
A formal method for provably correct composition
of a real-life processor out of basic components

(The APE100 Reverse Engineering Study)

Egon Börger Giuseppe Del Castillo
Dipartimento di Informatica FB17 Informatik

Università di Pisa Universität Paderborn
56125 Pisa, Italy 33095 Paderborn, Germany

boerger@di.unipi.it giusp@uni-paderborn.de

Abstract
We present a design approach which allows us to formally

specify a real–life processor as composed out of its basic ar-
chitectural (formally specified) components. The methodol-
ogy provides means to rely upon hierarchical refinements and
modular structuring of the specifications as a discipline to
control the behaviour of complex units in terms of the be-
haviour of their components. In particular this enables us
to prove interesting dynamic properties about the processor
in terms of properties of its basic architectural components.
We have developed the method to accomplish a reverse en-
gineering project for the VLSI implemented microprocessor
zCPU, the controller of the successful APE100 massively par-
allel machine.

1 Introduction
The APE100 massively parallel processor has been built

by a group of physicists of the INFN (Istituto Nazionale di
Fisica Nucleare) as a dedicated machine for floating point in-
tensive scientific applications and has proved to be rather suc-
cessful for numerical simulations in Lattice Gauge Theory [1].
As preparation for a possible upgrade to a new APE1000 ma-
chine, we have accepted the challenging reverse engineering
task to construct formal models for the architecture in such a
way that the upgrading process can be guided by these mod-
els. The models are intended to provide precise descriptions
between the existing block diagrams and verbal explanations
on one side and the C-code for the APE100 simulator on the
other side; they can be used to produce executable prototypes
and offer the possibility to experiment with design decisions
at various levels of abstraction.

We have developed a series of formal models, at differ-
ent levels of abstraction, which correspond to views of the ar-
chitecture as provided by different languages in the APE100
compilation chain. The ground model APESE has been de-
fined in [2]; it reflects the APE100 model of parallel exe-
cution as viewed by the user who approaches the machine
as programmer in the high level parallel programming lan-

guage Apese, a parallel Fortran like user expandable language
especially designed for APE100. We have transformed this
model by stepwise refinement to a provably correct model
LEX (loadable executable code) of APE100 at the hardware
level, going through mainly two other intermediate models
Assembler and ZIC (zCPU intermediate code) which corre-
spond to languages of the APE100 compilation chain.

We concentrate our attention in this paper on the VLSI su-
perscalar integer processor zCPU [3] which acts as controller
for APE100 and represents the most originalpart of the project
(including the pipeliningand VLIW parallelism for the execu-
tion of compiled ZIC code). In section 1 we explain how the
standard architectural components of zCPU can be described
formally. In section 2 we show how given units can be com-
posed in a precise way to complex units. Using well known
techniques from the literature (see [4]) the composition can be
done in a modular way. Defining the components as evolving
algebras (in the sense of Gurevich [5]) to which we add en-
tries and exits allows us to adopt also the evolving algebra re-
finement techniques which have been used successfully to for-
mally specify and prove properties of complex systems (see
for example [6, 7, 8]).

In a sequel to this paper we explain how the model LEX of
the zCPU can be used to make the following informal state-
ment into a precise mathematical assertion and to prove it.

Theorem. Under precisely stated assumptions on the com-
piler, the model LEX of the processor zCPU executes com-
piled Apese programs correctly.

We want to convince the practitioner by an example from
real-life that: (i) one can use the evolving algebra specifica-
tion methodology to produce readable but nevertheless pre-
cise specifications without previous formal training and with-
out formal overhead; (ii) the evolving algebra specification
method scales to complex systems.

For a full account of this paper we refer the reader to [9].
For a formal definition of the underlying semantics of evolv-
ing algebras see [5]. For a tutorial introductionto the evolving
algebra specification method see [10].



2 The Datapath Components of the zCPU
The zCPU processor is built out of several main units,

namely: the register file RF, the arithmetical-logical unit
ALU MPY DIV (ALU for brevity), the condition code and
status register unit CC&STATUS, the address generation unit
AGU, the input/output subsystem IOS, the data memory
DATAMEM and the program memory PROGMEM. Addi-
tionally, an instruction decoding unit DECODE and some in-
ternal registers are needed to coordinate the operation of the
above units.

