A Control Flow Analysis for Beta-Binders
With and Without Static Compartments

Chiara Bodei

Dipartimento di Informatica, Universita di Pisa,
Via Pontecorvo, 56127 Pisa - Italy
chiara@di.unipi.it

Abstract

We introduce a Control Flow Analysis, that statically approximates the dynamic behaviour of processes,
expressed in the Beta-binders calculus and in an extended version of the calculus modelling static com-
partments. Our analysis of a system is able to describe the essential behaviour of each box, tracking all
the possible bindings of variables, all the possible intra- and inter-boxes communications, and, finally, all
the possible movements across compartments. The analysis offers a basis for establishing static checks of
biological dynamic properties. We apply our analysis to an abstract specification of the interaction between
a virus and cells of the immune system and to a model of the cAM P-signaling Pathway in Olfactory Sensory
Neurons.

Keywords: Control Flow Analysis, Beta-binders, Biological Compartments

1 Introduction

The complexity of biological phenomena calls for a system vision that puts its focus
on function rather than on structure, on the behaviour of systems, rather than on
the description of single components. This is the idea underlying Systems Biology
[10], whose main interest is to study the behaviour emerging from the interaction of
components. At the same time, the big amount of raw biological data now available
for analysis calls for the development of abstract models able to capture the proper-
ties of interest. Furthermore, models should be build incrementally in order to easily
integrate new knowledge. The analogy between the study of computer systems and
networks and the study of biological systems motivates the convergence of interests
of the two communities. Under this regard, computational thinking [25], as stated
in [18], can be a useful tool for both fields. It is based on the idea of analysing
systems at different levels of abstraction and of modelling them through executable
formalisms that offer predictions on their dynamic evolution. Among the several

LA preliminary version of this paper appeared in [2].

formalisms used to this aim, we recall process calculi, that abstractly describe in-
teractions and communications between independent agents or processes and whose
specifications can be incrementally refined. They have been adopted to model bio-
logical systems. In particular, m-calculus [11] and Ambient Calculus [5] have been
transferred from theoretical computer science setting to the biology setting, where
suitable biological versions of them, such as the Biochemical stochastic w-calculus
[21,24] and BioAmbients [23] have been introduced. Also a version of CCS, RCCS
[7], that addresses biological issues, has been presented. Other calculi have been
instead specifically defined for biological modelling, such as k-calculus [8], Brane
calculi [4] and Beta-binders [19]. The underlying idea is that a biological system
can be abstractly modelled as a concurrent system. Several approaches — developed
to predict the dynamic behaviour of the modelled systems — have introduced the
idea of performing in silico experiments to establish which in vitro experiments are
more promising.

The behaviour of a system is usually given in terms of its transition system,
whose size can be huge, making its exploration computationally hard. Resorting
to static techniques offers the possibility of drastically reducing the computational
costs, particular high when modelling complex biological systems. The specifica-
tion of the system is statically (i.e. at compile time) analysed in order to extract
information on the dynamic behaviour and to check the related dynamic properties,
without actually running the corresponding program. The price is a loss in preci-
sion, because these techniques usually give approximations of the behaviour. Static
analysis adds a further level of abstraction, that can be exploited in the modelling
phase, to easily tune specifications, in order to capture the properties of interests.
As a consequence, it can also be used to perform a sort of preliminary screening of
in silico experiments. In fact, on the one hand, it offers the possibility of efficiently
changing the starting hypotheses. On the other hand, it can predict also rare — but
maybe meaningful — events, that can be left out using other approaches, like those
based on stochastic simulation.

We present here a Control Flow Analysis for a version of Beta-binders calculus.
In this language, processes are enveloped inside boxes, that represent the borders
of biological entities. Boxes are equipped with typed interaction sites, through
which interactions among boxes can occur. In Beta-binders, nesting of boxes is
not explicitly allowed. In order to represent more complex hierarchies useful to
model compartments of biological systems, an extended version of Beta-binders
has been introduced in [9]. Processes can move across static compartments. The
Control Flow Analysis has been extended accordingly. Our Control Flow Analysis
safely approximates the behaviour of systems, tracking all the possible bindings
of variables and all the possible intra- and inter-boxes communications. In the
extended calculus, the analysis also tracks the process movements in and out of
compartments. This information offers a basis for studying dynamic properties, by
suitably handling the approximation the static analysis introduces. We have indeed
an over-approximation of the exact behaviour of a system. This means that all those
events that the analysis does not include will never happen, while all the events that
the analysis does include can happen, i.e. they are only possible. Therefore, the
analysis offers a basis for establishing static checks of biological dynamic properties.

We can prove some basic facts, that can be immediately exploited to establish
simple properties, such as the absence of interaction of two boxes or the isolation of
a box. Furthermore, we can deal with the static counterpart of the locality relations
introduced in [9].

The paper follows the tradition initiated by [15,14] of applying static techniques
and, in particular, Control Flow Analysis to process calculi used in modelling biolog-
ical phenomena. These analyses are inspired by the analyses previously applied to
several process calculi, such as m-calculus (e.g. [3]) and Ambient Calculus (e.g. [13])
to establish security properties. The biological framework requires a suitable tuning
and, at the same time, can suggest the introduction of finer or new techniques. Like
the above analyses, our is context-insensitive and also flow-insensitive.

The rest of the paper is organised as follows. In Section 2, we present the Beta-
binders formalism. We introduce the Control Flow Analysis in Section 3. In Section
4, we propose some possible applications for our analysis. In Section 5, we show
Control Flow Analysis at work on an example. The analysis is extended in Section 6
in order to treat the Beta-binders version modelling static biological compartments.
In Section 7, the new analysis is applied to a model of the cAM P-signaling Pathway
in Olfactory Sensory Neurons. Section 8 presents some concluding remarks.

