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Abstract. We present a reduction semantics for the LYSA calculus ex-
tended with session information and a static analysis for it. If a protocol
passes the analysis then it is free of replay attacks.

1 Introduction

Since the 80’s, formal analyses of cryptographic protocols have been widely stud-
ied. Many formal methods such as BAN logic [4], model checking and theorem
proving have been put forward. The formal model for security protocols built
by Dolev and Yao is particularly significant. Indeed, most of the formal analysis
tools were built upon it, e.g. Meadows and Syverson NRL [7], Millen Interroga-
tor [8], Paulson inductive method [12], Isabelle [13], etc. Each tool is equipped
to detect a certain amount of attacks, including replay attacks.

Replay attacks are classified, by Syverson in [14], at the highest level as
run-external and run-internal attacks, depending on the origin of messages.

In this paper, we restrict our attention to run-external attacks. This type of
attacks allow the attacker to achieve messages from one run of a protocol, often
referred to as a session, and to send them to a principal participating in another
run of the protocol.

Here we extend the LYSA calculus [2, 3] with annotations about sessions. A
control flow analysis is proposed for the extended LYSA, which soundly over-
approximates the behavior of protocols. It tracks the set of messages that are
transferred over the network, and records the potential values of variables. Since
our analysis is sound, we capture malicious activities, expressed in terms of an-
notation violations. In contrast to model checking approaches, our static analysis
is fully automatic and termination is always guaranteed. The proposed analysis
has been implemented. The resulting tool was applied to some cryptographic
protocols, such as Otway-Rees [11] and Needham-Schroeder [10].

The paper is organized as follows. In Section 2, we present the LYSA calculus
annotated with session information. We introduce the control flow analysis in
Section 3 and prove our main results. In Section 4 we conclude with an assessment
of our approach.
? This work has been partially supported by the project SENSORIA.



2 A reduction semantics for the LYSA calculus

LYSA [2, 3] is a process algebra, in the tradition of the π- [9] and Spi- [1] calculi.
Among its peculiar features, there are: (1) the absence of channels: in LYSA all
processes have only access to a single global communication channel, the ether
and (2) tests associated with input and decryption are expressed using pattern
matching.

2.1 Syntax

LYSA consists of terms and processes. The syntax of terms E and processes P
is given below. Here N and X denote sets of names and variables, respectively.
For the sake of simplicity, we only consider here some basic terms and encryp-
tions. The name n is used to represent keys, challenges and names of principals.
Encryptions are tuples of terms E1, . . . , Ek encrypted under a shared key repre-
sented by the term E0. We adopt an assumption of perfect cryptography in this
paper.

E ::= standard terms
n name (n ∈ N )
x variable (x ∈ X )
{E1, . . . , Ek}E0 symmetric encryption (k ≥ 0)

P ::= standard processes
0 nil
P1 | P2 parallel composition
(ν n)P restriction
!P replication
decrypt E as {E1, . . . , Ej ;xj+1, . . . , xk}E0 in P symmetric decryption
(E1, . . . , Ej ;xj+1, . . . , xk).P input
〈E1, . . . , Ek〉.P output

In addition to the classical constructs for composing processes, LYSA also
contains an input construct with matching and a decryption operation with
matching. The idea behind the matching is as follows: we allow a prefix of the
received tuple to match a selection of values. If the test is passed, the remaining
values are bound to the relevant variables.

