
1

Towards a Mathematical Speci�cation of the APE100 Architecture:

The APESE Model�

Egon B�orger a, Giuseppe Del Castillo a, Paola Glavan a, Dean Rosenzweig b

aDipartimento di Informatica, Universit�a di Pisa, Corso Italia 40, 56125 Pisa, Italy.

boerger,delcasti,glavan@di.unipi.it

bFSB, University of Zagreb, Salajeva 5, 41000 Zagreb, Croatia.

dean@cromath.math.hr

This paper provides the �rst step of a full mathematical description of the APE100

parallel architecture. The description consists of several models, at di�erent levels of

abstraction, corresponding to views of the architecture provided by di�erent languages

used within the APE100 compilation chain (a crucial part of the software environment of

APE100).

Here we present the primary model , based on the relevant subset of APESE, a high

level language specially designed for APE100 and constituting the source language in the

compilation chain: APESE reects closely the APE100 model of parallel execution and is

therefore adequate for an abstract description of the main features of the latter. Stepwise

re�nement will lead us from the APESE model of this paper to the hardware level of

APE100, using evolving algebras as speci�cation method (see [1,2]).

APE100 provides a beautiful example of an evolving algebra which models lock-step

parallelism: at each step all rules which can be �red are �red simultaneously.

Keyword Codes: C.1; C.3; J.2

Keywords: Processor Architectures; Special{Purpose and Application{Based Systems;

Physical Sciences and Engineering

Introduction

The APE100 parallel processor has been developed by a group of physicists in Pisa

and Rome as a dedicated machine for oating point intensive scienti�c applications, in

particular numerical simulation in Lattice Gauge Theory (see [3,4]).

The APE100 architecture is of type SIMD, therefore it realises a lock-step model of

parallelism. It consists of a master controller (called zCPU, with a store for data and a

store for the program), which controls a large number n of isomorphic processing nodes

(oating point units, each with its own local data store). The oating point units (FPU's)

run in lock-step, steered by the controller, which controls the (sequential) instruction ow

and performs all integer arithmetic operations involved in the program, in particular

�In: Proc. IFIP Congress '94 (13th World Computer Congress), North-Holland Pu.Co.



2

the evaluation of addresses for the oating point units (the isomorphy implies that these

addresses form an address space which is common to all FPU's). Thus, all FPU's, although

acting on possibly di�erent data, execute at each step the same instruction. Nevertheless,

a rudimentary form of local program conditioning is provided: modi�cations of local data

are subject to locally tested conditions and not e�ected by those FPU's where these

conditions are false. Thus, each FPU i has its own stack IF i (so called \IF-stack") to

store the values of nested local conditions.

The processing nodes are topologically layed out as a three-dimensional torus, allowing

each FPU i to access its own store stoi and the store sto
neighbj(i)

of its j-th neighbour,

j = 1; : : : ; 6.

A simple high level programming language, APESE, has been developed for the APE100

family of parallel computers, to ease the transition >from standard scienti�c programming

to parallel programming. The basic instructions are (integer and oating point) assign-

ment and (global and local) conditionals, enriched by other usual (FORTRAN style)

constructs, which we skip here because their inclusion into our treatment is routine.

The controller executes integer assignments only, whereas the FPU's execute only oat-

ing point assignments; the controller's (global) conditions check what is to be done (ma-

nipulation of instructions and memory addresses, for both the controller itself and the

local nodes), the local conditions establish where local assignments are to take e�ect.

The APESE Model

The rules of the evolving algebra we are going to de�ne can be read and understood as

pseudo-code over abstract data. The reader who wants to know more about the precise

de�nition and the foundations of evolving algebras is refered to the paper by Gurevich in

this volume.

Our evolving algebra reects the APE100 model of parallel execution, as viewed by

the APESE programmer. To let the lock-step parallelism of APE100 stand out explicitly

through evolving algebra rules, we assume APESE programs to be layed out (\compiled")

in the usual manner into a owchart of NODE s decorated (via a function cmd) by atomic

actions and linked by edges (expressed using functions next , yes, no). The (global)

control is expressed by a dynamically updated distinguished element curr node (\program

counter"), which we like to see through the metaphor of a daemon walking through the

owchart and doing the atomic actions attached to the nodes by �ring at each step a

maximal consistent set of rules.

Walking is formalized by updates curr node : = f(curr node), written \do f ", where f
is next , yes or no; the required action is expressed by \doing action", which stands for

cmd (curr node) = action.

In the nodes of the APESE owchart, �ve types of atomic actions can appear: global

and local assignments, global conditions representing conditionals, local conditions dec-

orated with where, endwhere. The semantics of each type of action is expressed by a

corresponding group of evolving algebra rules.

In order to abstract from details of expression evaluation in a given environment and

store, bindings of identi�ers are abstractly represented by a distinguished element curr env

(current environment), which is a static function here, since the relevant subset of APESE



3

doesn't contain procedures. The memories of the FPU's, which are all accessed from the

same address space, are realised using distinct local stores sto1; : : : ; ston, which associate

n local values to each location; the controller memory is represented by sto0 (see the

Appendix for details on stores, evaluation and address calculation). We are now ready to

describe the rules for the �ve atomic actions.