Proofs of theorems and lemmata presented throughout the paper are collected
in Appendix A.

2 The Calculus

We briefly introduce the kernel of Beta-binders, that is actually a subset of the cal-
culus and we refer the interested reader to [19,17,22] for more details. In particular,
for the sake of simplicity, we do not consider the join and the split semantic con-
structs. These constructs make it possible to merge and split boxes. The strategies
to do it can be chosen, relying on the definition of (one or more instances of) the
computable functions fje, and fg. Their operational semantics is parametric
with respect to the definition of these functions. Their generality and parametricity
would make the Control Flow Analysis too loose and approximate. Alternatively,
we could deal with specific definitions of these functions, loosing generality, though.
As a consequence, we preferred not to use them, and to resort to a suitable encoding,
when needed.

2.1 Syntax

Essentially, processes are the parallel composition of boxes that contain w-calculus
like [11] processes. As in the m-calculus, communication can occur when an input
and an output synchronize on a particular channel. Boxes represent the borders of
biological entities and are equipped with typed interaction sites or binders, which
regulate the interactions with the environment. As in the 7-calculus, we assume the
existence of a countably infinite set N of names (ranged over by lower-case letters).

3

Beta binders

A special class of binders, called beta binders is introduced. Each binder char-
acterises an interaction site and an associated type.

Definition 2.1 An elementary beta binder has either the form S(z : I') (active
binder) or the form " (x : T') (hidden binder), where we let 5 € {3, 3"} and:

* the name x is the subject of the beta binder,

e T"is the type of z. It is a non-empty set of names such that x ¢ T".

Definition 2.2 Composite beta binders are generated by the following grammar:
B:=j(z:D)| 'z 1) fz:T)B| gz :T)B

A composite beta binder is said to be well-formed when the subjects of its elementary
components are all distinct. We let well-formed beta binders be ranged over by
B,B1,Bg,.... Let sub(B) denote the set of the subjects of all the elementary beta
binders in B, and B* denote either a beta binder or the empty string of elementary
beta binders.

Pi-processes

Processes, which are incapsulated into boxes, are a variation of standard -
calculus, that makes handling of beta binders possible from inside boxes. They are
called pi-processes.

P .= Pi — processes
nil inactive process
(va)P restriction
P|P parallel composition
P replication
Z(y).P output
z(y).P input

expose(z,I').P addition of a new site
hide(z).P hiding of a site

unhide(x).P unhiding of a site

Pi-processes behave just as m-calculus processes. The process nil is inactive. The
name z in (vx)P acts as a static binder for z in P. The operator | describes
parallel composition of processes. Intuitively, P and @ in P|Q act independently
and can also communicate when one performs an input and the other an output
on the same common link. Replication !P behaves as P|P|--- as many times as
needed. The output prefix Z(y) sends name y on link z. The input prefix z(y)
binds the name y in the prefixed process. Intuitively, some name y is received
along the link named x. The additional prefixes expose(x,I"), hide(z), unhide(x) are

4

used to change the interaction capabilities of boxes. Prefixes hide(x) and unhide(x)
make the elementary binder with subject z not available (hidden) and available
(not hidden), respectively. A hidden binder cannot be used in a communication.
The prefix expose(x,I") adds to the box the binder §(x,T"). The definitions of name
substitution and of free and bound names (defined as fn() and bn()) are treated as in
the m-calculus and are extended to the above syntax, by stipulating that expose(z,I)
is a binder for x in P. Moreover, the names occurring in the types declared in expose
prefixes are free, and therefore can be affected by substitution.

Beta-processes

The set of beta-processes, ranged over by B, By, Bo, ... is defined as follows. Boxes
are nameless entities, but to facilitate our analysis, we annotate boxes as in B[P]*,
in order to distinguish different syntactic occurrences of boxes. We refer to u € Box
as the identity of the box, where Box is the finite set of box identities.

B = Beta — processes
Nil inactive beta-process
B[P]* basic beta-process
B||B parallel composition

A beta-process is either empty (Nil) or a single box (B[P]*) or the parallel com-
position of two boxes (B||B). When in the above grammar B is taken to be well-
formed, the generated process B is said to be well-formed. Graphically, each process
(B[P]*) can be rendered as a single box, where binders indicate the sites through
which the box can interact with the external world. For instance, the process
B(xy : A)BM(ao : Ag)B(x3 : Ag)[P] is depicted as

((l’ll 5 A1) (J’Ig 5 Ag)h (;l’lg 5 A:g)

| P |

Finally, note that nesting of boxes is forbidden (see also Section 4).

2.2 Semantics

Since names can be a-converted, they cannot be used as they are in the Control Flow
Analysis in Section 3. To circumvent this problem, we discipline the a-conversion
of names. To this aim, we partition all the names used by a process into finitely
many equivalence classes and we use the names of the equivalence classes instead
of the actual names. The partition works in a way that names from the same
equivalence class are assigned a common canonical name. Consequently there are
only finitely many canonical names in any execution of a given process. This is
enforced by assigning the same canonical name to every name generated by the
same restriction. For example, consider a process like !(vn)P, that may generate

5

infinitely many names, as shown in the following chain of equivalences:
l(vn)P = (vn/)P" | {(vn)P = (vn')P" | (vn”)P" | \(vn)P = ...

All the names that can be generated, e.g. n, n’ and n”, have the same canonical
name.

The canonical name |n| is for a name n. Not to further overload our notation,
we simply write n for [n], when unambiguous. Furthermore, we demand that
two names are a-convertible only when they have the same canonical name. In
this way, we statically maintain the identity of values and variables that may be
lost by freely applying a-conversions. The a-renaming discipline is included in the
structural congruence rules given below. Finally, we assume that all the binders
names are distinct and that all the bound names of a process are renamed apart
and that they do not clash with the free names. In particular, the names used in
the expose prefixes are distinct from the names occurring in their contexts.