Extended LYSA We change the syntax of standard LYSA so that each term
and process now carries an identifier of the session it belongs to. In what follows,
we assume that SID is a fixed enumerable set of session identifiers s, and denote
E1, E2, . . . the extended terms and P,Q, . . . the extended processes defined below.
Note that variables carry no annotation and therefore we shall consider [x]s and
x to be the same (see below).
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E ::= terms with session identifiers
[n]s name
x variable
[{E1, . . . , Ek}E0 ]s symmetric encryption (k ≥ 0)

P ::= processes with session identifiers
0 nil
P1 | P2 parallel composition
(ν [n]s)P restriction
[!P ]s replication
decrypt E as {E1, . . . , Ej ;xj+1, . . . , xk}E0 in P symmetric decryption
(E1, . . . , Ej ;xj+1, . . . , xk).P input
〈E1, . . . , Ek〉.P output

We define a function F and a function T , in the style of [5], that map standard
terms and processes into the extended ones, by attaching the session identifiers
inductively. Note that F unwinds the syntactic structure of an extended term
until reaching a basic term (a name or a variable), while T unwinds the structure
of an extended process until reaching a nil (which is untagged) or a replication.

Definition 1. Distributing Session Identifiers

F : E × s→ E
−F([n]s) = [n]s −F([x]s) = x

−F([{E1, . . . , Ek}E0 ]s) = [{F([E1]s), . . . ,F([Ek]s)}F([E0]s)]s

T : P × s→ P
−T ([〈E1, . . . , Ek〉.P ]s) = 〈F([E1]s), . . . ,F([Ek]s)〉.T ([P ]s)

−T ([(E1, . . . , Ej ;xj+1, . . . , xk).P ]s) =
(F([E1]s), . . . ,F([Ej ]s);xj+1, . . . , xk).T ([P ]s)

−T ([decrypt E as {E1, . . . , Ej ;xj+1, . . . , xk}E0 in P ]s) =
decrypt F([E]sid) as {F([E1]s), . . . ,F([Ej ]s);xj+1, . . . , xk}F([E0]s) in T ([P ]s)

−T ([P | Q]s) = T ([P ]s) | T ([Q]s) −T ([(ν n)P ]s) = (ν [n]s)T ([P ]s)

−T ([!P ]s) = [!P ]s −T ([0]s) = 0

For our subsequent treatment, it is convenient introducing two auxiliary op-
erators. The first one, ≈, defines the equivalence between extended terms, i.e. two
extended terms are equal if and only if their standard counterparts are equal and
the second one, I, extracts the outermost session identifier of an extended term.
Note that I is only defined on closed terms.

Definition 2. Two auxiliary operators

– Assume F([E1]s1) = E1 and F([E2]s2) = E2, then E1 ≈ E2 iff E1 = E2

– I: E → SID such that: (i) I([n]s) = s; (ii) I([{E1, . . . , Ek}E0 ]s) = s
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2.2 Operational Semantics

Below we assume the standard structural congruence ≡ on LYSA processes, as
the least congruence satisfying the following clauses (as usual fn(P ) is the set of
the free names of P ):

1. P ≡ Q if P and Q are disciplined α− equivalent
2. P | 0 ≡ P
3. P | Q ≡ Q | P
4. (P | Q) | R ≡ P | (Q | R)
5. (νx)0 ≡ 0
6. (νx)(νy)P ≡ (νy)(νx)P
7. (νx)(P | Q) ≡ P | (νx)Q if x /∈ fn(P )

To simplify the definition of our control flow analysis in Section 3, we dis-
cipline the α-renaming of bound values and variables. To do it in a simple and
“implicit” way, we assume that values and variables are “stable”, i.e. that for
each value n ∈ N there is a canonical representative bnc for the set {n, n0, n1, · · ·}
and similarly, for each variable x ∈ X there is a canonical representative bxc for
the set {x, x0, x1, · · ·}. Then, we discipline α-conversion as follows: two values
(resp. variables) are α-convertible only when they have the same canonical value
(resp. variable). In this way, we statically maintain the identity of values and
variables that may be lost by freely applying α-conversions. Hereafter, we shall
simply write n (resp. x) for bnc (resp. bxc).

Following the tradition of the π-calculus, we shall give the extended LYSA

a reduction semantics. The reduction relation α→R is the least relation on
closed processes that satisfies the rules in Table 1. It uses the standard notion of
substitution, P[E/x], structural congruence, as defined above, and the disciplined
treatment of α-conversion. The reduction relation carries labels on the arrows
to record some key movements during the computational steps.

