (IR3 ) 2 LOAD]
then IAR  valfst
else IAR  A



MOVS2I if not load risk

then if opcode (IR1 ) =MOVS2I

then C  IAR

where valnth =

8>>>>><
>>>>>:

C if nthop (IR1) = dest (IR2)

LMDR if nthop (IR1) = dest (IR3) and opcode (IR3) 2 LOAD

and nthop (IR1) 6= dest (IR2)

nthReg otherwise:

TRAPIAR

if not load risk

then if opcode (IR1 ) = TRAP
then IAR PC1

LINK

if not load risk

then if opcode (IR1 ) 2 JLINK

then C  PC1

Preserv IR1

if not load risk

then IR2  IR1

MEM

Preserv IR2 IR3  IR2 Preserv C C1  C

STORE

if opcode (IR2 ) 2 STORE
then if opcode (IR3 ) 2 LOAD

and dest (IR3 ) = scdop (IR2 )

then mem (MAR) (LMDR)

else mem (MAR) SMDR

LOAD

if opcode (IR2 ) 2 LOAD
then LMDR  mem (MAR)

WB

WRITE BACK

if opcode (IR3 ) 2 ALU [ SET [ fMOVS2I g [ JLINK

then dest (IR3 ) C1

if opcode (IR3 ) 2 LOAD

then dest (IR3 ) LMDR

This article was processed using the LaTEX macro package with LLNCS style