The semantics of beta-processes is given in terms of a reduction semantics, that
in turn, uses a structural congruence relation. Below we present the standard struc-
tural congruence = on pi-processes and beta-processes. The symbol = is overloaded
and holds in both cases; the context can disambiguate the intended relation. The
structural congruence over pi-processes is standard and is the least congruence sat-
isfying the following clauses:

e P=Qif P and @ are disciplined a-equivalent (as explained above);

* (P=,|,nil) is a commutative monoid,;

e (vn)nil = nil, (vn)(wn)P = (vn')(vn)P, (wn)(P | Q) = P | (vn)Q if
n & fn(P),

e lP=P|IP

The structural congruence over beta-processes is the least congruence satisfying the

following clauses:

* B[P]* =B[Q]*if P = Q;

(B/=,||, Nil) is a commutative monoid;

b BlBg[P]'u = BQBl[P]‘“,

B*3(x : T)[P)* = B*3(z : T')[P{a’ /2 }]*, provided that |z'| = |z].

The axioms over beta-processes state, respectively, that: (i) the structural con-
gruence of pi-processes is reflected at the level of boxes; (ii) the parallel composition
of beta-processes is a monoidal operation with neutral element; (iii) the actual or-
dering of elementary beta binders within a composite binder is irrelevant; (iv) the
subject of an elementary beta binder is a placeholder that can be changed at any

time under the proviso that name clashes are avoided and well-formedness of beta
binders is preserved.

The reduction relation, —, is the smallest relation over beta-processes obtained
by applying the axioms and rules in Table 1. The semantics preserves the well-
formedness of processes. We assume that all the names are initially distinct. Fur-
thermore, we use % as a shorthand for {ui,...,u,} and (va) for {(vuy),..., (vu,)}.
The axiom (Intra) lifts to the level of beta-processes any communication between

6

pi-processes within the same box. The axiom (Inter) models beta-processes inter-
actions between boxes with complementary action (input/output) over complemen-
tary sites (with non disjoint types). When the types are non disjoint, we call them
compatible. The rules (Expose), (Hide), and (Unhide) allow the dynamic modi-
fications of beta binders. The rule (Exzpose) adds an extra site with the declared
type. The name introduced is assumed not to clash with both the subjects of the
other binders of the containing box, and with the free names of processes outside
the scope of the binding expose prefix. Finally, the rule (Hide), and (Unhide) force
the specified site to become hidden and unhidden, respectively.

(Intra)
P = (va)(z(w).P1| T(z).Ps| P3)
B[P]t — Bl(va)(Pi{z/w}| Py| P3)*

(Inter)
P = (va)(z(w).Py| P2) Q = (v0)(Y(2).Q1] Q2)
3w - DYBLIPI 3y : A)B3Q — Bla - T)B3 [P |3y : B3
where P’ = (va)(Pi{z/w}| P;) and Q' = (v0)(Q1]| Q2)
provided that TN A # () and 2,2 ¢ @ and y,z ¢ ©

(Ezpose)
P = (va)(expose(z,T').P| P)
B[Pl — Bf(x : T)[(va)(P1] Po)]
provided that = ¢ (2 U sub(B) U fn(P))

(Hide)

P = (va)(hide(x).P1| P2)
B*G(x : T)[P]* — B*ph(z : T)[(va)(Py] P)]*
provided that = ¢ @

(Unhide)
P = (va)(unhide(z).P1| P)
B*gh(z : T)[P]* — B*B(z : I)[(va)(Py] P)]*
provided that = ¢ @

(Par) (Struct)
B()—>B6 BEBo/\Bo—>Bl/\BlEB/
By||B1 —>B(l)HBl B — B’
Table 1

Reduction Semantics for Beta-binders.

3 Static Analysis

We develop a Control Flow Analysis for analysing beta-processes, based on the
analysis of m-calculus [3] and borrowing some ideas from [14]. The aim of the
analysis is to safely over-approximate all the possible behaviour. The result of
analysing a beta-process B and a pi-process P, is a tuple (¢, €, p, k), called estimate
for B (P, respectively), that satisfies the judgements defined by the axioms and
rules in the upper (lower, respectively) part of Table 2. The analysis is defined in
the flavour of Flow Logic [12]. The first component ¢ gives information on the beta
binders of boxes. The second component ¢, given a subject of a beta binder, gives
information about the set of names it may be associated with. The third component
p gives information about the set of values to which names can be bound. Finally,
the last component, s gives information about the set of channels that can be sent
over given channels.

To wvalidate the correctness of a proposed estimate (i, €, p, k) we state a set of
clauses operating upon judgements for analysing beta-processes (i,€,p, k) E* B
and for analysing pi-processes (t,€,p, k) E* P. If (1,€,p,5) E* B, then (1, €, p, k)
is an acceptable estimate of the behaviour of B, i.e. it is valid also for all the states
B’ passed through a computation of B. More precisely,

* « stands for the universe in which boxes are, while 1 € Box annotates |= to keep
track of the box in which the process is.

e 1: {x}UBox — p(Box)W(NUNW) is the binder repository, where p(S) stands for
the power-set of the set S, & stands for the disjoint union operator, N®, ranged
over by z'represent the set of names in the hidden version, and N UNP is ranged
over by Z. In ¢(x) are collected all the names p of the boxes under analysis. In
t(u) are collected instead all the beta binder names x that are declared in the
box labelled g, in the form 2 or 2. If € (), then the corresponding name can
appear in an active binder or in an unhide prefix. In both cases, x is considered a
potentially active binder, i.e. it can be involved in a communication. If 2 € (1),
then the corresponding name can appear in a hidden binder or in a hide prefix.