As far as the semantics is concerned, we consider two variants of reduction
relation α→R, graphically identified by a different instantiation of the relation
R, which decorates the transition relation. One variant ( α→RM) takes advantage
of annotations, the other one ( α→) discards them: essentially, the first semantics
checks the freshness of messages, while the other one does not (see below):

– the reference monitor semantics P α→RM Q takes

RM((s1, s′1), . . . , (sk, s′k)) = ∨ki=1 (si = s′i)

– the standard semantics P α→ Q takes, by construction, R to be universally
true.

The rule (Com) expresses that an output 〈E1, . . . , Ej , Ej+1, . . . , Ek〉.P is matched
by an input (E1, . . . , Ej ;xj+1, . . . , xk) in case the first j elements are pairwise the
same when all the annotations are recursively removed. When the matchings are
successful each Ei is bound to the corresponding xi.
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(Com)

∧ji=1 Ei ≈ E
′
i

〈E1, . . . , Ek〉.P | (E ′1, . . . , E ′j ;xj+1, . . . , xk).Q
〈E1,...,Ek〉→R P | Q[Ej+1/xj+1, . . . , Ek/xk]

(Decr)

∧ji=0 Ei ≈ E
′
i ∧ R((I(E0), I(E ′0)), . . . , (I(Ej), I(E ′j)))

decrypt [{E1, . . . , Ek}E0 ]s as {E ′1, . . . , E ′j ;xj+1, . . . , xk}E′0 in P
{E1,...,Ek}E0→R P[Ej+1/xj+1, . . . , Ek/xk]

(Par) (Congr)
P α→R P ′

P | Q α→R P ′ | Q
P ≡ Q ∧ T ([Q]s)

α→R Q′

T ([P ]s)
α→R Q′

(Res) (Repl)
P α→R P ′

(ν [n]s)P (ν [n]s)α→R (ν [n]s)P ′
[!P ]s

ι→R T ([P ]s) | [!P ]s′ (s′ fresh)

Table 1. Operational Semantics P α→R P ′, parameterized on R

Similarly, the rule (Decr) expresses the result of matching an encryption
[{E1, . . . , Ek}E0 ]s with decrypt E as {E ′1, . . . , E ′j ;xj+1, . . . , xk}E′0 in P. As was the
case for communication, the first j components Ei and E′i must be “equal”
in terms of ≈, and additionally the keys must be the same, i.e. E0 ≈ E ′0.
When the matching is successful, each Ei is bound to the corresponding xi.
In the reference monitor semantics we ensure that the decrypted message comes
from the current session by checking whether the first j components Ei and
E ′i have the same session identifiers. In the standard semantics the condition
R((I(E0), I(E ′0)), . . . , (I(Ej), I(E ′j))) is universally true and thus can be ignored.

The rule (Congr) makes use of the function T , which bridges the gap between
the semantics defined on the extended processes P and the structural congruence
defined on the standard processes P .

In case of (Res), the restricted names are re-arranged in such a way that they
are put in outermost position, by enlarging their scope and possibly α−converting
names. The re-arrangement is defined as

(ν[n]s)α =
{

(ν(~m, [n]s))α′ if α = (ν ~m)α′

(ν([n]s, ~m))α′ if α = α′(ν ~m)

where ~m stands for a list of names with session identifiers, e.g. [m1]s1 , [m2]s2 , . . ..
In case of (Repl), the process makes a silent move ι and is unfolded once.

Note that the new session identifier, s′ in this case, has to be unique for not
mixing the processes up.

The rule (Par) is standard.

5



2.3 Dynamic Property

As for the dynamic property of the process, we shall consider the names localized
to their generators and define the property fresh as:

Definition 3. A process P enjoys the freshness property iff for all the deriva-
tions of P

P α1→R . . .
αl→R T ([R]s) | Q

(ν ~m){E1,...,Ek}E0→R T ([R′]s) | Q

there is at least one term Ei (1 ≤ i ≤ k) in the encryption {E1, . . . , Ek}E0 such
that Ei ∈ ~m and I(Ei) = s.

