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Abstract. We define a flexible abstract ambient concept which turned
out to support current programmming practice, in fact can be instanti-
ated to apparently any environment paradigm in use in frameworks for
distributed computing with heterogeneous components. For the sake of
generality and to also support rigorous high-level system design practice
we give the definition in terms of Abstract State Machines. We show the
definition to uniformly capture the common static and dynamic disci-
plines for isolating states or concurrent behavior (e.g. handling of multi-
ple threads for Java) as well as for sharing memory, patterns of object-
oriented programming (e.g. for delegation, incremental refinement, en-
capsulation, views) and agent mobility.1

1 Introduction

In [5] the first author has used the framework of Abstract State Machines (ASMs)
to analyze the behavioral features of the object-oriented programming patterns
proposed in [15]. This was intended as a first step towards understanding what
genuine high-level model patterns could be defined which support what in [20]
is called ‘normal’ high-level system design practices, and are not limited by
the low-level view of object-oriented class and similar programmming structures
(which belong to ‘normal’ program design). In particular the parameterization
of functions was used to represent the omnipresent binding or instantiation of
methods and operations to given objects, which often are notationally suppressed
because implicitly known from the context (as done so successfully in physics).
The parameterization scheme can be expressed by the following equation:

this.f (x ) = f (this, x ) or f (x ) = f (this, x )

This parameterization equation has a simple precise explanation in terms of the
abstract states (Tarski structures) on which ASMs operate. This explanation suf-
ficed to rigorously model in [5] the behavioral features of characteristic patterns
from [15].

1 This work was partially supported by the Italian Government under the project
PRIN 2007 D-ASAP (2007XKEHFA). Part of the work of the first author was done
when he was on a sabbatical leave, visiting the Computer Science Department of
the ETH Zürich. The material has been presented by the first author to the Amir
Pnueli Memorial Symposium at Courant Institute, NYU, New York, 7.-9.5.2010.



In a recent project we started an attempt to discover the pattern underly-
ing the large numer of different client-server architectures for concurrent (dis-
tributed) web applications. The goal is to make such a structure explicit by
defining precise high-level models which can be refined to the major current
implementations of WEB application architectures so that as a result their dif-
ferences can be precisely analyzed, stated and hopefully evaluated and classified.
Common to all WEB application architectures is the view of an application as
a set of server components which communicate with client-side WEB browsers
via data sent through the HTTP protocol. The state underlying a WEB applica-
tion is distributed among the interacting components in the browser, the server
and/or the application together with its application framework. A browser comes
with agents managing multiple browsing contexts; parts of the state of interest
reside in the document buffer of the renderer, in the state of the Javascript in-
terpreter and in the DOM (Document Object Model). A WEB server may be
designed to support the execution of programs belonging to a particular pro-
grammming language, like the Java-based Tomcat server which features a mod-
ular architecture built around Java classes; but it may also support the runtime
execution for programs written in different programming languages (like PHP or
ASP, Python, JSF or ASP.NET) and coming from different libraries. Therefore
a simple yet general and flexible ambient concept is needed to succinctly model
the interaction of distributed components acting in heterogeneous environments.

This led us to further investigate the parameterization power the ASM frame-
work offers and to use it for a definition of the needed ambient concept which
generalizes the above parameterization equation. It turned out that the definition
can be based upon the semantics of traditional ASMs without need to change
or add to it. In this paper we define that concept and show that it allows one
to uniformly express a variety of ambient concepts known from various domains
and used there for modularization purposes. We illustrate the generality of the
definition, which is largely due to the generality of the two concepts of ASM and
of ASM refinement, by applying it to concrete examples in the following rather
different domains:

Static naming disciplines to isolate states, i.e. methods for binding names
to environments as used in programmming languages (reflecting notions like
scope, module, package, library, etc.) and generally where name spaces play
a role to define the meaning of names in given contexts. See Sect. 3.1-3.2.
Dynamic disciplines to isolate computations, reflecting notions of processes,
executing agents, threads, etc. and their instantiations. In Sect. 3.3 we pro-
vide two typical examples:

• Multi-Threading, illustrated by defining two example models, namely
for:

∗ a MultiThreadJavaInterpreter, where the definition starts from
a given component SingleThreadJavaInterpreter,

∗ the task management by the ThreadPoolExecutor in the Java 2
Standard Edition Version 5.0 (J2SE 5.0) [21], starting from scratch.

• Process instantiation.



Memory sharing disciplines, illustrated by a model for the Visitor pat-
tern [15] in Sect. 3.4.
Characteristic patterns of object-oriented programming. We illustrate this
in Sect. 3.5 for four features with behavioral impact:

• Delegation. The ambient notion allows us to define one pattern we call
Delegation of which the well-known patterns Template, Responsibility,
Proxy, Strategy, State and Bridge are instances.

• Incremental refinement, also called conservative extension, illustrated by
the Decorator pattern

• Encapsulation, illustrated by the Memento pattern.
• Views, illustrated by the Publish-Subscribe pattern.

Through this analysis it becomes explicit that some of these patterns, which
are treated in the literature as distinct from each other, instead share the
same or a strikingly similar form of their parameterization equations and
have underlying class structures which are variations of a common scheme
(a sort of ‘structural pattern’). This reflects that the underlying semanti-
cal meaning of the parameterization (namely the implicit instantiation of a
machine) is the same; what differs is the specific intentions pursued when
using these parameterizations in programming, intentions which determine
the small variations of the involved class structure.
We expect that this approach to pattern analysis will be developed further to
lift programming patterns to a body of design patterns which are focussed on
high-level model behavior and independent of specific syntactic (in particular
programming language) representations.
Mobile agents with moving ambients. We exemplify this in Sect. 3.6 by a
succinct formulation of Cardelli’s and Gordon’s calculus of mobile agents
by three simple ASM rules describing the fundamental operations ambient
Entry, Exit and Opening.

We provide the definition of ambient ASMs in Sect. 2 and illustrate it in
Sect. 3 by the above listed application examples, where the accent is on the
diversity of the domains and the simplicity and uniformity of the applications.2

Since ASMs are well-known and have been extensively described and used in
the literature over the last 25 years we do not repeat their definition here, also
because the definition in Sect. 2.2 is complete by itself and can be understood
correctly interpreting the occuring constructs as pseudo-code. We refer those who
want to check the technical details to the recursive definition in the textbook [7,
Table 2.2].

2 Since the goal of this paper is to develop a general, uniform, succinct and simple
notation practitioners can use with advantage above all in high-level system design,
the reader will find a definition and its experimental application to a variety of non-
trivial examples, but no theorem. This reduction is also the reason why there is
no connection at all to the sequential ASM thesis and its proof from three natural
postulates one reviewer wants us to mention (refering to the textbook version in [7,
Ch.7.2]). We are quite satisfied that there was no need to extend basic ASMs; we
are here concerned only with an expressivity problem.



2 Definition of Ambient ASMs

We start in Sect. 2.1 with some small programming examples to explain the
problem and the simple idea leading to the definition in the ASM framework.
Sect. 2.2 contains the details of the definition, which consists in a simple and
transparent translation of machines of form amb exp in M to traditional ASMs
and thus avoids to change or add anything to the semantics of basic ASMs.

2.1 Two Small Problem Examples

We start with two motivating examples.