* ¢: Box — (N — p(p(Box))) is the abstract binder environment that maps a
beta binder of a certain box p to all its possible type sets, i.e. if G € €(p)(x) then
the values in G may be included in the type of the binder z. To simplify the
clauses, we will use the boolean predicate comp(e(p)(a),e(u')(b)) in place of the
condition 3G € e(u)(a), D € e(1')(b) : GN D # (). The predicate is true when the
beta binders are compatible.

* p: N — p(N) is the abstract environment that maps a name to the set of beta
binders or names it can be bound to, i.e. if v € p(x) then x may take the value
v. We assume that for each free name z, we have that p(x) > z. Moreover, we
write p(I') as a shorthand for p(vi) U U p(vy,), where I' = {vy, ..., v, }.

* k:Box — (N — p(N)) is the abstract channel environment that maps a beta
binder or a name occurring in a box p, to the set of values that can be sent over
it, i.e. if v € k(p)(z) then the value v can be sent on the channel z in the box
labelled u.

For keeping the analysis component finite, as said above, we have partitioned

8

=* Nil iff true

= Bol|By F (e, pk) 7 Bo A (16, k) =" By

= B(e :T)BIPJ iff o € () A p(T) € e(w)(@) A (1e,por) E* BIP)
= B s T)BIP iff 2 € () A p(T) € e(u)(@) A (1espor) =* BIP
= [P] i € 0(x) A epor) B P

E* (vx)P iff x € p(z) A(,e,p,5) E* P

= PolPy iff (e e,p,6) B Po A (1,6,0,5) E' Py

=+ P iff (¢,e,p,6) E* P

=z (y).P iff Va € p(z) : p(y) € k(p)(a) A (,€,p,6) E* P

(tye,p,6) EF x(y).P iff Ya € p

()
()
()
()
()
(t,€6,p,K) FF nil iff true
()
()
()
()

(@) = w(p)(a) € p(y) A
Va € p(x):a € (), Yu' € (%) : be(y)
comp(e(p)(a), e(u') (b)) = k(1) (b) € p(y)

A (€ p k) E' P

~— —

(t,€6,p,k) = expose(z,I').P iff x € t(u) Nz € p(x) A p(T) € e(pn)(x) A
(t,€,p,5) F" P

(t,€,p,6) = hide(z).P iff Ya € p(x): a® € u(p) A (1,6,p,5) E* P

(t,€,p,k) =" unhide(z).P iff Va € p(x): a€ () A (t,e,p,k) EFP

Table 2
Analysis for Beta-processes: (i€, p,x) E* B and for Pi-processes: (¢,€,p,k) E* P.

all the names used by a process into finitely many equivalence classes and we have
used the names of the equivalence classes instead of the actual names.

Analysis of Beta-processes

The analysis of beta-processes is in the upper part of Table 2. The clauses follow
the structure of beta-processes. The rule for inactive beta-process does not restrict
the analysis result, while the rule for parallel composition || ensures that the analysis
also holds for the immediate subprocesses.

The rules for composite beta binders check whether the types I' of new binders
are included in the component e. Furthermore, in the active binder case (hidden
binder case, resp.) the inclusion of z (2", resp.) in ¢(u) is checked. As a consequence,
the presence of each beta binder in a process is reflected in the components € and ¢.
Finally, when the string of beta binders is empty, the analysis proceeds on the pi-
process P inside the box, by keeping track of the label y of the box: (¢, €, p, k) E* P.

9

Analysis of Pi-processes

The analysis of pi-processes is in the lower part of Table 2. Similarly to the
upper part rules, the rule for inactive pi-process does not restrict the analysis result,
while the rules for parallel composition |, restriction, and replication ensure that
the analysis also holds for the immediate subprocesses. Note that the names x
introduced in inputs are variables that are bound as effect of communications and
that the analysis keeps track of all the possible bindings in the component p. The
first condition of the rule for output concerns the set of names that can be sent
along each element of p(x), inside the box p. This set, recorded in the component
K, has to include the set of values to which y can evaluate. The rule for input is
more structured, because it takes into account both the possible communication
intra- and inter-boxes. The first conjunct (intra-) requires that the set of names
that can be sent along a channel with the same name is included in the set of values
to which y can evaluate. The second conjunct (inter-) requires that set of values
to which y can evaluate includes the set of names that can be sent along a beta
binder name b and received along a. This holds, provided that b (a) occurs active
in another box u' (u, resp.), and under the condition that the types of b and a
are compatible (comp(e(u)(a), e(')(b))). To exemplify, suppose to have the process
P = z(y).P1| T(z).P, inside the box pp (see the complete example below). Since
z can be sent along the channel z, then it should be included in x(up)(z), and
therefore it could be bound to the variable y occurring in the corresponding input
on z, i.e. z € p(y) since k(up)(xz) C p(y). Moreover, imagine to have in parallel
another process @@ = u(v1).Q1 inside the box pg, such that the types of = and
of u; are compatible (i.e. comp(e(pp)(x), e(pg)(u1))) and can both participate in a
communication (i.e. z, € ¢(up) and uy € t(pq)). Since vy can be sent on the channel
uy, i.e. v1 € K(pQ)(u1), therefore it could be bound to y, because a communication
between the boxes up and jig is possible.

The rule for expose demands that z is included in ¢(x) and in p(x), and that the
set of all the possible values to which the elements of I' may evaluate to is included
in €(p)(x). The rule for hide (unhide, resp.) demands that for all the possible values
a of x, a" (a, resp.) is included in t(x). Recall that a unhide(x) should follow an
hide(x) or a declaration of a hidden binder for x and therefore there is no need to
check whether e(p)(x) includes the type of z. Similarly, a hide(z) should follow an
unhide(x) or a declaration of an active binder x.