2.4 Example

We shall use the Wide Mouthed Frog protocol [4] (WMF) to illustrate how to
encode protocols in our calculus. WMF is a symmetric key management protocol
aiming at establishing a secret session key Kab between the two principals A and
B sharing secret master keys KA and KB , respectively, with a trusted server S.
The protocol is specified by the following informal narration:

1. A→ S : {B,Kab}KA

2. S → B : {A,Kab}KB

3. B → A : {Msg}Kab

In the first message A sends to S its name, and then a fresh key Kab and the
name of the intended receiver B, encrypted under the key KA. In the second
one, S forwards the key and the sender name A to B, encrypted under the key
KB . Finally, B sends A the message Msg encrypted under the session key Kab

(Note that usually A sends the last message).
The extended LYSA specification of the WMF protocol is [!P ]0 where P =

(A|B|S) contains three processes running in parallel, each of them models one
principal’s activity, and is as follows:

1. A (υ Kab)
A → 〈A,S, {B,Kab}KA

〉.
3′. → A (B,A; z).
3′′. A decrypt z as {; zm}k in 0
2′. → B | (S,B; y).
2′′. B decrypt y as {A; k}KB

in
3. B (υ Msg)

B → 〈B,A, {Msg}k〉.0
1′. → S | (A,S; p).
1′′. S decrypt p as {B; k′}KA

in
2. S → 〈S,B, {A, k′}KB

〉.0

6



3 Static Analysis

The aim of the analysis is to give a safe over-approximation of all possible behav-
ior of protocols; this will include the possible messages communicated over the
network and the possible value-bindings of the variables. At each decryption, the
analysis will check whether the freshness property is preserved and any possible
violation will be regarded in an error component of the analysis.

3.1 Analysis of terms

For each term E, the analysis will determine a superset of the possible values it
may evaluate to. For this we keep track of the potential values of variables and
to this end we introduce a global abstract environment :

– ρ : X → ℘(V) maps the variables to the sets of values that they may be
bound to.

where V is for the set of terms with no free variables. The judgement for expres-
sions takes the form ρ |= E : ϑ where ϑ ⊆ V is an acceptable estimate of the set
of values that E may evaluate to in the environment ρ. The judgement is defined
by the axioms and rules of Table 2. Basically, the rules amount to demanding
the ϑ contains all the values associated with the components of a term. In the
sequel we shall use two kinds of membership tests: the usual V ∈ ϑ that simply
tests whether V is in the set ϑ and the faithful test V ∝ ϑ that holds if there is
a value V ′ in ϑ that equals V when the annotations are inductively ignored.

3.2 Analysis of processes

In the analysis of processes we focus on which values may flow on the network:

– κ ⊆ ℘(V∗): the abstract network environment that includes all the message
sequences that may flow on the network.

The judgement for processes has the form: ρ, κ |=RM P : ψ expressing that ρ, κ
and ψ are valid analysis estimates of process P, where ψ is the possibly empty
set of error-component which collects an over-approximation of the freshness
violations; we prove in Theorem 2 (in Section 3.1) that when ψ = ∅ we may
dispense with the reference monitor. The judgement is defined by the axioms
and rules in the lower part of Table 2 and is explained below.

The rule for output does two things: first, all the expressions are evaluated
and then it is required that all the combination of the values found by this
evaluation is recorded in κ. Finally, the continuation process must be analysed.