Example1 =

amb a1 in

x := 3

amb a2 in

y := x

We want the execution of this example to result in x (a1) = 3 and y(a2) =
x (a2), where x (a2) may be different from x (a1). That is, the innermost ambient
declaration should count for determing the environment where an expression is
evaluated. Therefore we transform Example1 as follows into Example1∗, using a
logical variable curamb which we allow to be bound again within the scope of a
let. The definition of the semantics of the let construct for ASMs, which is in
accordance with its usual meaning, guarantees that for each occurence of curamb
in the scope of a let curamb = . . ., the innermost enclosing let curamb = . . .
determines the value of an occurence of curamb (see the detailed explanations
in Sect. 2 or [7]).

Example1∗ =

let curamb = a1 in

x (curamb) := 3

let curamb = a2 in

y(curamb) := x (curamb)

We also want to have a way to express explicitly an ambient where to evaluate
an expression. We use the usual dot-notation exp.t to denote that t is evaluated
in ambient exp.

Example2 =

amb a1 in

x := 3

amb a2 in

y := parent(a2).x



The execution of this example, where a separately defined ambient independent
function parent is used to explicitly describe the desired ambient to evaluate x ,
should result in x (a1) = 3 and y(a2) = x (a1) = 3. parent reflects the nesting
of occurences of let curamb = . . . in the program text. We therefore transform
Example2 into Example2∗ as follows, where parent(a2) = a1.

Example2∗ =
let curamb = a1 in

x (curamb) := 3
let curamb = a2 in

y(curamb) := x (parent(a2))

Thus, the idea is to define the meaning of amb exp in M to be (roughly)
let curamb = exp in M . For a formal definition one can follow the inductive
scheme used in [7, Table 2.2] to define the semantics for basic ASMs. The details
are given in the next section.

2.2 Definition

We call ambient ASM each ASM which can be obtained starting from basic
ASMs (formally speaking the ones defined by e.g. the inductive definition in [7])
by allowing for given machines M also a machine of the following form:

amb exp in M

Thus syntactically ambient ASMs are usual ASMs where also machines of the
form amb exp in M are allowed. The semantics of the new clause amb exp in M
for ambient ASMs can be defined by using the let construct, as we do below, to
bind exp to a logical variable curamb, which denotes the ambient in which M
is executed. The reuse of curamb for binding nested ambient expressions will
allow us to succinctly describe various scoping diciplines in a uniform way, see
the discussion below.

We extend the ASM classification of functions and locations by considering
an extension of static functions and locations, whose values for given arguments
do not depend on any state, to ambient independent functions or locations, i.e.
static or dynamic functions or locations whose values for given arguments do
not depend on any ambient.

We want to use the dot-notation s1.s2. . . . sm .t where each si stands for an am-
bient expression and t for a term f (t1, . . . , tn) describing locations (f , (v1, . . . , vn))
in the sense used in the ASM framework. A location (of an ASM M ) is a pair
(name, args) of a name (belonging to the signature of M ) and a sequence args
of elements (belonging to the domain of M ) and represents an abstract memory
‘location’ parameterized by args where values can be stored. To this purpose we
extend the inductive definition of the set of terms (expressions) by declaring the
dot symbol to not be a location symbol and by allowing dot-terms s.t as terms
if the following two conditions hold:

s is a term



t is a term of form f (t1, . . . , tn) and f is a location symbol.

We define now the semantics of ambient ASMs by translating them into basic
ASMs. The definition follows the inductive scheme used in [7, Table 2.2]; unless
otherwise stated f denotes a location symbol.

Term translation (t → t∗) For the transformation of terms different from
dot-terms we stipulate the following, included the case of variables where n = 0.
To guarantee that each term is evaluated in the current ambient curamb, we add
to each location an additional argument for the ambient in which the location is
evaluated. This is analogous to the object-oriented notation this.exp to denote
the evaluation result of exp for the instance denoted by this.

If f is a location symbol we define:

f (t1, . . . , tn)∗ = f (curamb, t∗1 , . . . , t
∗
n)

If f is a logical variable3 or a rule name or an ambient independent function
symbol, we define:

f (t1, . . . , tn)∗ = f (t∗1 , . . . , t
∗
n)

If t1. . . . tm .f (s1, . . . , sn) is a dot-term we define:

(t1. . . . tm .f (s1, . . . , sn))∗ = f (t∗1 , . . . , t
∗
m , s

∗
1 , . . . , s

∗
n)

Rule translation The crucial steps for the transformation of ASMs are the
following two. An assignment to a location becomes an assignment to this loca-
tion in the current ambient, where all the terms involved are evaluated in this
curamb.

(f (s1, . . . , sn) := t)∗ = (f (curamb, s∗1 , . . . , s
∗
n) := t∗)

The execution of (a step of) a machine P in a given state S with a desired
ambient t is defined as execution of (a step of) the transformed machine P∗ in
this state with ambient value calculated as the value v of the defining expression t
in state S .

(amb t in P)∗ = (let curamb = t∗ in P∗)

This definition implies that the ambient expression t is passed in the trans-
formation of amb t in P by value, whereas the above definition for the trans-
formation (t .s)∗ of a dot-term guarantees that the explicit ambient expression t
is passed in (t .s)∗ by name.

For an illustration of this definition consider the following machine.

3 Logical variables are bound by let, choose or forall.



NestedAmb(P) =
amb t1 in

amb t2 in
P

By the definition of let in [7, Table 2.2], a step of NestedAmb(P)∗ in state S
yields the update set U under a given environment (interpretation of the free
variables) env if a step of (amb t2 in P)∗ yields U under the modified environ-
ment

env1 = env [curamb → val(t∗1 ,S , env)]

which is the case if a step of P∗ yields U under the modified environment

env2 = env1[curamb → val(t∗2 ,S , env1)].

So when P∗ computes a step, it does it with the last computed value for
curamb, here val(t∗2 ,S , env1) which typically depends on its being nested in the
scope of the declaration of the ambient t1. For a concrete example see below the
special case of the State pattern.

The rule name case r(t1, . . . , tn) is covered by the definition for terms. The
other steps follow the inductive scheme used in [7, Table 2.2].

skip∗= skip
(P par Q)∗ = (P∗ par Q∗)
(let x = t in P)∗ = (let x = t∗ in P∗)
(if φ then P else Q)∗ = if φ∗ then P∗ else Q∗

(choose x with φ do P)∗ = choose x with φ∗ do P∗

(forall x with φ do P)∗ = forall x with φ∗ do P∗

(P seq Q)∗ = (P∗ seq Q∗)

Given this translation of ambient ASMs M into traditional ASMs M ∗ we
often identify M and M ∗ without further mention.

Remark. Sometimes one has to deal at the same time with different types of
ambients, like the declaration environment of process instances. One can support
this notationally by writing in such cases

amb (type)exp in M

where type is a name denoting the kind of ambient one wants to consider. In
this way one can distinguish for example the current declaration environment
amb (env) of a process with a given current object amb (obj ) from its current
instance amb (inst) and its currently executing thread amb (thread).

3 Characteristic Applications

In this section we illustrate the use of ambient ASMs for some characteristic
environment concepts as they show up in various domains.