If the daemon is doing an integer assignment (of the form j = exp, where j is a

variable or an array element and exp is an expression), the function exp ev will evaluate

expression exp and the function address will calculate the address of j, using curr env

and the controller store sto0. The controller store sto0 will then be updated, by writing

the value exp ev (exp; curr env ; sto0) to the location denoted by address(j; curr env ; sto0)

in sto0 (see Appendix for details of evaluation, address calculation and writing).

if doing j = exp

then write exp ev (exp; curr env ; sto0) to address(j; curr env ; sto0) in sto0

do next

When executing a global logical condition global cond , the controller evaluates the con-

dition (using a function cond ev ) and moves on according to the computed value. This

evaluation may need all the stores, since a global condition may contain a quanti�ed local

condition (see the Appendix).

if doing global cond

then if cond ev (global cond ; curr env ; hsto0; sto1; : : : ; stoni) then do yes else do no

After each operation the \program counter" must be updated, i.e. the daemon has to

move. Since oating point units cannot access the program counter, this update must be

done by the controller. Hence a �nal controller rule:

if doing local op then do next

where local op 2 fx = exp; where local cond ; endwhereg is the set of local operations,

i.e. operations carried out by the FPU's (and modeled by the FPU rules given below).

Since at each moment a maximal consistent set of evolving algebra rules is to be applied,

this rule will be executed together with the set of local rules for op, one for each FPU.

Local rules come, namely, with an index i 2 FPU = f1; : : : ; ng, and stand (as rule

schemata) for n rules, one for each FPU. They are de�ned as follows.

An FPU can execute the following actions: where local cond , endwhere and local

assignment. If the (local) logical condition of a where statement is satis�ed, oating

point assignments in the scope of that where, as given by the owchart, are executed

| otherwise they can be seen, at this level of abstraction, as skipped. This construct is

modeled using IF i, the IF-stack of oating point unit i, which grows or shrinks each time

where or endwhere is executed.2

if doing where local cond then IF i : = hcond ev (local cond ; curr env ; stoi) j IF ii
if doing endwhere ^ IF i = hb j resti then IF i : = rest

2The IF-stacks are implemented in hardware as circular bit sequences of length 8; since the APESE

compiler accepts only programs with at most 8 nested wheres, this implementation works correctly as a

stack.



4

Local assignments are formalised using the same functions as in global assignment. The

only di�erence is that the expression is evaluated in the local store sto i, and that the

execution is conditioned by the conjunction of all bits in IF i.

if doing x = exp ^ (
V

b2IF i
b)

then write exp ev (exp; curr env ; stoi) to address(x; curr env ; sto0) in stoi

Remark 1 In view of the memory mapping feature, it may happen that it is a neigh-

bouring store which in fact gets updated by the above rule (see the Appendix).

Remark 2 Since, at this level of abstraction, address calculation is represented by the

static function address (see the Appendix), the fact that all address calculations are per-

formed by the controller is reected in the rule by applying address to controller memory

sto0 only.

The initial states (static algebras), starting from which we are going to apply the evolv-

ing algebra rules given above, are required to satisfy the following conditions:

{ the given (correct) APESE program is layed out as owchart;

{ curr node is set to the owchart node corresponding to the �rst statement to be exe-

cuted;

{ the declarations of the program are represented by curr env ;

{ all IF-stacks are initialized to true (i.e. for each i 2 f1; : : : ; ng, IF i = htruei);
{ the stores are initialized to store the given data.

Appendix: Statics of APESE

Expressions and Values | Binding, Storage, Evaluation

In order to explain the peculiar memory mapping feature, we need to elaborate expres-

sions, values and storage organization.

Expressions of APESE are represented in a universe EXP and evaluated by a function

exp ev . We leave the expression syntax abstract, assuming that the basic components of

expressions are constants (integer or oating point values, taken from a universe VAL =

INTEGER [FLOAT and denoted by the metavariable �), variables (x is used to denote

a variable identi�er) and array elements (of the form a[exp
1
; : : : ; expm], where a denotes

an array identi�er and the expj are expressions).

Association of identi�ers and objects is abstractly represented in a universe ENV of

environments, and accessed by a partial function bind , de�ned on ID � ENV . Variable

identi�ers are bound to memory locations, while bindings of array identi�ers contain extra

information about dimensions, required for address computations (i.e. bind (x; env ) 2
LOC , bind (a; env ) 2 LOC �N�). A distinguished element curr env 2 ENV denotes the

current environment.

Association of locations and values is abstractly represented in a universe STORE of

memory states, and accessed by a partial function cont : LOC � STORE * VAL

(\fetching the content of a location in a given store"). Writing value � to location loc in

sto can now be de�ned as modifying sto to stof�=locg, where the latter is de�ned by the

equation

cont(loc1; stof�=loc2g) =
�
� if loc1 = loc2

cont(loc1; sto) otherwise.