The rule for input incorporates pattern matching, which is dealt with by
first evaluating all the of first j expressions in the input to be the sets ϑi for
i = 1, . . . , j. Next, if any of the sequences of length k in κ are such that the first
j values component-wise are included in ϑi then the match is concluded to be

7



[n]s ∈ ϑ
ρ |= [n]s : ϑ

ρ(x) ⊆ ϑ
ρ |= x : ϑ

∧ki=0ρ |= Ei : ϑi ∧
∀v0, . . . , vk : ∧ki=0vi ∈ ϑi ⇒ [{v1, . . . , vk}v0 ]s ∈ ϑ

ρ |= [{E1, . . . , Ek}E0 ]s : ϑ

∧ki=1ρ |= Ei : ϑi ∧ ∀v1, . . . , vk ∧ki=1 vi ∈ ϑi ⇒
〈v1, . . . , vk〉 ∈ κ ∧ ρ, κ |=RM P

ρ, κ |=RM 〈E1, . . . , Ek〉.P

ρ |= E : ϑ ∧ ∧ji=0 ρ |= Ei : ϑi ∧ ∀[{v1, . . . , vk}v0 ]s ∈ ϑ : ∧ji=0vi ∝ ϑi ⇒
∧ki=j+1vi ∈ ρ(xi) ∧

( 6 ∃i : 1 ≤ i ≤ k : I(vi) 6= I(Ei)⇒ (xj+1, . . . , xk) ∈ ψ) ∧
ρ, κ |=RM P : ψ

ρ, κ |=RM decrypt E as {E1, . . . , Ej ;xj+1, . . . , xk}E0 in P : ψ

∧ji=1ρ |= Ei : ϑi ∧ ∀〈v1, . . . , vk〉 ∈ κ : ∧ji=ivi ∝ ϑi ⇒
∧ki=j+1vi ∈ ρ(xi) ∧ ρ, κ |=RM P : ψ

ρ, κ |=RM (E1, . . . , Ej ;xj+1, . . . , xk).P : ψ

ρ, κ |=RM T ([P ]s) : ψ ∧ ρ, κ |=RM T ([P ]s′) : ψ

ρ, κ |=RM [!P ]s : ψ

ρ, κ |=RM P : ψ ∧ ρ, κ |=RM Q : ψ

ρ, κ |=RM P | Q : ψ

ρ, κ |=RM 0 : ψ
ρ, κ |=RM P : ψ

ρ, κ |=RM (ν[n]s)P : ψ

Table 2. Analysis of terms and processes

successful. In this case, the remaining values of the k-tuple must be recorded in
ρ as possible bindings of the variables.

The rule for decryption handles the matching similarly to the rule for in-
put. The only difference is that here the matching is performed against j + 1
component including the key. We use the faithful test for matching because
the semantics ignores the annotations. After the successful matching, values are
bound to the corresponding variables and, more important, the session identi-
fiers of the key and first j components have to be checked for equivalence. In
case of unequal, meaning that the values are not from the current session, the
xi is recorded in the error component ψ.

The rule for replication attaches two different session identifiers to two copies
of the process before analysing both of them. Again the newly generated session
identifier has to be unique in order not to mix processes up. We prove in Theorem
1 (in Section 3.1) that it is enough to only analyse two copies of the process.

The rules for the inactive process, parallel composition and restriction are
straightforward.
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3.3 Example

We analyse the WMF protocol and the least solution has a non-empty ψ-
component, i.e.

ρ, κ |=RM WMF : ψ

where ρ, κ and ψ have these non-empty entries

ρ : y 7→ {{[A]0, [Kab]0}[KB ]0 , {[A]1, [Kab]1}[KB ]1}
z 7→ {{[Msg]0}[Kab]0 , {[Msg]1}[Kab]1}
p 7→ {{[B]0, [Kab]0}[KA]0 , {[B]1, [Kab]1}[KA]1}
k 7→ {[Kab]0, [Kab]1}
k′ 7→ {[Kab]0, [Kab]1}
zm 7→ {[Msg]0, [Msg]1}

κ : {〈[A]0, [S]0, [{[B]0, [Kab]0}[KA]0 ]0〉, 〈[A]1, [S]1, [{[B]1, [Kab]1}[KA]1 ]1〉}∪
{〈[B]0, [A]0, [{[Msg]0}[Kab]0 ]0〉, 〈[B]1, [A]1, [{[Msg]1}[Kab]1 ]1〉}∪
{〈[S]0, [B]0, [{[A]0, [Kab]0}[KB ]0 ]0〉, 〈[S]1, [B]1, [{[A]1, [Kab]1}[KB ]1 ]1〉}

ψ : {(k), (k′), (zm)}

According the rule for [!P ]0 in Table 2, the analysis makes two copies of P
with different session identifiers (0 and 1 in our case), which models two sessions
running together.