Example 1: Intra- and Inter-Box Communication
The analysis of the simple beta-process B

B = Bp||Bql|Br = B(z : {c1, c2})[P)*?[[B(us : {1 })[Q]H[B(uz : {ca}) [R]*E
P = x(y)P1| T<Z>P2 Q= U71<U1>.Q1 R = ’LTQ<UQ>.R1
10

gives rise to the analysis components ¢, €, p and k with the following main entries:

L(x) D pip, Qs MR

Upp) D Q) 2w L1R) D u2
(up)(#) 3 {en, oo}, (@) () 3 (e, elum)(w) 3 {e}
K(up)(z) 2 k(pq)(u1) 3 v, K(ur)(u2) 3 va
p(y) > z,v1,v9 p(n) 2 n for n € fn(B)

In fact, we have that,

1P P, because (1,€,p, k) EMP

(¢, € ps k) z(z).Py and (1, €, p, k) E"7 x(y).Pr;
(t,€,p,£) EMQ Q, because p(u1) 3 u1, p(vi) 3 v1 and v1 € K(pg
* (t,¢,p,k) EME R, because p(ug) 3 ug, p(ve)
()
()

)(u1);
> vg and vy € K(ug)(u2);
.)(z);

E=HP T(z). Py, because p(x) 3z, p(z) > z and z € k(up)(z
E=HP x(y).P1, because

[‘767[)7’%
[’767p7l‘</

(i) z 2 p(y), since z € k(up)(x);

(ii) since z € t(up), w1 € t(ug) and Gp N Gg > c1, with Gp = e(up)(x) and
Go = e(png)(u1) then v € p(y), because v1 € k(ug)(u1);

(iii) since = € (up), uz € t(ur) and Gp N Ggr > c2, with Gp = €(up)(x) and
GRr = €(ur)(u2) then vy € p(y), because vy € K(pr)(u2);
Note that p(y) includes the value z, hence it correctly predicts a possible commu-

nication internal to Bp on the channel x, that corresponds to the following transition

(where we annotate the transition arrow — with the corresponding semantic rule):

B = (rnira) B(x : {1, c2D)[Pr{z/y}| Po]'P[|B(ur : {e1D]Q]H?||B(ug : {c2})[R]*"

Moreover, p(y) includes both v; and ve, therefore it correctly predicts an interaction
between Bp and Bg, accounting for the following transition with By (similarly with

BR):
B = (rntery B(x : {c1, ea})[Pr{v1 /y}| P2]"P||B(ur = {e1))[@1]19]|Bug : {c2})[R]H7

The beta binder z, u; and us are included in their active form inside ¢(up), t(pq)
and ¢(ug), respectively. Moreover, the condition comp(e(up)(x),e(pug)(u1)) shows
that the types of x and u; are compatible and a similar condition holds for the
types of z and us.

Example 2: Interface Handling (1)
The analysis of a slightly different beta-process B’

B' = Bp||Bol|By = B : {e1, e2})[P1"7||B8(ur : {1 })[Q]@]|B(uz : {b2})[R]*r
P’ = z(y).expose(z,{y, b2 }).2(w).P] Q=7ur{v1).Q1 R =7u3(vs).R]
11

gives rise to:

L(*) > o, Qs 1y

Wpp) 3 @, 2 (pQ) 3w L(KR) > u2
W) 2 ten el o) s fand, elug)(ua) > {ba}
e(p) (2) 3 (o1, ba},

() () = 0, B (un) 3 o1, Rl (us) 5 vs

p(y) > v p(w) > vy

The prefix expose causes the addition of z to the beta binders of the first box Bp/,
as stated by the inclusion of z in ¢(upr). Furthermore, the first box can initially
only communicate with the second one. It can communicate with the third one,
after the expose, as shown by the following transitions, where B’ becomes

B {1, e2})expose(z, {v1, ba})-2(w). P {v1 /y}]“P[|B(ur :{e1}) (@)@ B(us :{ba}) [R')*R

and after the expose and the following communication it becomes:

Bl = {er,c2})B(z {or, b)) [P {or /yHoz/w}]P|[B(us = {e1})[Qu]2|1B(uz : {b2})[R}]n

Note that after the first communication, expose(z,{y,b2}) becomes
expose(z, {v1, ba}), as correctly reported by the analysis, where €(u/p)(2) 3 {v1, b2},
because p({y, b2}) = p(y) U p(b2) > v1, ba.

Example 3: Interface Handling (2)
The analysis of another beta-process B”

B" = Bp||Bql|Br = B(x : {c1, e2})[P1#7|B(u = {ex})[Q]F2]|B(uz : {e2}) R
P" = z(y).hide(z).z(w).P{! Q=1ui(v1).Q1 R =1u3(v2).Ry

gives rise to:

L(*) 3 Wp, 1Q, 1R

(Wp) >, W(pq) > w W(pr) 2 u2
e(up)(x) 3 {e1, o} e(ug)(u1) 3 {e1}, e(pr)(u2) > {ca}
K(up)(z) =0, K (
(

(
p(y) 3 vi,va, p(w) 3 vi, vz

. h

pQ)(u1) 2 vi, K(pr)(u2) > ve

VR

Note that the prefix hide causes the hiding of and therefore the isolation of the
first box BY. For instance, if the first transition leads B” to

B(x = {c1, co})lhide(z).a(w). P {or /y}]*||B(u : {er)[Q1)F218(us : {e2}) [z (v2). Ra]"
12

and the second to

8" (@« {er, e2}) [(w). P {or [y} PP Blur : {e D[Q1)"218(uz = {ea}) [(va) Ra)

then, there is no possible communication between B and Bp: the sites x and ug
have non disjoint types, but x is hidden and therefore no communication is possible
on .