3.1 Static Naming Disciplines

We start with a simple example from programming languages (see any book on
programming, e.g. [23]). They typically come with disciplines to declare items
of various types. A declaration has the effect to create an environment in which
certain names are bound to specific values. One can easily describe this with the
ambient construct

amb exp in M

Here the evaluation of a declaration expression is assumed to yield an env ironment
(imagine a hash table) which associates with each identifier declared in exp a
bindingValue(id , env). This value is used to execute M , say via a curValue func-
tion which describes the current item values for this computation. The definition
of curValue uses an auxiliary function parent , which is defined by the nesting
structure of amb in the given program (of which amb exp in M is a part).

curValue(x , env) =

{
bindingValue(x , env) if x is declared in exp
curValue(x , parent(env)) else

3.2 General Scoping

More generally, we can use the amb construct together with non-determinism
and abstract functions to describe a high-level model of binding and scoping
that can then be instantiated to the scoping disciplines of various languages.

We assume a set Envs including all the environments which bind a set of
names to the corresponding values (including locations); environments are added
to, removed from or altered in Envs by entering a new scope, leaving (destroying)
a scope, or by declarations establishing new bindings in a scope. Notice that
environments that are exited, but not destroyed, are preserved in Envs: this is
the case, among others, of closures.

Then, to obtain the current value of an identifier id , referenced at lexical
position pos and run-time state s4 the following machine can be used:

Evaluate(id , pos, s) =
choose a ∈ {e ∈ Env | inScope(e, pos, s) ∧ e.defines(id)} in

amb a in GetValue(id)

In this general model, the environment in which id is evaluated is any of those
whose scope covers the current lexical and dynamic position in the program,
provided they have a binding for id . The latter condition is expressed by

e.defines(id) ≡ (e.id 6= undef)

4 Here, s models the current dynamic state of the computation, e.g. the procedure,
function or method call stack, the current instance if any in object-oriented lan-
guages, the executing thread in languages supporting thread-local storage, etc.



By reducing the non-determinism of choose and specifying inScope, one can
refine the general model to the scoping policies of various languages.

For example, purely lexical scoping (as in Pascal, Modula-2, Ada, C) is refined
from the general version by defining

inScope(e, pos, s) ≡ inLexicalScope(e, pos)

where inLexicalScope(e, pos) is a predicate covering all the positions in the source
text of the program where environment e is in effect, and can be determined
statically by the compiler. Similarly, purely dynamic scoping (as in Logo or
certain variants of Lisp) is described by

inScope(e, pos, s) ≡ inDynamicScope(e, s)

where inDynamicScope(e, s) is a location of the state which is altered by an
interpreter (of the language or of the executable code generated by a compiler)
whenever a dynamic-state changing statement (e.g., a function invocation) is
encountered. Languages that offer both scoping policies (e.g., Perl, Java) can be
similarly modeled by a combination of inLexicalScope and inDynamicScope.

Most language also have hiding/shadowing rules to specify the behaviour
when the same identifier is bound in multiple environments, all of which are in
effect at the same static and dynamic position. Typical cases are when a method
parameter has the same name as an instance or class (static) variable in Java,
or when an identifier is re-declared as a local variable of an enclosed block in a
given lexical scope.

For such langauges, the non-determinism in the choose clause needs to be
further specified. Most languages stipulate a last-in, first-out (LIFO) policy for
scopes, where the most-proximal declaration (lexically or dinamically) hides pre-
vious bindings. This strategy could be expressed as

Evaluate(id , pos, s) =
let E = {e ∈ Env | inScope(e, pos, s) ∧ e.defines(id)} in

choose a ∈ E with (∀a ′ ∈ E , a v a ′) in
amb a in GetValue(id)

where v provides the particular nesting order specified by the language.
A notable exception to this policy is the TCL language, where the program-

mer can explicitly refer to a binding established in a particular enclosing scope
(and possibly hidden by a more proximal scope) by indexing. In TCL, id refers
to the current (most recent) scope, as delimited by procedures or namespaces;
the expression global id always refer to the global scope, and the declaration
upvar n id v binds the local variable v to the identifier id as bound in the n-th
scope ”up” from the current scope (if the form upvar #n id v is used instead,
then the statement refers to the n-th scope ”down” from the global one).

This peculiar scoping policy allows TCL programmers to access arbitrary
bindings5 of names. The generality of our amb construct allows arbitrary values

5 A common usage for this is to use upvar 1 id v to simulate call-by-reference, since
then the local variable v is bound to a variable id in the immediate caller. The con-



to be used to represent ambients, and arbitrary structures to be built with them.
Hence, we could stipulate that Env be a list of scopes, manipulated on entering
and leaving a proc (hence, Env depends on s), and specify that for TCL,

Evaluate(id , pos, s) =
let a = ambref (pos, s) in

amb a in GetValue(id)

where

ambref (pos, s) =


Env [0] if pos is in global id
Env [n − k ] if pos is in upvar k id v
Env [k ] if pos is in upvar #k id v
Env [n] otherwise

with n being the size of Env . Notice that we can use pos, representing the
lexical position where the id appears in the source code, to ascertain the current
syntactic context, and that as expected, an unqualified id appearing in global
code, a global id , and a upvar #0 id v all refer to the same variable.

3.3 Disciplines to Dynamically Isolate Computations

In distributed computations strong mechanisms are needed to sufficiently iso-
late computations of different agents, as for example the execution of vari-
ous tasks by multiple threads. We show here for two thread related examples
how ambient ASMs support this goal in a clear and simple way. In Sect. 3.3
we build from a SingleThreadJavaInterpreter and any given scheduler
a MultiThreadJavaInterpreter controlled by that scheduler , separating in
this way also thread scheduling from thread execution. In Sect. 3.3 we pursue this
separation of handling the thread management from programming the applica-
tion logic further by building a high-level model for the ThreadPoolExecutor
of J2SE 5.0.

MultiThreadJavaInterpreter Let SingleThreadJavaInterpreter be a
single-thread Java interpreter, for definiteness say the one defined in terms of
ASMs in [29] from where we borrow the terminology. For simplicity of expo-
sition let us assume for the moment that the underlying executing machine is
a mono-core processor where at each time only one (a unique) current thread
may run Java code; we explain below the little changes needed for the multi-core
case. We want to separate the scheduling discipline from the thread management
task, so that the construction can be used independently of the adopted partic-
ular scheduling algorithms (see [21, Ch.11] for the different scheduling methods
available in J2SE 5.0 through the Scheduled Thread Pool Executor). Therefore

struct allows any index to be used — although, of course, doing so in a uncontrolled
manner is considered rather poor taste.



we assume the scheduler to be given, say by a function schedule (to be im-
plemented by a program computing this function) which selects one Runnable
thread out of the current instances of the Thread class (in terms of the ASM
model in [29] being a current instance means to be in the heap).