Because the messages from both sessions are sent over the same network,
which the attacker has the total control of, the attacher can then fool a principal
to accept a message actually from another session. This is suggested by the non-
empty ψ: the three variables in ψ indicate that messages in step 1′′, 2′′ and 3′′

may not be fresh. This is highly dangerous because the principal may be forced
to use an old session to encrypt the security data and in case of old session is
leaked3, confidentiality is not preserved any more. A possible attack is shown
below where M represents the attacker:

1. [A]1 → [S]1 : {[B]1, [Kab]1}[KA]1

2. [S]1 → M : {[A]1, [Kab]1}[KB ]1

M → [B]1 : {[A]0, [Kab]0}[KB ]0

3. [B]1 → [A]1 : {[Msg]1}[Kab]0

3.4 Semantic properties

We prove below that our analysis respects the operational semantics of extended
LYSA. More precisely, we prove a subject reduction result for both the standard
and the reference monitor semantics: if ρ, κ |=RM P : ψ, then the same triple
3 This is possible because the attacker normally has unlimited time and resource to

break the code
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(ρ, κ, ψ) is a valid estimate for all the states passed through in a computation
of P, i.e. for all the derivatives of P. Additionally, we show that when the ψ
component is empty, then the reference monitor is useless.

It is convenient to prove the following lemmata. The first states that estimates
are resistant to substitution of closed terms for variables, and it holds for both
extended terms and processes. The second lemma says that an estimate for an
extended processes P is valid for every process congruent to P, as well.

Lemma 1. (Substitution result)

1. ρ |= E : ϑ and E ′ ∈ ρ(x) imply ρ |= E [E ′/x] : ϑ
2. ρ, κ |=RM P : ψ and E ∈ ρ(x) imply ρ, κ |=RM P [E/x] : ψ

Proof of 1 The proof proceeds by structural induction over expression by re-
garding each of the rules in the analysis.

Case (Name). Assume that ρ |= [n]s : ϑ. For arbitrary choices of E ′ and x
it holds that [n]s[E ′/x] = [n]s so it is immediate that also ρ |= [n]s[E ′/x] : ϑ.

Case (Variable). Assume that E = x′, i.e. that ρ |= x′ : ϑ and therefore
ρ(x′) ⊆ ϑ. Then there are two cases. Either E 6= x in which case x′[E ′/x] = x′ so
clearly ρ |= x′[E ′/x] : ϑ. Alternatively, E = x in which case x′[E ′/x] = E ′. Fur-
thermore assume that E ′ ∈ ρ(x) and because ρ(x′) ⊆ ϑ, it holds that ρ |= E ′ : ϑ
in which case ρ |= E [E ′/x] : ϑ by the analysis.

Case (Encryption). Assume that E = {E1, . . . , Ek}E0 , i.e. ρ |= {E1, . . . , Ek}E0 :
ϑ. The result holds by applying the induction hypothesis on each individual Ei.

Proof of 2 The proof is done by straightforward induction applying the induction
hypothesis on any sub-process and lemma 1.1 on any sub-terms.