5

Since in APE100 the (global) data store of the controller (containing integer values) is

di�erent from the (local) data stores of the FPU's (containing oating point values), we use

two types of store, STORE g (containing sto0) and STOREl (containing stoi for i > 0),

such that STORE = STORE g + STORE l, and two corresponding types of locations,

LOCg and LOCl, such that LOC = LOC g + LOC l, with

cont(loc; sto) 2 INTEGER if loc 2 LOC g and sto 2 STORE g

cont(loc; sto) 2 FLOAT if loc 2 LOC l and sto 2 STORE l

cont(loc; sto) " otherwise.

We assume that the evaluation function exp ev : EXP � ENV � STORE * VAL

satis�es

exp ev (�; env ; sto) = �
exp ev (x; env ; sto) = cont(address(x; env ; sto0); sto)

exp ev (a[exp
1
; : : : ; expm]; env ; sto) = cont(address(a[exp

1
; : : : ; expm]; env ; sto0); sto):

The address of a variable is computed by

address(x; env ; sto) = cont(bind (x; env ); sto);

while the address of an array element is computed (using global store sto0 2 STORE g)

by

address(a[exp
1
; : : : ; expm]; env ; sto) = base + (: : : ((i1dim2 + i2)dim3 + i3) : : :)dimm + im

where bind (a; env ) = hbase ; dim1; : : : ; dimmi, ij = exp ev (expj ; env ; sto) for j = 1; : : : ;m.

We also assume the following coincidence property for evaluation of expressions:

exp ev (exp; env ; sto) = exp ev (exp; env 0; sto0) whenever, for all the variables and array

elements � occurring in exp, we have exp ev (�; env ; sto) = exp ev (�; env 0; sto0).

Memory Mapping

The full APE100 memory addressing model is obtained by extending locations to ad-

dresses:

ADDR = ADDRg + ADDRl; LOC g = ADDRg; LOC l � ADDRl:

While ADDRg is needed just to have a uniform notation, ADDRl contains the additional

information required for the memory mapping feature. The APE100 local addressing

model, which allows a node to access the local memory of a neighbouring node, is described

by extending cont to addresses through:

cont(addr ; stoi) = cont(which loc(addr); stoneighbk(i)
) for each addr 2 ADDRl n LOC l

where k = which neighb(addr). The partial functions

which loc : ADDRl * LOC l and which neighb : ADDRl * f1; : : : ; 6g

yield the location and the relative position of the neighbour (i.e. left, right, up, down,

back or front) respectively, while neighbk is one of the six functions

neighbj : FPU ! FPU j = 1; : : : ; 6



6

which �nd the proper neighbour (according to the index j) of a given node, consistently

with the topology of the machine.

Together with cont also the update write � to addr in stoi gets extended to proper

addresses, as

write � to which loc(addr) in sto
neighb

k
(i)

Logical conditions

Logical conditions are used in conjunction with if, while and where statements, and

provide a way to control the execution of programs. Like all other terms in APESE,

logical conditions can be either global or local.

The syntax of logical conditions is de�ned as usual, based on relational operators and

logical connectives. In addition, quanti�ers are introduced:

� if cond is a local logical condition, then any cond and all cond are global logical

conditions.

We evaluate logical conditions by a function cond ev in the expected way, using local

(global) store for local conditions (global conditions not containing quanti�ers). For any

and all, we require:

� cond ev (any cond ; env ; ~sto) ,
Wn

i=1 cond ev (cond ; env ; stoi)

cond ev (all cond ; env ; ~sto) ,
Vn

i=1 cond ev (cond ; env ; stoi)

where ~sto = hsto0; sto1; : : : ; stoni; sto0 2 STORE g; stoi 2 STORE l for i = 1; : : : ; n.

To handle nested where's, each i 2 FPU has its own \IF-stack" IF i, where the current

sequence of evaluated where conditions is held. If the conjunction of all the elements of

IF i evaluates to false, the FPU i is disabled, i.e. it performs no operation, except when

evaluating a where condition, and pushing or popping its IF-stack.

Acknowledgement

We thank Ra�aele Tripiccione, Angela Gelli and Gianmarco Todesco from INFN in

Pisa and Rome for having introduced us into the secrets of APE100 and for their interest

in our work.

REFERENCES

1. Y. Gurevich, Logic and the challenge of computer science in: E. B�orger (Ed.), Trends

in Theoretical Computer Science. Computer Science Press, Rockville MA 1988, pp.

1-57.

2. Y. Gurevich, Evolving Algebras. A Tutorial Introduction, in: Bulletin of the European

Association for Theoretical Computer Science, no. 43, February 1991, pp. 264-284.

3. A. Bartoloni et al., A Hardware Implementation of the APE100 Architecture, in:

International Journal of Modern Physics, C 4 (1993), p. 969.

4. A. Bartoloni et al., The Software of the APE100 Processor , in: International Journal

of Modern Physics, C 4 (1993), p. 955.

5. The APE100 Collaboration, \APESE" Language, preprint A100/APESE/S-04,

INFN, Pisa.