This leads us to the following definition, which generalizes and modularizes
further the definition given in [29, 7.2.1] by abstracting from its specific treatment
of thread context (see the explanations below). A thread is Runnable if it is either
Active or Synchronizing or Notified . If it is Synchronizing or Notified and chosen
for execution, it should first Synchronize respectively WakeUp, whereby it
also becomes Active, before going to Run. In a monocore architecture only one
thread can be the lastSelectedThread and Active, so that it can be associated
with the SingleThreadJavaInterpreter to continue the execution of the
computation the thread is carrying around as its ambient, for an initially assigned
program. This is described by the following ASM where the ambient construct
is used to express what it means to Run a thread.6

MultiThreadJavaInterpreter =
let q = schedule({t ∈ Thread | Runnable(t)})
if q = lastSelectedThread then

(if Synchronizing(q) then Synchronize(q)
if Notified(q) then WakeUp(q))

seq 7 Run(q)
else

(Active(q) := true
lastSelectedThread := q)

seq Run(q)
where
Run(q) =

if Active(q) and q = lastSelectedThread then
amb q in SingleThreadJavaInterpreter

This definition abstracts from the particular specification of thread contexts
used in [29]. In case of rescheduling it avoids saving the context for the suspen-
sion of the lastSelectedThread and restoring the context for the newly scheduled
thread8 since via the ambient construct each thread gets its context via curamb
when called to Run. The specification used in [29] now appears as one possible
refinement of the thread ambient concept.

Under the mono-core assumption the thread suspension is achieved in the
above MultiThreadJavaInterpreter by the guard of Run, which requires
the unique currently executing thread to be the lastSelectedThread and Active
(not only Synchronizing or Notified , which makes threads only Runnable). In

6 All the concepts we use in this definition without further explanation are defined
in [29] where the reader can check the details.

7 seq denotes the sequential execution of ASMs, see [7] for a definition.
8 In [29] the context appears as frame stack which is recorded into a cont inuation

function and restored using a switchCont operation as part of the run macro.



the multi-core case the description can be simplified, since thread suspension
may not be necessary any more each time a new thread is selected for execution.
If upon scheduling a new thread this thread can simply be put to Run without
suspending other currently running threads (assuming a potentially unbounded
number of running threads, see the ThreadPoolExecutor in the next section
with details for the more realistic case of a bounded number of available threads),
one can define this by the following machine:

UnboundedThreadJavaInterpreter =
let q = schedule({t ∈ Thread | Runnable(t)})
if Active(q) then Run(q)
else

(if Synchronizing(q) then Synchronize(q)
if Notified(q) then WakeUp(q))

seq Run(q)
where
Run(q) = amb q in SingleThreadJavaInterpreter

We deal in the next section with the case where the number of simultaneously
running threads is bounded.

Thread Pool Executor The role of thread pools is to separate the formula-
tion of thread management—details for the creation, the use and the deletion
of threads to run tasks, including the control of the number of simultaneously
running threads—from the description of the application logic of the to be pro-
grammed tasks, for conceptual clarity and for pragmatic reasons (e.g. possible
throughput gains through time slicing, task creation overhead reduction, etc.).
This separation of concerns is well supported by the ambient concept. For the
sake of definiteness we illustrate this here by developing a high-level model for
the thread pool executor of J2SE 5.0 following its informal description in [21,
Ch.10]. Similar schemes can be described for example for web servers where
arriving requests are managed by a pool of threads, etc.

The ThreadPoolExecutor manages the assignment of threads to tasks
which are entered for execution (a method we call TaskEntry) and the de-
coupling of this association of a thread with a task upon the completion of the
execution of the task (a method we call TaskCompletion). If no thread can be
assigned to a submitted task because the number | CreatedThread | of the set of
CreatedThreads is already the maxPoolSize number of threads and all of them
are Running , then TaskEntry inserts the task into a queue—if this can be
done without exceeding the maxQueueSize; otherwise the task is Rejected. If
there are still threads to create, thread creation and task assignment takes place
if no Idle thread is available and the task cannot be placed to the queue with-
out blocking it. This privileges queue insertion with respect to the creation of
a new thread via a predicate BlockingFreePlaceable(task , queue) which we leave
abstract.



Coming naturally with its queue, ThreadPoolExecutor also has a method
(submachine) to assign under certain conditions a thread to a task from the queue
to Run it. In addition the J2SE 5.0 thread pool also supports a corePoolSize ≤
maxPoolSize to keep the number of CreatedThreads as long as possible within
corePoolSize, reassigning threads that have already been created but are cur-
rently Idle. In this spirit last but not least a thread exits the runtime set
CreatedThread if it has been Idle for more than its keepAliveTime waiting to
be assigned to a task in the queue which remained empty during this wait-
ing period. We formulate the waiting behavior of a thread by a submachine
TaskFromQueueOrExit

This description is modeled by the following definitions where we make cru-
cial use of the ambient construct in the Run macro definition. We omit the
description of how the ThreadPoolExecutor is called either for a task (to
execute TaskEntry) or for a (task , thread) pair (to execute TaskCompletion)
or for a thread (to execute TaskFromQueueOrExit).

ThreadPoolExecutor =
TaskEntry
TaskCompletion
TaskFromQueueOrExit

To describe the externally controlled submission of tasks for execution we use
a monitored predicate Enters expressing the event that a task is submitted. We
use the new (S ) machine to provide for each call a fresh element and to place it
into the set S . The submachine Execute which we leave abstract is the ‘task
interpreter’, similar to the SingleThreadJavaInterpreter in Sect. 3.3. We
also leave Reject abstract.

TaskEntry(task) = if Enters(task) then
if | CreatedThread |< corePoolSize then

let t = new (CreatedThread) in Run(t , task)
// first fill in corePoolSize many threads

else
if | CreatedThread |< maxPoolSize then // first use Idle threads

if forsome t ∈ CreatedThread Idle(t) then
choose t ∈ {t ∈ CreatedThread | Idle(t)} Run(t , task)

else
if BlockingFreePlaceable(task , queue) then

Insert(task , queue) // first fill queue before creating threads
else let t = new (CreatedThread) in Run(t , task)

else
if forall t ∈ CreatedThread Running(t) then

if | queue |< maxQueuesize then Insert(task , queue)
else Reject(task)

where
Run(thread , task) =



program(thread) := task
amb task in Execute
Running(thread) := true

To describe the externally controlled completion of task execution by a thread
we use a monitored predicate Completed , which we assume without loss of gen-
erality to be preemptive. To leave the particular queue access policy open we
use a not furthermore specified function next to determine the next to be chosen
element from the queue.

TaskCompletion(task , thread) =
if thread ∈ CreatedThread and Completed(task , thread)

and Running(thread) then
if queue 6= empty then RunTaskFromQueue(thread)
else

Idle(thread) := true
completionTime(thread) := now

where
RunTaskFromQueue(thread) =

let task = next(queue)
Run(thread , task)
Delete(task , queue)

TaskFromQueueOrExit(thread) =
if Idle(thread) and thread ∈ CreatedThread then

if now − completionTime(thread) ≤ keepAliveTime(thread)
and queue 6= empty

then RunTaskFromQueue(thread)9

elseif | CreatedThread |> corePoolSize then
Delete(thread ,CreatedThread)

Note that in the case of keepAliveTime(thread) = 0 and an empty queue
with the number of created threads not exceeding the corePoolSize, the thread
“blocks indefinitely waiting for a new task to be queued” and “runs the new task
when available” [21, p.193], namely through the second clause of TaskEntry.