Lemma 2. (Congruence)
If P ≡ Q and ρ, κ |=RM T ([P ]s) : ψ then ρ, κ |=RM T ([Q]s) : ψ

Proof The proof amounts to a straightforward inspection of each of the clauses
defining P ≡ Q, e.g.
In case P | 0 ≡ P
We assume ρ, κ |=RM T ([P | 0]s) : ψ, which amounts to ρ, κ |=RM T ([P ]s) | 0 : ψ
according to the definition of T , then it must be the case that

ρ, κ |=RM T ([P ]s) : ψ ∧ ρ, κ |=RM 0 : ψ
ρ, κ |=RM T ([P ]s) | 0 : ψ

by the analysis rule. Therefore ρ, κ |=RM T ([P ]s) : ψ is proved.
Other cases are similar and we skip the proofs because of space.

We are now ready to state the subject reduction result. It expresses that our
analysis is semantically correct regardless of the way the semantics is parame-
terised, furthermore the reference monitor can not abort P when ψ is empty.
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Theorem 1. (Subject reduction)

1. If P α→R Q and ρ, κ |=RM P : ψ then also ρ, κ |=RM Q : ψ;
2. Furthermore, if ψ = ∅ then P α→RM Q

Proof By induction on the inference of P α→R Q.
In case (Com) we assume
ρ, κ |=RM 〈E1, . . . , Ek〉.P | (E ′1, . . . , E ′j ;xj+1, . . . , xk).Q : ψ which amounts to:
(a) ∧ki=1ρ |= Ei : ϑi
(b) ∀v1, . . . , vk : ∧ki=1vi ∈ ϑi ⇒ 〈v1, . . . , vk〉 ∈ κ
(c) ρ, κ |=RM P : ψ
(d) ∧ji=1ρ |= E ′i : ϑ′i
(e) ∀〈v1, . . . , vk〉 ∈ κ : ∧ji=1vi ∝ ϑ′i ⇒ ∧ki=j+1vi ∈ ρ(xi) ∧ ρ, κ |=RM Q : ψ
Moreover we assume that ∧ji=1Ei ≈ E ′i because
〈E1, . . . , Ek〉.P | (E ′1, . . . , E ′j ;xj+1, . . . , xk).Q α→R P | Q[Ej+1/xj+1, . . . , Ek/xk]
and we have to prove ρ, κ |=RM P | Q[Ej+1/xj+1, . . . , Ek/xk] : ψ. From (a) we
have ∧ki=1Ei ∈ ϑi since ∧ki=1fv(Ei) = ∅ and then (b) gives 〈E1, . . . , Ek〉 ∈ κ.
From (d) and the assumption ∧ji=1Ei ≈ E ′i we get ∧ji=1Ei ∝ ϑ′i. Now (e) gives
∧ki=j+1Ei ∈ ρ(xi) and ρ, κ |=RM Q : ψ. The substitution result (Lemma 1) then
gives ρ, κ |=RM Q[Ej+1/xj+1, . . . , Ek/xk] : ψ and together with (c) this gives the
required result.
The second part is trivial: when ψ = ∅, obviously
〈E1, . . . , Ek〉.P | (E ′1, . . . , E ′j ;xj+1, . . . , xk).Q α→RM P | Q[Ej+1/xj+1, . . . , Ek/xk]

In case (Decr) we assume
ρ, κ |=RM decrypt [{E1, . . . , Ek}E0 ]s as {E ′1, . . . , E ′j ;xj+1, . . . , xk}E′0 in P : ψ
which amounts to:
(f) ∧ki=0 ρ |= Ei : ϑi
(g) ∀v0, . . . , vk : ∧ki=0vi ∈ ϑi ⇒ [{v1, . . . , vk}v0 ]s ∈ ϑ
(h) ∧ji=0ρ |= E ′i : ϑ′i
(i) ∀[{v1, . . . , vk}v0 ]s′ ∈ ϑ : ∧ji=0vi ∝ ϑ′i

⇒ ∧ki=j+1vi ∈ ρ(xi) ∧
∧ji=0¬RM((Γ (E0), Γ (E ′0)), . . . , (Γ (Ej), Γ (E ′j)))⇒ (xj+1, . . . , xk) ∈ ψ ∧
ρ, κ |=RM P : ψ