The analysis instead considers that communication as possible and also the
analogous communication between x and wup, as shown by the fact that p(w) 3 vy, ve.
We are still on the safe side of approximation, because what the analysis includes
corresponds to something that can happen. Nevertheless, the analysis is not precise.
This observation leads us to the following considerations.

3.1 On the Precision of the Analysis

As seen above, the presence of hide and unhide constructs represents a peculiar source
of imprecision in Beta-binders. In fact, they can occur in a particular subprocess
included in a certain box, but their effect is on the overall process contained in the
box, e.g. in the process BF(x : I'))[hide(z).P;|P»] the firing of hide impacts on both
the continuation P; and on the parallel process P,. The decision of hiding and of
unhiding is unilateral, but affects the whole context. The beta binder is a shared
object, whose access is concurrent. This concurrent feature is responsible for the
analysis imprecision. Suppose to have the following process, where I' N A # ().

Bp3(x : T')['hide(z).Pi|Z(z).P3|lunhide(x).] || BB(w : A)[w(y).Q1]

It is impossible (since it is undecidable) to predict at compile time if the commu-
nication between w(y).Q1 and T(z).P; will be fired at run time. The beta binder x
could be indeed either hidden or unhidden, depending on which is the last interface
operation occurred. In our analysis, the communication is predicted as possible,
because of the compatibility of types and because x can appear active.

We could obtain more precision in special cases, like in the process
[hide(z).P;| Py, where x ¢ fn(P,). Here the effect of the hide operation is only
on the continuation Pj, where x is hidden until an unhide(z) occurs. More in gen-
eral, there are cases in which we can decide, at compile time, by a simple syntactic
inspection, in which parts of the process a variable z occurs hidden. This is the
case of the process B” above.

In these cases, to reflect the fact that the hidden occurrences of a variable cannot
be used for possible communications, (i) we could replace the variable 2 with a new
variable x,, representing the hidden version of the corresponding beta binder, and,
(ii) we could impose then that for each variable xp, e(u)(xp) = k(p)(zp) = 0.

With this safeguard, the analysis of the process B” above would correctly predict
the absence of any communication on the hidden occurrence of z, since for ¢ = 1, 2,
AGp: € e(upr)(xp) such that Gpr NG # 0 with Gg € e(ur)(u;) and p(w) = 0.

13

3.2 Correctness of the Analysis

Our analysis is semantically correct with respect to the given semantics, as stated
by the following subject reduction result: if (¢, €, p, k) is a valid estimate for a beta-
process B, than it is still a valid estimate also for all the states passed through a
computation of B.

In order to obtain this, the following lemmata are necessary. The first states
that estimates are resistant to substitution of closed terms for variables, and it holds
for both pi-processes and beta-processes.

Lemma 3.1 (Substitution result)
(i) (v&p,5) F" P andv e p(x) imply (v,¢,p,k) E" P{o/z};
(ii) (t,6,p,5) =" B and v € p(x) imply (v, ¢,p,5) =" B{v/x};

The second lemma says that an estimate for a process P or for a beta-process
B is valid for every process congruent to P or B, respectively.

Lemma 3.2 (Invariance of Structural Congruence)

() [f P=Q and (1,epyw) =" P then (e, por) = Q
(ii) If B= B’ and (1,¢,p,k) E* B then (1,€,p,k) E* B’

We are now ready to state the subject reduction result.

Theorem 3.3 (Subject reduction)
If B— B’ and (1,¢,p,k) E* B then also (1,¢,p,k) E* B'.

Below —* stands for the reflexive and transitive closure of the transition relation
—. The first result shows that the analysis component k captures all the intra- and
inter-boxes communications that a process can engage in, while the second shows a
similar result on the component p.

Theorem 3.4 (Outputs in k)

(i) If (t,e,p,k) E* B and B —* B' — B”, such that the last transition B' — B"
is derived using the rule (Intra) on the output prefix T(z) in the box labelled p,
then z € k(p)(z).

(ii) If (t,€,p, k) E* B and B —* B' — B”, such that the last transition B' — B"
is derived using the rule (Inter) on the output prefix y(z) in the box labelled p,
then z € k(u)(y).

Theorem 3.5 (Values in p)
If (t,6,p,k) E*B and B —* B’ — B, such that B" is either in the form
B[P{v/x}|P’'] orin the form B1[P{v/z}|P’']||B2[Q] then v € p(z).

Finally, we prove that the analysis components ¢ and e capture the information
on all the beta binders that can appear in a process.

Theorem 3.6 (Binders in . and €)

If (t,e,p,6) E* B and B —* B' — B", such that the last transition is derived using
an interface rule (Expose) or (Hide) or (Unhide) on the binder x with type I' and
B" includes B[P* and if (Z : T') occurs in B” then & € «(u) A p(T) € e(p).

14

3.8 FEuxistence of Estimates

In the previous subsection, we have seen a procedure for verifying whether or not
a proposed estimate (¢, €, p, k) is valid. We now show that for any given B there
always is a least choice of ¢, €, p and k that is acceptable according to the rules in
Table 2, i.e. such that (¢, €, p, k) = B.

Definition 3.7 The set of proposed solutions can be partially ordered by setting
(€0 p) © (€, o) HE VL (1) © 0/ (1), Vo : e(n)() C €(n) (@) Ve : pla)
§(@) and Vi, @ : k() (@) C # (1) (@),

This suffices for making the set of proposed solutions into a complete lattice;
using standard notation we write (¢, €, p, k) U (¢, €, p/, k') for the binary least upper
bound (defined point-wise), MZ for the greatest lower bound of a set Z of proposed
solutions (also defined pointwise), and (L, L, L, 1) for the least element.

Definition 3.8 A set Z of proposed estimates is a Moore family if and only if it
contains M7 for all J C Z (in particular J = 0 and J = I).