Process Instances The instantiation of a process P by an executing agent
self carrying its own environment, which has often been used in the literature
when dealing with multi-agent ASMs, generalizes the use of Java threads in the
previous section to arbitrary agents executing an instance of a given ASM in
a concurrent context and corresponds to amb self in P . A well-known case is

9 The reader will notice that we do not reset completionTime(thread) to undef .
This is not needed since a thread uses its completionTime only when attempting to
perform the RunTaskFromQueue operation. But for this the thread has to be in
Idle mode, and each time it enters the Idle mode its completionTime is set to the
new value of now .



class and method instantiation in object-oriented programming, where this.M (x )
corresponds to amb this in M (x ). Similarly the instantiation of S for execution
on a given server can be described by amb server in S .

This implicit parameterization scheme provides a way to isolate executions
of different M -instances, for example by defining for different host machines
host1 6= host2 separated instances amb hosti in M for i = 1, 2. It also solves
the problem (see [31]) to precisely but uniformly distinguish between different
instances of a same business process model; it has been used for example in [6] to
rigorously model process instantiation as proposed by the OMG standard [22].

3.4 Shared Memory

An ambient may expose memory an agent shares with another agent when exe-
cuting its program M . We illustrate this by the Visitor pattern from [15] and by a
small Request/Answer communication scheme where the receiver for Answering
a request can access some part of memory which is shared with the requestor.
Another example is the Publish-Subscriber pattern described in Sect. 3.5.

Request/Answer with Shared Memory Imagine multiple senders s, s ′, . . .
which send requests to a mailBox of a receiver r . The receiver for Answering
to a request is supposed to share some part of the memory of the respective
sender. The shared memory locations are assumed to be extractable by an
extractState function applied to the sender of the request. Then one can formu-
late the MemorySharingRespond mechanism as follows. We use an abstract
function next to determine the next message to be taken from the mailBox for
responding.

MemorySharingRespond =
let request = next(mailBox )

amb extractState(sender(request)) in Answer

Visitor Pattern The idea of the Visitor pattern [15, pg.331] is to represent an
operation on a concrete element not directly as a method of the class Concre-
teElement it belongs to, but as a so-called ‘Visitor operation’ VisitConcrElem
of another class Visitor . The execution of this operation is triggered by a con-
crete element ce through ‘Accepting’ a visitor in whose class the operation
VisitConcrElem(ce) is implemented. ce provides through Accepting an ap-
propriate access to its state for the visitor to execute the operation.

All classes ConcreteElement are subclasses of one class Element. Visitor pro-
vides for each of them an interface VisitConcrElem(ConcreteElement), each
of which is refined in each subclass ConcreteVisitor of Visitor by a corresponding
omonymous submachine. See Fig. 1.

The interface Accept(visitor) is refined in ConcreteElement such that every
concrete visited element self ‘supplies itself as an argument to this operation to



Fig. 1. Visitor Pattern Structure

let the visitor access its state, if necessary’ [15, pg.335]. This can be expressed
by the ambient construct as follows:10

Accept(visitor) = amb visitor in VisitConcrElem(self)

The visitor parameter denotes an instance of a ConcreteVisitor class imple-
menting VisitConcrElem. This is expressed by the following constraint:

visitedClass(visitor)=class(self).

In this way if one wants to define a new operation on instances of Element,
it can be done ‘simply by adding a new visitor’ which will trigger the new
operation upon acceptance of the visitor. ‘Adding a new visitor’ means to define
a new Visitor subclass ConcreteVisitor where each VisitConcrElem interface
is implemented in the desired new way. As a result there is no need to change the
Element subclass structure because every ConcreteVisitor instance, created by
a client that uses the pattern, will have to ‘traverse the object structure, visiting
each element with the visitor’ [15, pg.335].

3.5 Object-Oriented Patterns

In this section we illustrate applications of ambient ASMs to uniformly describe
the behavior of some object-oriented patterns which appear in [15] as separate

10 In [15] it is supposed that ‘the operation’s name and signature identifies the class
that sends the visit request to the visitor. That lets the visitor determine the concrete
class of the element being visited. Then the visitor can access the element directly
through its particular interface’ [15, pg.334]. To avoid having to deal with such
naming conventions we use instead self , standing for the concrete to be visited
element, to identify the relation between the classes to which the visiting and the
visited object belong.



individual patterns. Where interfaces are mentioned, the reader may think about
them as abstract machines or operations without an associated ASM rule (sig-
nature names), since the generality of the ASM refinement concept allows one to
generalize the specific implementations refered to in [15] to ASM refinements [4].

Delegation Pattern In this section we illustrate the use of the ambient con-
cept for a uniform description of what we call Delegation pattern behavior that
is common to various object-oriented patterns in [15], which as we will see also
share a common (in fact almost the same) class structure. The Delegation in-
stances we show are known under the names Template, Responsibility (together
with its deterministic instance ChainOfResponsibility), Proxy, Strategy, State
and Bridge.

Delegation is used to decouple an interface Operation in an AbstractClass
from its implementations such that at run-time upon a call of Operation an
object delegate in an appropriate classOf (delegate) can be determined to carry
out the call by executing the implementation provided in classOf (delegate). How
delegate is defined varies among Delegation instances and may also determine
some variations of the underlying class structure as illustrated in Fig. 2. In the
Template, Responsibility, Strategy, State and Proxy patterns the implementations
of Operation are defined in subclasses ConcreteClass of AbstractClass instead
of being outsourced as in Bridge to Implementor subclasses ConcreteImplementor .

The behavior of the Delegation pattern is expressed by the following ambient
ASM Delegate which defines the delegation equation for calls of Operation
for specific Request input:

Delegate(Operation, delegate)(Request) =
amb delegate in OperationclassOf (delegate)(Request)

We now analyze how delegate is defined in Delegate instances. This happens ei-
ther externally—this can be either statically, determined by the class structure
(the Template pattern case) or by a data-structure related function (like the
chain traversal function in the ChainOfResponsibility pattern), but also dy-
namically (e.g. via some run-time determined select ion function as in the Respon-
sibility pattern)—or internally by having delegate as a location in AbstractClass
(like in the Bridge pattern) or in some other dedicated class (like in the Proxy,
Strategy and State patterns).

Template Pattern For the Template pattern we read in [15, pg.325]:

Define the skeleton of an algorithm in an operation, deferring some steps
to subclasses. Template Method lets subclasses redefine certain steps of
an algorithm without changing the algorithm’s structure.

This can be done by a refinement of Delegate(Operation, delegate), in-
stantiating delegate statically to denote a subclass ConcreteClass (which implies



Fig. 2. Delegation Pattern Structure. 1. is for Template and Responsibility, 2.
for Proxy, Strategy and State, 3. for Bridge

of course classOf (delegate) = ConcreteClass). The definition of Delegate has
the following unfolding when applied to TemplateMethod11 and ConcreteClass:

Delegate (TemplateMethod,ConcreteClass) =
amb ConcreteClass in TemplateMethod

In this interpretation TemplateMethod stands for ‘the skeleton of an al-
gorithm’ which may call some abstract PrimitiveOperations, i.e. interfaces pro-
vided by the AbstractClass. AbstractClass stands for an ‘Application’ and every
subclass ConcreteClass for an individual ‘MyApplication’ which provides its in-
terpretation op(ConcreteClass, x ) of the abstract PrimitiveOperations op(x ) ‘to
carry out subclass-specific steps of the algorithm’. This refinement type and
various generalizations of it are frequently used with ASMs.