Furthermore we assume that ∧ji=0Ei ≈ E ′i because
decrypt [{E1, . . . , Ek}E0 ]s as {E ′1, . . . , E ′j ;xj+1, . . . , xk}E′0 in P

α→R
P[Ej+1/xj+1, . . . , Ek/xk] and we have to prove ρ, κ |=RM P[Ej+1/xj+1, . . . , Ek/xk] :
ψ. From (f) and ∧ki=0fv(Ei) = ∅, we get ∧ki=0Ei ∈ ϑi and then (g) gives
[{E1, . . . , Ek}E0 ]s ∈ ϑ. From (h) and the assumption ∧ji=0Ei ≈ E ′i we get ∧ji=0Ei ∝
ϑ′i. Now (i) gives ∧ki=j+1Ei ∈ ρ(xi) and ρ, κ |=RM P : ψ. Using Lemma 1 we get
the required result ρ, κ |=RM P[Ej+1/xj+1, . . . , Ek/xk] : ψ
For the second part of the result we observe that
¬RM((Γ (E0), Γ (E ′0)), . . . , (Γ (Ej), Γ (E ′j))) ⇒ (xj+1, . . . , xk) ∈ ψ follows from (i)
and since ψ = ∅ it must be the case that RM((I(E0), I(E ′0)), . . . , (I(Ej), I(E ′j))).
Thus the condition of the rule (Decr) are fulfilled for α→RM.
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In case (Repl) we assume
ρ, κ |=RM [!P ]s : ψ, which amounts to:
(a) ρ, κ |=RM T ([P ]s) : ψ
(b) ρ, κ |=RM T ([P ]s′) : ψ
(c) ρ, κ |=RM [!P ]s′ : ψ (because ψ does not contain any session information)
(a) together with (c) then gives the required result ρ, κ |=RM (T ([P ]s) | [!P ]s′) : ψ.
Furthermore, it is obviously that when ψ = ∅, [!P ]s α→RM T ([P ]s) | [!P ]s′

The cases (Par) and (Res) follow directly from the induction hypothesis. The
case (Congr) also uses the congruence result.

The next result shows that our analysis correctly predicts when we can safely
dispense with the reference monitor. We shall say that the reference monitor RM
cannot abort a process P when there exist no Q,Q′ such that P α→∗R Q α→RM Q′
and P α→∗RM Q9RM. As usual, * stands for the transitive and reflexive closure
of the relation in question, and Q 9RM stands for 6 ∃Q′ : Q α→RM Q′. We then
have:

Theorem 2. (Static check for reference monitor)

– If ρ, κ |=RM P : ∅ then RM cannot abort P.

Proof Suppose per absurdum that such Q and Q′ exist. A straightforward in-
duction extends the subject reduction result to P α→∗R Q giving ρ, κ |=RM Q : ∅.
The part 2 of the subject reduction result applied to Q α→R Q′ gives Q α→RM Q′
which is a contradiction.

4 Conclusion

In this paper we have introduced a sound way to detect replay attacks. To do
that, we extended the standard LYSA calculus with session identifiers and gave
it a reduction semantics. Unlike the original LYSA semantics [2, 3], the reduction
relation carries labels on the arrows, which gives the ability to faithfully describe
what happens during the process evolution at a certain degree of accuracy, and
facilities the reasoning about dynamic properties.

On the static side, we developed a control flow analysis to verify the freshness
property of the extended processes. The static property ensures that, if the
secret information received by a principal is in the right context, then a process
is not subject to a run-external attack at execution time. It is not difficult to
incorporate other relevant techniques, e.g. the one from [6], into our framework
in order to take care of run-internal attacks as well.

We implemented the analysis and used our tool to check some significant
protocols, e.g. Wide Mouthed Frog, Yahalom, Andrew Secure RPC, Otway-Rees,
Needham-Schroeder, Amended Needham-Schroeder. The tool confirmed that we
can successfully detect potential replay attacks on the protocols.
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