When 7 is a Moore family it contains a greatest element (M) as well as a least
element (MZ).

The following theorem then guarantees that there always is an estimate satisfying
the specification in Table 2.

Theorem 3.9 (Moore Family)
For any beta-process B the set {(i,€,p, k)| (t,€,p,k) E* B} is a Moore family.

Theorem 3.10 (Existence of Estimates)
For any beta-process B, there ezists an analysis result (i,€,p, k) such that

(t,e,p,5) F* B.

Finally, the analysis that computes an estimate that satisfies the judgements in
Table 2 can be implemented along the lines of the Control Flow Analysis of the
m-calculus and that of the BioAmbients [3,16,14].

4 Possible Application of the Analysis

Our analysis of a system statically approximates the essential behaviour of each
box, tracking all the possible bindings of variables and all the possible intra- and
inter-boxes communications, recording where and between which communications
may occur. In particular, we have an over-approximation of the exact behaviour of
each box. We consider as effective all the communications that might occur through
suitable shared channels inside the box and all those that might occur between the
box with boxes endowed with compatible beta binders. At run time, only part
of these communications can be however viable, due to the dynamic evolution of
processes. As a consequence, on the one hand, we can only assess the possibility
of certain events, like communications, to happen, when reported in the analysis
estimate. On the other hand, the analysis can guarantee that if an event, such as a
communication, is not included in the analysis estimate, then it will never happen.

15

Exploiting the soundness of our analysis, we can therefore prove, among others,
the following basic facts, that can be immediately used to establish simple proper-
ties, without resorting to the exploration of the whole transition system.

(i) propensity for communication of a beta binder z in B[P]*?: The binder
x can be possibly involved in a communication if z € ¢(up), i.e. if it can occur
active.

(ii) no propensity for communication of a beta binder z in B[P]*?: The
binder = cannot be involved in a communication if x ¢ (up), i.e. if it cannot
occur active.

(iii) compatibility between B[P]** and B[Q]#*2: B[P]*? and B[Q]*? have com-
patible types if 3a € «(pp), b € t(pg) such that comp(e(pup)(a), e(1g)(d)).

(iv) no interaction between B[P]*F and B[Q]*?: The process B[P]\r
cannot communicate with B[Q]*e, if Va € «(up),Vb € (ug):
—comp(e(pp)(a),e(ug)(b)) or a ¢ (up) or b ¢ t(ug) i-e. all the possible pairs
of beta binders either do not have propensity for communication or are not
compatible.

(v) isolation of B[P]#?P: The process B[P]'F is isolated, when Vyug € ¢(x), there
is no interaction between B[P]** and B[Q]'<.

(vi) no flow of information from B[P]|*? to B[Q]#?: The process B[P]*? cannot
send anything to B[Q]#?, when Va : a € «(up), and Vb : b € 1(ug) such that
comp(e(pp)(a), e(ug) (b)), we have that x(up)(a) = 0. i.e. even in the presence
of a pair of beta binders that are compatible, and that show propensity for
communication, there is no possible output from box pp.

(vii) virtual nesting of B[Q]"? in B[P|*P: B[Q]*<@ is virtually nested in B[P|*P,
when (i) B[P]*? and B[Q]#@ are such that B[Q]*<? has only one beta binder b
and 3a € ¢(up) such that e(ug)(b) = e(up)(a); moreover (ii) Yur € t(x), with
R # pp, there is no interaction between B[P]#P and B[R]*:.

As far as the last property is concerned, we must recall that nesting is forbidden
to keep the formalism simple. However, (see [20]), the operational semantics of
interactions between boxes can express a form of virtual nesting, properly defining
the types of sites. This happens when the box virtually nested B[Q]*@, can perform
intra-communications and can be involved in inter-communications only with the
nesting box B[P]#? through a site with exactly the same type of the one in B[Q]*<.

We chose to have two facts on propensity just to illustrate the way static ap-
proximation works. If the condition € ¢(up) holds, we can say that z may be
used for communication at run time. Nevertheless, it also may not. On the other
hand, if the opposite condition = ¢ ¢(up) holds, then we are sure that x cannot be
used for communication at run time.

5 Example: An Abstract Virus Attack

We illustrate our approach, by using the abstract specification, used in [19], of
the interaction between a virus and cells of the immune system. The specification
describes a cell C' of the immune system that has engulfed the virus V; and that
has to elaborate it, produce the antigene molecule and display the antigene on its

16

surface. A specialized lymphocyte L can recognize the antigen ai associated with
viruses of sort v; (the antigen a} associated with viruses of sort v}, respectively)

and then activate the immune replay.
B = Bo||Br = B(x : {v1, ..., va)[C]H]|8(z : {ar, ar })[La]F"
C =lz(w).expose(u, {w}).u(r)| C1| Vi Vi =x(a1).V7* Ly = 2(y).L{*

The analysis gives rise to:

L(* D UC, HLy

Wpc) 2 x,u Wpr,) 3 2
e(pc)(x) 3 {v1,...,vn} ,

e(pr,)(2) 3 {a1,a}}

e(puc)(u) 3 {a1},

{ Hlne)t Rps)(2) = 0
k(pe)(z) 3 ar,

p(w) 3 a1 ply)>r

The following computation is reflected by the above analysis results.
B=y B :{vr,...,vn})[z(w).expose(u, {w}) u(r)| C1| T(ar).Vi**|C||B(2 : {a1, ai })[L1]""
—ntra Bz {v1, ..., vn})[expose(u, {a1}).u(r)| C1| V7**|C1H||B(z : {a1, ai })[L1]""
= Eapose B(x 1 {v1, ..., vn})B(u : {ar})[@(r)] C1| VI*|C1He|B(z : {ar, a1})[z(y).L{*]!