If one wants to restrict the subclass-specific steps to steps of abstract sub-
machines, without modifying the interpretation of functions which are already
defined in AbstractClass, it suffices to declare only those locations as the class
ambient dependent ones which one wants to specifically implement.

11 TemplateMethod is just a renaming of Operation to adhere to the names used
in [15, pg.325].



Responsibility Pattern The goal of the Responsibility pattern follow-
ing [15, pg.223] is to

avoid coupling the sender of a request to its receiver by giving more than
one object a chance to handle the request.

e.g. when a static or an a priori specification of the association is impossible.12

This can be interpreted as an instantiation of Delegate where delegate is de-
termined by a not furthermore specified external select ion, applied to the set
of ReceivingObj ects in subclasses ConcreteClass which CanHandle the Request
using the implementation of Operation in their class.

delegate = select
({o ∈ ReceivingObj (Request) | CanHandle(o,Operation)(Request)})

This determines also the Responsibility class structure, see Fig. 2. The select ion
mechanism is furthermore specified in the Chain of Responsibility pattern by the
stipulation that ‘the handler should be ascertained automatically’ so that one
has to ‘chain the receiving objects and pass the request along the chain until an
object handles it’. This means that ChainOfResponsibility is a refinement
of Responsibility by specializing the select mechanism to choose the first ele-
ment a which CanHandle(a,Request) with respect to a given order relation for
the set ReceivingObj . 13

Proxy Pattern The Proxy pattern is intended to ‘provide a surrogate or place-
holder for another object to control access to it’ [15, pg.207].14 This can be in-
terpreted as an instantiation of Delegation where delegate is ‘the real object that
the proxy represents’; in fact delegate is renamed for this pattern to realSubject .
More precisely delegate is a ConcreteClass instance (of one of the subclasses)
which is kept in a placeholder location of a dedicated subclass of AbstractClass
called Proxy such ‘that a Proxy can be used anywhere a RealSubject is ex-
pected’ [15, pg.210]. In this sense Proxy refines Operation by forwarding client
calls to the delegate which is passed as ambient parameter to the implementation
OperationclassOf (delegate). This determines the class structure of this pattern
instance as illustrated in Fig. 2.

In the same way one can formalize also various instances of proxies. For
example a remote proxy is one which forwards every Request call to a delegate
in a different address space. The ASM ambient concept covers this address space

12 Therefore AbstractClass, ConcreteClass and Operation are renamed in [15] re-
spectively to AbstractHandler, ConcreteHandler and HandleRequest.

13 To ascertain the handler automatically, it remains to program this function, e.g.
by an appropriate instance of the iterator pattern. In the Command pattern the
association order is defined by the client.

14 Therefore AbstractClass, ConcreteClass and Operation are renamed to respectively
Subject, RealSubject and Request.



aspect, so that it suffices to impose the mentioned constraint on the values of
delegate for a remote proxy call.

Similarly one can extend the formalization to cover a virtual proxy which
caches delegate information via some Cache(realSubject ,Request) so that its
access can be postponed. Analogously for protection proxies which check the
caller’s permission to access realSubject .Operation.

Strategy and State Patterns The Strategy and State patterns are proposed
to make a variety of different implementations interchangeable, where for the
common behavior the difference in the assumptions made in the two patterns
about the source of the interchangeable algorithms does not matter. For Strategy
we read:

Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from
clients that use it. [15, pg.315]

The intention of the State pattern is described as to

allow an object to alter its behavior when its internal state changes. The
object will appear to change its class.[15, pg.305]

Both patterns can be interpreted as an instance of Delegate with the same
class structure as shown for the Proxy pattern in Fig. 2. The class Proxy is just
renamed to Context , which is required to use the Operation interface15 ‘to call
the algorithm defined by a ConcreteClass’ and for this purpose is ‘configured
with a ConcreteClass object’, namely delegate.16 No new definition is needed
to satisfy the requirement that the ‘context delegates state-specific requests to
the current ConcreteClass object’ and that each implementing machine hides its
specific data structures and its specific algorithm by being called via a subclass
instance delegate ‘that defines the current state’ of Context.

Remark on Strategy . The pattern description leaves it open how exactly
Strategy and Context interact, except for requesting that ‘clients interact with
the context only’ and that ‘a context forwards request from its clients to its
strategy’. In fact ‘a context may pass all data required by the algorithm to the
strategy when the algorithm is called. Alternatively, the context can pass itself

15 Renaming also Operation to Algorithm respectively Handle, AbstractClass to
Strategy respectively State, ConcreteClass to ConcreteStrategy respectively Con-
creteState, the Operation(Context) in State to StateSpecificRequest.

16 Correspondingly in the State pattern, Operation (named Handle) is interpreted as
‘an interface for encapsulating the behavior associated with a particular state of the
Context’ and each of its implementations in ConcreteState to ‘implement a behavior
associated with a state of the Context’ [15, pg.306]. Furthermore, OperationContext

is called StateSpecificRequest and interpreted to represent ‘the interface of inter-
est to clients’: each client request triggers a concrete Handle implementation that
depends on the concrState.



as an argument to Strategy operations. That lets the strategy call back on the
context as required.’ [15, pg.317]

An instance of the Strategy pattern is found in the Network Leader ASM,
defined in [7, 6.1.5] at the abstract level out of three submachines propose, propos-
alsImprove and improveByProposals. These three submachines are then refined
by different algorithms to compute either only a leader, or the leader with respect
to a total order, or the leader for a partial order, or the leader together with a
termination (synchronization) event, or the leader together with a shortest path
to it.

Bridge Pattern In the Bridge pattern [15, pg.151] delegate (which for this
pattern is renamed to imp standing for an instance of the implementing class)
is declared as a location of the AbstractClass17 and the implementing subclasses
ConcreteClass are outsourced, i.e. separated from AbstractClass to become sub-
classes ConcreteImplementor of another class called Implementor. This new class
provides an OperationImpl interface to be implemented in the subclasses. This
comes up to the following refinement to establish the intended link between the
two interfaces Operation and OperationImpl:

BridgeDelegate(Operation, delegate) =
Delegate(OperationImpl, delegate)

In this interpretation, coming with a class structure as illustrated in Fig. 2,
the pattern provides run-time choices between different refinements of abstract
machines via updates of the delegate to determine the desired implementation
of the common implementation interface OperationImpl, instead of using the
static binding of an implementation to its abstraction as realized by class inher-
itance. In [15, pg.153] it is required that

both the abstractions and their implementations should be extensible by
subclassing. In this case, the Bridge pattern lets you combine the differ-
ent abstractions and implementations and extend them independently.

Therefore AbstractClass is also refinable by some own subclasses ConcreteClass,
independently from refinements of Implementor, so that different implementa-
tions of a common implementation interface become run-time configurable and
run-time assignable.18

Incremental Refinement (Decorator Pattern) The declared goal of the
Decorator pattern is to

17 In [15] this class is renamed for this pattern to Abstraction.
18 Following [15, pg.154] the OperationImp interface for implementation classes

‘doesn’t have to correspond exactly to Abstraction’s interface; in fact the two in-
terfaces can be quite different. Typically the Implementor interface provides only
primitive operations, and Abstraction defines higher-level operations based on these
primitives’.



‘attach additional responsibilities to an object dynamically’ as ‘a flexible
alternative to subclassing for extending functionality’[15, pg.175] .