Each unit is specified formally as an evolving algebra (in
the sense of [5]) with entries and exits. The latter are vehicles
for an explicit description of a desired input/outputbehaviour.
This behaviour is defined by finitely many rules of the evolv-
ing algebra and possibly some conditions on the functions
which appear in the rules. Each rule is of the form

if Cond then Updates

where Cond is a first-order expression and Updates a finite set
of function updates

f(t1; : : : ; tn) : = t

which are executed simultaneously each time Cond is true.1

For the description of the parallelism in APE100 it is conve-
nient to rely upon the lock-step interpretation of evolving al-
gebras under which in each step each rule which can be ap-
plied is applied. (For an exact definition of this lock-step se-
mantics of evolving algebras see [5]).

The entries and exits can be viewed as 0-ary functions.
Each function can be constrained by conditions, which can
serve various purposes. For example, exits are often defined
by equations; in the special case of a combinatorial unit all of
them are defined as functions of only entries. Another use of
conditions on functions are (integrity) contraints, which are
assumed (or guaranteed) for a correct behaviour of the unitun-
der consideration.

We are going to define now three characteristic units,
namely RF, ALU and (internal) registers: the reader will rec-
ognize that the other basic units can be specified in a similar
way.

The register file RF. The zCPU register file defines the in-
teraction between 64 general registers and the rest of the
processor. The content reg(addr) of any register addr 2

f 0; : : : ; 63 g becomes accessible through one of the five RF-
ports OutPorti (i = 1; 2; 3; 5) and in port

j
(j = 4; 5),

where the fifth can be used as input (in port
5
) and as output

1Note that such a rule transforms a structure (“state”) — i.e. a set of func-
tionsS over given domains — into another structureS 0 which differs fromS

by someof the functionsbeingchangedfor some arguments. Functionswhich
appear in an evolving algebra but never as outer function f of a function up-
date f(t1; : : : ; tn) := t are called external: they represent the environment
for the evolving algebra.

(OutPort5) port.2

The values of the RF-exits OutPorti are computed from the
entries addri using reg by the rules

OutPorti : = reg(addri) for i = 1; 2; 3: (1)

The entries addr4 2 f 0; : : : ; 63 g, in port
4
2 INTEGER and

write enable4 2 f 0; 1 g are used to update reg on addr4 to
in port

4
if the input port number 4 is enabled for writing: this

is formalized by the rule

if write enable4 then reg(addr4) : = in port
4
: (2)

Port number 5 is special because it can be used for either read-
ing or writing: in the latter case the value of OutPort5 be-
comes undefined. Thus, the behaviour of the RF unit with
entries addri; i 2 f 1; : : : ; 5 g, in port

j
;write enablej ; j 2

f 4; 5 g and exits OutPortk; k 2 f 1; 2; 3; 5 g is defined by
rules (1), (2) and by the following rule for RF-port number 5:

if write enable5
then reg(addr5) : = in port

5

OutPort5 : = undef
else OutPort5 : = reg(addr5)

(3)

The RF unit works under the additional assumption that it is
not allowed to read and to write a register at the same time,
as well as to write to the same register through the two input
ports 4 and 5. These conditions are formalized by the follow-
ing integrity contraints on the RF entries:

write enable4 ) addr4 62 f addr1; addr2; addr3; addr5 g
write enable5 ) addr5 62 f addr1; addr2; addr3 g

write enable4 ^ write enable5 ) addr4 6= addr5:

A peculiarity of the RF units consists in its exits: usually exits
are defined by equations and possibly depend on the internal
state of the unit, while updates are used to modify the internal
state of the unit. In RF the exits are written through updates:
this is just a notational shorthand similar to that used for inter-
nal registers. In fact, the functions OutPorti of RF are internal
registers of RF, whose exits are also exits of RF itself.3

The arithmetical unit ALU MPY DIV. The arithmetical
unit of zCPU consists of three parts which can work in par-
allel, one for the additive, logical and shift operations, one for
(3 types of) multiplication and one for division. The entries
are math code (indicating the operation code), op

i
(for the

two operands), three condition code entries carryin, extendin,

2We denote internal registers by capital initial letters and try to adhere to
the terminology of [3]. The reader should not confuse the general registers of
the register file and the internal registers of the zCPU. The former are accessed
using the function reg, the latter are viewed by us as 0-ary functionswhich can
be updated by transition rules (see the definition of internal registers below).

3This notation is used in other units as well (e.g. DECODE): when a reg-
ister name (denoted by upper case initial) appears in the list of exits of a unit,
it should be interpreted as explained here.



zeroin and four entries md ctrl for multiplier and divider con-
trol. The exits are math resout for the computed result, and
one for each condition code (the above plus negative value,
overflow, division by zero). These exits are characterized in
a purely functional way. Technically speaking this means that
we abstract from the time needed by the device to compute the
values at the exits which correspond to the values appearing at
the entries. In particular, math resout is defined as a function

math resout = math res(math code;md ctrl;
op

1
; op

2
; carryin; extendin ):

(The exits for condition codes are defined in a similar way).
In case math code indicates an additive, logical or shift op-

eration, math resout is the usual combinatorial function of op
1
,

op
2
, carryin and extendin (and the functions corresponding to

the condition codes are similarly defined).
In case math code indicates an operation for MPY or DIV,

the entry md mux (in md ctrl) distinguishes between multi-
plicative operations and division. In case of a multiplication
the entry md mux and an additional entry add mul will deter-
mine which function will be used to compute the value of the
operation in question on the arguments op

1
, op

2
.