The implementation of the interface Operation of the abstract class—which
is called here Component, its implementing subclass ConcreteComponent—is to
be considered as subject to get refined by adding behavior. To this purpose ‘a
reference to a Component object’ is kept in a location component, an ‘interface for
objects that can have responsibilites added to them dynamically’. The location
component is kept in a dedicated subclass Decorator which comes with multiple
subclasses ConcreteDecorator , one for each considered AddedBehavior. This
determines the class structure of the pattern illustrated in Fig. 3.

Fig. 3. Decorator Pattern Structure

The value of component is supposed to be an instance of ConcreteComponent
and serves to refer to the given refined behavior OperationDecorator of the
Operation interface.19

OperationDecorator = amb component in Operation

Each subclass ConcreteDecorator adds new behavior to calls of Operation
simply by defining a new submachine AddedBehavior.

OperationConcreteDecorator =
OperationDecorator

AddedBehavior

In case the AddedBehavior is required to be executed within the component
ambient, the equation reads as follows:

19 In the wording of [15] Decorator ‘defines an interface that conforms to Component ’s
interface’.



OperationConcreteDecorator =

amb component in

Operation

AddedBehavior

This kind of purely incremental refinement occurs frequently in ASM de-
velopments and is related to conservative extensions of the underlying theories
to prove properties which relate the behavior of the given and of the extended
machine. It has been heavily exploited in the Jbook [29] for coupling design and
verification and appears also in the development of software product lines [3]. In
Event-B [2] too it plays a special role and is called there superposition refinement.

Encapsulation (Memento Pattern) The Memento pattern illustrates how
for reasons of encapsulation abstract operations which belong to one say Origi-
nator class can be refined in another dedicated class.

Without violating encapsulation, capture and externalize an object’s in-
ternal state so that the object can be restored to this state later.[15,
pg.283]

To achieve this goal two interfaces CreateMemento and SetMemento,
provided by the Originator class and intended to encapsulate recording and re-
trieving the current Originator state curState, are implemented via SetState,
GetState operations of a separate Memento class, resulting in the class struc-
ture illustrated in Fig. 4.

Fig. 4. Memento Pattern Structure

SetState, GetState ‘may store as much or as little of the originator’s
internal state as necessary at its originator’s discretion’ creating or restoring
snapshots mementoState(m) of the internal curState recorded in a memento in-
stance m created for the purpose. In the following ambient ASM description
of the encapsulation, for which curState is declared to be ambient indepen-



dent, the reader may think of SetState(s) as mementoState(m) := s and of
GetState(m) as Returning mementoState(m).20

CreateMemento =

let m = new (Memento) in

amb m in SetState(curState) // read mementoState(m) := curState

Return m

SetMemento(m) = Return amb m in GetState

// read: returning mementoState(m) //

Views (Publish-Subscribe Pattern) The Publish-Subscribe (also called Ob-
server) pattern exploits the refinement mechanism to reflect different views be-
tween multiple observers and one subject. The goal is to

define a one-to-many dependency between objects so that when one ob-
ject changes state, all its dependents are notified and updated automat-
ically [15, pg.293].

The structure of the pattern participants is defined by two groups, each
consisting of some abstract machines in a class Subject respectively Observer
together with their refinements in subclasses ConcreteSubject and ConcreteOb-
server. See Fig. 5.

Fig. 5. Publish-Subscribe Pattern Structure

20 We skip the formulation of the two Caretaker interfaces whose purpose is to guar-
antee that Memento ‘protects against access by objects other than the originator’,
see [15, pg.285] for the details.



Subject has a location for the observers—the set of instances of Observer
which are currently known to the Subject—and three interfaces to manipulate
or notify21 the set of observers:

Attach(o) = Insert(o, observers)

Detach(o) = Delete(o, observers)

Notify = forall o ∈ observers amb o in StateUpdate

In addition to these operations imported from Subject, each ConcreteSubject has
a subjectState location—intended to represent that part of its state which is of
interest to concrete observers—together with two submachines GetState and
SetState(val) to manipulate subjectState:

GetState = Return subjectState

SetState(val) =

subjectState := val

// more generally one could write Modify(subjectState, val) for val //

Each ConcreteObserver refines the StateUpdate interface imported from
the Observer and comes with two locations:

subject, denoting an instance of a class ConcreteSubject,
observedState, denoting the concrete observer’s view of the state of its subject.

The imported StateUpdate interface is refined as follows:

StateUpdate =

observedState := view(amb subject in GetState)

Unfolding the two equations defining Notify shows the intended memory shar-
ing and the fact that the ConcreteObserver machines may differ by their view
function which is used to refine the StateUpdate interface for notifying a con-
crete observer about changes of the subjectState in the subject it observes:

amb o in StateUpdate // evaluate for curamb = o

= observedState(o) := view(o,

let curamb = subject(o) in (GetState)∗)

= observedState(o) := view(o, let curamb = subject(o) in

Return subjectState(curamb))

= observedState(o) := view(o, subjectState(subject(o)))

NB. o, subjectState are ambient independent

21 The pattern definition in [15] does not include any scheme to explain how state
changes in the subject lead to a notification of the observers.



3.6 Moving Ambients

This is not the place to discuss the huge literature on mobility for which we refer
to characteristic surveys [32,11,14]. We use for our illustrative purposes in this
section just one outstanding example of a calculus of mobile agents, namely the
one which was defined by Cardelli and Gordon in [8,9]. The three operations
studied there for changing the hierarchical structure of ambient processes are
ambient Entry, Exit and Opening. There is a natural formulation for each of
these operations in terms of an ambient ASM rule. These three simple rules fully
capture the calculus of mobile agents which is defined in [8] in terms of roughly
two dozens reduction and congruence rules.22

MobileAgentsManager =
choose R ∈ {Entry,Exit,Open} in

R

This machine runs, transforming the initially given current ambient process
curAmbProc, as long as there are ambients to enter, to exit or to open in the
current value of curAmbProc. Choosing for each step one of the above three rules
reflects the deductive nature of the calculus, where in each step one reduction
rule is applied.23

Ambient processes (sometimes called also simply ambients) are written in [8]
as terms n[P ] and interpreted as denoting process P located to run at n. In the
context of ambient ASMs one can define n[P ] as follows:

n[P ] = amb n in P

Ambient processes have a tree structure, which is induced by the nesting
of ambients as resulting from the inclusion of brackets [] or program texts amb
n in . . .. In each ambient process n[P ] the following three items are distinguished,
which can be accessed by appropriate functions:

An ambName (here n, element of a domain AmbName of ambient names),
which is considered as root of the tree induced by amb n in P and therefore
is sometimes also used to uniquely denote the tree itself.

22 It is a different question we do not discuss here which logic might be appropriate
to describe and prove properties of mobile agents, see for example [10]. From a long
experience with proving properties for ASMs, either by traditional mathematical
proofs (like in [29,3]) or in some dedicated logic calculus (like in [26,28]) or in a
machine-assisted manner (e.g. using KIV [17,25,24,19] or PVS [18,33,30,12,13,16] or
AsmTP [27]), it wouldn’t surprise us if the application of Cardelli’s and Gordon’s
ambient logic to ambient ASMs as a result of the definitional simplification also leads
to a simplification of the needed logical combinatorics.

23 None of the 17 structural congruence rules and no other reduction rules than Entry,
Exit and Open—called Red In, Red Out, RedOpen in [8]—are needed because of
the choose construct in the three ASM rules and because of considering subtrees(n)
as a (possibly multi-) set (without order).



A (possibly empty) dynamic set locAg(n) of (non-ambient) processes, say
P1, . . . ,Pp , called local agents of the ambient process and viewed as located
at n and running there.
A (possibly empty) dynamic set subAmb(n) of subambients, say amb m1 in
Q1, . . ., amb mq in Qq .

The local agents and subambients of n form a (possibly multi-) set subtrees(n),
each element t of which has its own (possibly multi-) set subtrees(t), etc. Pro-
cess P of ambient amb n in P , which we denote by ambBody(n), is interpreted
in [8] as the parallel composition of the elements of subtrees(n), written as fol-
lows, using the process algebra notation | for the parallel composition operator:24

P = P1 | . . . | Pp | amb m1 in Q1 . . . | amb mq in Qq

The Entry, Exit and Opening actions change the ambient process they are
applied to. Therefore we use a variable25 curAmbProc to keep track of the current
value of the executed overall ambient process. We identify curAmbProc with the
tree it induces, so that the Entry, Exit and Opening actions can be formulated as
tree operations applied to any nodes of curAmbProc, changing the current value
of the dynamic function subtrees at these nodes.26 We freely use other (derived)
tree functions, like sibling and parent , which can all be defined from the dynamic
function subtrees, as well as tree manipulation operations to Insert elements
into and to Delete elements from subtrees(n).

Entry into an Ambient The Entry of an ambient n[. . .] into a sibling ambient
m[. . .] (if there is one), to become one of its subambients, is triggered by a so-
called entry action child of n, which is denoted in m.P . The inverse Exit of
a subambient n[. . .] out of its parent ambient m[. . .] (if it exists), to become
one of its sibling ambients, is triggered by a so-called exit action child of n
denoted out m.P . Opening of a sibling ambient m[. . .] (if it exists) is triggered
by a process denoted open m.P . We now define the meaning of these three
operations in detail.

Entry is triggered if curAmbProc has an ambient node n with an entry
action child, say in m.P . Such an m serves as target ambient (name) of the
entry action. Entry chooses such a node n in curAmbProc (if there is any) and
then checks whether there is a sibling ambient of n whose ambName matches the
target ambient name m. If there is some, Entry makes amb n in (in m.P | . . .)
move away from this sibling position to let (the modified process) amb n in (P |
. . .) become a subambient of ambient m. See Fig.6.

Entry =
if curAmbProc contains an entry action then

24 The parallelism is interpreted via interleaving.
25 In the ASM framework variables are treated as dynamic 0-ary functions.
26 In terms of the classification of ASM locations this means that curAmbProc is a

derived dynamic (0-ary) function one can define in terms of subtrees.



Fig. 6. Entry operation

choose S = amb n in ((in m.P) | Q) ∈ EntryAction(curAmbProc)
if sibling(S ) contains a process with ambient name m then

choose amb m in R ∈ sibling(S )
Delete(S , subtrees(parent(m)))27

// n disappears as sibling of target ambient m
Insert(amb n in (P | Q), subtrees(m))

// modified n becomes subambient of m
where

curAmbProc contains an entry action =
EntryAction(curAmbProc) 6= ∅

EntryAction(curAmbProc) =
{n ∈ curAmbProc | forsome m,P ,Q ambBody(n) = (in m.P) | Q}

X contains a process with ambient name m =
forsome R (amb m in R) ∈ X

Exit from an Ambient The Exit operation is triggered by an exit action
child out m.P (if there is some) of an ambient n and transforms its ambient
process, in case this process is a subambient n[. . .] of a parent ambient m[. . .] in
curAmbProc, into a sibling(m). See Fig.7.

Exit =
if curAmbProc contains an exit action then

choose S = amb n in ((out m.P) | Q) ∈ ExitAction(curAmbProc)
if parent(n) = m then

Delete(S , subtrees(m)) // n disappears as subambient of m
Insert(amb n in (P | Q), subtrees(parent(m)))

// modified n becomes sibling ambient of m
where

curAmbProc contains an exit action =
ExitAction(curAmbProc) 6= ∅

27 To guarantee that parent(m) is always defined, we assume without loss of generality
that the tree representation of curAmbProc has a root that is not a process.



Fig. 7. Exit operation

ExitAction(curAmbProc) =
{n ∈ curAmbProc | forsome m,P ,Q ambBody(n) = (out m.P) | Q}

Opening an Ambient Open is triggered by an ambient dissolving action
open m.P , which “provides a way of dissolving the boundary of an ambient
named m located at the same level as open” [8, Sect.2.2]. In other words Open
replaces a subtree pair (open m.P ,amb m in Q) of siblings in curAmbProc by
the new siblings pair (P ,Q). See Fig.8.

Fig. 8. Open operation

Open =
if curAmbProc contains an ambient dissolving action then

choose S1 = open m.P1 ∈ AmbDissolvAction(curAmbProc)
if sibling(S1) contains a process with ambient m then

choose S2 = amb m in P2 ∈ sibling(S1)
let p = parent(S1)
forall i ∈ {1, 2}
Delete(Si , subtrees(p))
Insert(Pi , subtrees(p))

where



curAmbProc contains an ambient dissolving action =
AmbDissolvAction(curAmbProc) 6= ∅

AmbDissolvAction(curAmbProc) =
{n ∈ curAmbProc | forsome m,P ambBody(n) = open m.P}

X contains a process with ambient m =
forsome Q (amb m in Q) ∈ X

Each time there is no element to choose, the tree manipulation operation
cannot be performed (in the ASM framework the rule is then equivalent to
skip, which does not change the tree curAmbProc).

The restriction operator (νn)P can be expressed in the ASM framework by
P(n/new(AmbName)), due to the new function which each time it is applied to
a set provides a new, completely fresh element for this set.

4 Related Work and Conclusion

We tried in this paper to achieve a qualitative goal by a) providing a simple def-
inition of a general ambient concept and b) illustrating its wide applicability by
a series of characteristic non-trivial examples from different domains. In essence
it was the arguably most general notion of ASM state which allowed us to fully
exploit the power of parameterization for defining a most general abstract no-
tion amb env in M of machines working in a defined environment. Numerous
other ambient concepts have been proposed in the literature. Since this is not
the place to list this literature, in accordance with common scientific pratice we
have cited only what we have used or refered to directly.

What can be said in general is that the definitions in the literature typically
provide specific solutions for particular contexts like mobility of devices or of code
or of the context structure for the execution of a (e.g. Java) program, whereas
the construct we have defined within the ASM framework is of abstract nature,
covering in a uniform way various forms of context (syntactical, computing, user
or even physical context). We are not aware of any other ambient definition
which covers in a simple and uniform way the challenging examples we use in
this paper to illustrate the wide applicability of our definition.

Another distinction is that our definition treats ambients as first-order ob-
jects, exploiting the generality of the notion of state underlying ASMs. This
simplifies enormously to define and work with the concept in different applica-
tion areas.

The main purpose of going public with this definition is to trigger further uses
to acquire a still wider range of experimental experience before embarking on an
implementation, e.g. by programming a plug-in for the CoreASM engine [1].
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