This function is however not combinatorial, because more
than one clock cycle is needed for its computation by the unit.
The two dedicated hardware devices which execute multipli-
cations and divisions interfere with the main ALU pipeline
only when the multiplication or division instructions are is-
sued or when the result is ready for write–back. Therefore the
ALU can execute other operations while multiplicationsor di-
visions are in progress. As a consequence — we consider now
the case of multiplications — at the beginning (when the en-
try mul in in md ctrl satisfies mul in = 0) the operands op

i

must be stored in internal registers MulOp
i

of the multiplier
and a counter (MulStep) must be set to determine when the
multiplication result is ready, namely after 2 further clock cy-
cles. The compiler is assumed to guarantee that the distance
between two consecutive multiplicative instructions is at least
3, i.e. that mul in changes from 0 to 1 and will not assume 0
again before 2 clock cycles.

Thus, the behaviour of the MPY part of the unit
ALU MPY DIV is formalized by the rule

if mul in = 0 then start mul(op
1
; op

2
) else mul busy

where

start mul(op
1
; op

2
) � MulOp

1
: = op

1

MulOp
2
: = op

2

MulStep : = 1

mul busy � MulStep : = MulStep + 1:

The function mul ready, indicatingwhen the result of the mul-
tiplication is ready to be written back into the destination reg-
ister, is defined by:

mul ready(mul in) = mul in 6= 0 ^MulOp
1
6= undef

^MulOp
2
6= undef ^MulStep � 2:

A similar formalization is done for the behaviour of the DIV–
subdevice of ALU MPY DIV, making use of the fourth entry
start div in md ctrl.

A register unit. A register4 X can be viewed as a very simple
unit, represented by an evolving algebra with one entry X:in
and one exit X:out, as well as a 0-ary dynamic function X

holding its contents. The unit contains the transition rule

X : = X:in

which formalizes writing the given value into the register, and
a definition

X:out = X

which defines the output of the register unit simply as the con-
tent of the register.5 Once this has been said, we clearly iden-
tify X:out and X: in the following we shall write only X,
without distinguishing it notationally from X:out.

3 Composition of the Datapath Components
Composing units means to connect exits with entries. As is

well known, a global specification of the composed unit can be
obtained by substituting in the appropriate places of the com-
ponents the entries with the exits, according to those connec-
tions. In this abstract we can only refer to the literature [4],
where it is shown how the resultingnotion of computation of a
“composed” unit can be defined rigorously in terms of the no-
tion of computation of the components. It is also shown there
that all the combinations we need can be obtained in a modu-
lar way from the basic units by applying parallel or sequential
composition and feedback.

We show as example how to connect the register file with
the ALU, using some additional small units so as to obtain the
kernel for the interpretation of arithmetic intructions.

Here we identify the RF-exits OutPorti (i = 1; 2) with the
entries op

i
of the ALU, the ALU exit math resout with the Res

register entry in and the Res register exit out with the RF-entry
in port

4
.

The fields of the current (arithmetic) instruction are con-
tained in 4 additional registers, namely MAC for the mathe-
matical operation code, Ri for the address of the register which
contains the i-th operand (i = 1; 2), RR for the address of
the destination register. We connect Ri with the entry addri of
RF and RR with addr4 (passing through two additional regis-
ters RR2 and RR3, which delay the value for two steps). MAC
is connected to the math code entry of the ALU (again pass-
ing through a delay register MAC2). Since the value of MAC
is also needed for computing a certain portion of the control
code, we connect it to the combinatorial unit DECODE (in-
struction decoding unit).

4Note that we refer here to internal registers, not to the general registers
of the register file, represented in our model by the function reg.

5Note that the crucial effect of a register is that the value of the entry is
made available for the next step at the exit.



addr1

addr2

addr3

addr4

addr5

OutPort 3

M
A

C
R

R
R

1
R

2

Res

OutPort 1

op1

in_port 4

write_enable 4

write_enable 5

in_port 5 OutPort 2

op2

OutPort 5

RF

ALU_MPY_DIV

M
A

C
2

R
R

2

R
R

3
W

E
R

W
E

R
2

math_code

md_ctrl

D
E

C
O

D
E

math_resout carryout

carryin

zeroout

zeroin

divzout overflowout
extendout

extendin

negout

Figure 1: Arithmetic subunit of the zCPU

In particular, DECODE provides the information for en-
abling writing through the RF-port number 4. Since this value
is needed after 2 steps — namely the time needed to compute
the result of the arithmetic operation — it is passed from a
DECODE-exit to the RF-entry write enable4 going through
two delay registers WER and WER2.

In this way we obtain the following arithmetic subunit,
which suffices to compute the result of simple arithmetic in-
structions, such as ADD. Note that this unit formalizes a por-
tion of the zCPU block diagram in [3] and is obtained by
carrying out all the substitutions corresponding to connec-
tions between units (shown in figure 1), such as [R1=addr1,
R2=addr2, WER2=write enable4, RR3=addr4, Res=in port

4
]

for the RF unit and [MAC2=math code, OutPorti=op
i
] for the

ALU:

OutPort1 : = reg(R1)
OutPort2 : = reg(R2)
MAC2 : = MAC
WER : = MAC 2 fADD; : : :g
RR2 : = RR

Res : = math res(MAC2;md ctrl;OutPort1;
OutPort2; carryin; extendin )

WER2 : = WER
RR3 : = RR2

if WER2 then reg(RR3) : = Res:

(The rules above are grouped according to pipeline stages).
Similar constructions can be made to compose the units for

the execution of the other instructions, such as input/output
and jumps.

References
[1] A. Bartoloni et al., A Hardware Implementation of

the APE100 Architecture, in: Int. Journal of Modern
Physics, C 4 (1993), pp. 969 sqq. (see also pp. 955 sqq.).

[2] E. Börger, G. Del Castillo, P. Glavan, D. Rosenzweig,
Towards a mathematical specification of the APE100 ar-
chitecture: the APESE model, in: B. Pehrson and I. Si-
mon (Eds.), IFIP 13th World Computer Congress 1994,
Volume I: Technology/Foundations, Elsevier, Amster-
dam, 396–401.

[3] G. Bastianello et al., A high performance single chip
processing unit for parallel processing and data acqui-
sition systems, in: Nuclear Instruments and Methods in
Physics Research, A324 (1993), pp. 543 sqq.

[4] A. Brüggemann, L. Priese, D. Rödding, R. Schätz, Mod-
ular decomposition of automata, in: Springer LNCS
171, 1984, 198-236.

[5] Y. Gurevich, Evolving Algebras 1993: Lipari Guide,
in: Specification and Validation Methods, Ed. E. Börger,
Oxford University Press, 1995.

[6] E. Börger, D. Rosenzweig, The WAM - Definition and
Compiler Correctness, in: Logic Programming: For-
mal Methods and Practical Applications (C. Beierle,
L. Plümer, Eds.), Elsevier Science B.V./North-Holland,
Series in Computer Science and Artificial Intelligence,
1995, pp. 20–90 (chapter 2).

[7] E. Börger, I. Durdanovic, Correctness of Compiling
Occam to Transputer Code, in: Y. Gurevich and
E. Börger, Evolving Algebras. Mini-Course, Technical
Report BRICS-NS-95-4, pp. 153–194, BRICS, Univer-
sity of Aarhus, July 1995.

[8] E. Börger, U. Glässer, W. Müller, Formal Definition of
an Abstract VHDL’93 Simulator by EA-Machines, in:
Carlos Delgado Kloos and Peter T. Breuer (Eds.), For-
mal Semantics for VHDL, pp. 107–139, Kluwer Aca-
demic Publishers, 1995.

[9] E. Börger, G. Del Castillo, A formal method for prov-
ably correct composition of a real-life processor out of
basic components (The APE100 Reverse Engineering
Study), in: Y. Gurevich and E. Börger, Evolving Alge-
bras. Mini-Course, Technical Report BRICS-NS-95-4,
pp. 195–222, BRICS, University of Aarhus, July 1995.

[10] E. Börger, U. Glässer, Modelling and Analysis of Dis-
tributed and Reactive Systems using Evolving Algebras,
in: Y. Gurevich and E. Börger, Evolving Algebras. Mini-
Course, Technical Report BRICS-NS-95-4, pp. 128–
152, BRICS, University of Aarhus, July 1995.

Note: [6], [7], [8], [9] and [10] are available through anony-
mous ftp in the directory pub/Papers/boerger of the machine
apollo.di.unipi.it (131.114.4.36) and through WWW at the ad-
dress http://www.uni-paderborn.de/Personal/eas.html.