Bla : {vr, o, vn})Bu t {ar})[C1] VI[C1#e|B(2 « {a, a) })[LE{r/y}]He

— Inter

Note that, in particular, at the beginning, the two boxes cannot communicate each

other, because their beta binders are not compatible.
Suppose instead that C engulfs a different virus Vo, for which the lymphocyte

L1 cannot activate any immune replay.
C =!z(w).expose(u, {w})u(r)| C1| Vo Vo =Z(az).Vy* Li = 2(y).L{"
In this case, the analysis would be:

L(*) S UC, KLy
t(pc) 2 x,u t(pr,) 2z

{EMC J }€(ML1)(Z)9{a1,ai}

e(pe)(u) > {az},

reflecting the fact that the two boxes cannot communicate. Indeed, we have that

17

u € v(ue), z € tlur,), but VGo € e(uc)(u),Gr1 € e€(ur1)(z): Goe N Gry = 0 and
therefore comp(e(uc)(u), e(pr1)(2)) is false.

6 Static Biological Compartments

Nesting of boxes is not allowed in Beta-binders, even though, as seen in Section 4,
it is possible to model a form of virtual nesting. In fact, the affinity or compat-
ibility between types can be used to implicitly model that boxes can be grouped
in compartments: boxes are in the same compartment when their beta binders are
compatible. However, virtual nesting can be ambiguous and, in addition, movements
across compartments require sequences of suitable interface operations. Neverthe-
less, representing complex hierarchies could be useful to model compartments of
biological systems. For this reason in [9] the calculus has been extended with a no-
tion of static compartments. The static hierarchical structure of a system is seen as
a tree and the compartments as nodes. The original beta-processes of the language
are statically enriched with labels representing the positions of the compartments
(in which the beta-processes reside) inside the tree structure. Labels are sequences
of natural numbers a la Dewey. For instance, the compartments in Figure 1 are

0, R

/ C 02

v
00 A 01 B /\

020 D E 021

Fig. 1. The Tree Representation of the Hierarchical Structure of a System

identified as follows:

R—0A—-00B—-01C—-0,2D-—0,2,0 R—0,2,1

Moreover, components can be either internal to compartments or reside on compart-
ment borders. Movement across compartments is requested by internal components
and mediated by the border ones. The new syntax, where n € IV, is as follows:

A= s(AeEA)
B := Nil| B[P}!| B||B with ¢i=nlen
s € {i,b}
P ::= nil| P|P| \P| Z(y).P| z(y).P| expose(z,I").P| hide(z).P| unhide(z).P]
move(x).P| in(z).P| out(x).P
Note that in this version of the calculus there is no restriction. In [9], the notion

of compatibility between types is made finer, by introducing a more general notion
of affinity, that gives a measure of how much favourable a biological interaction is.

18

Even though, it is possible to cable this notion inside our analysis, for simplicity we
keep the notion used in the previous sections.

Each beta-process is enriched with annotation A, composed by a label ¢? identi-
fying the corresponding compartment, and a marker s representing the component
type (internal i or border one b). In [9] is exploited an extension of Beta-binders’
reduction semantics in the style of [6]. In this approach, transitions carry rich labels
that allow for retrieving many qualitative aspects of computation. Some locality
relations can be introduced, based, in particular, on labels ¥ that uniquely identify
the locations of beta-processes. We can use in their place our labels p, that are
uniquely associated with beta-processes. Therefore instead of having YB[P]¢
have B[P]%s.

An i-component can move across a compartment border only if mediated by a

we

b-component residing on that border. Movements are rendered, exploiting affinity,
by pairs of the following new complementary prefixes, where z € N. A beta-process
can move into a sub-compartment, by firing a move synchronising with the in action,
performed by the component residing on the border. A beta-process can move out of
a sub-compartment, by firing a move synchronising with the out action, performed
by the component residing on the border. Pi-processes are extended with these new
movement prefixes. Each transition is labelled by a pair ¢ = (6, ¢), where c is the
compartment identifier, and 6 is defined as

0 = (u(z), px(w))| (n72), pa(w))| pal (win(z), u’ move(y))| (out(z), u’ move(y))

where a ::= expose(z,I')| hide(z)| unhide(x). Labels annotate transitions in the ex-
pected way, recording beta-process identifiers, action prefixes and compartments.
Prefixes of intra-communications (Z(z), z(w)) are syntactically distinguished from

the inter-communication ones (7(z),z(w)). Two beta-processes that reside in dif-
ferent compartments can interact (inter-communication or movement) if one is in
a sub-compartment of the other: the label ¢ included in the corresponding ¢ is the

one identifying the sub-compartment. For the sake of brevity, we just focus on the

2 we use c instead of k, as in [9], because is one of our analysis components.

19

rules for boxes and movements.

(In)

P=in(z).P| P, Q= move(y).Q1| Q2
¢ (e in(a) g move(y)e) o

X = Bz D)Bi[PLL 4180y - A)B3[QL7

Y = f(z: I)Bi[P] P2]cnb|\5(y A)B3[Q1] Q2lis
provided that T' N A # ()

(Out)

P =out(x).P| P Q = move(y).Q1| Q2
y e out(m),wove(y);cm) v

Y =p(z:T)B [Plr Pz]cnbllﬂ()B;[er Qz]fif;’
provided that TN A # ()

Our Control Flow Analysis can be extended accordingly. We need a fur-
ther component o : Box — A, the compartment repository, that tracks for each
beta-process the associated annotation: if (¢;s) € o(p) then the beta-process
identified by p can be included in the static compartment ¢ and is an inter-
nal component (a border one), if s = i (s = b, resp.). This component is
checked in analysing [P]ts, and in analysing the move action. Furthermore, we
enlarge the co-domain of ¢: ¢ : {¥} UBox — p(Box) W (N U NP®)w BindOp,
where BindOp = {expose(z), hide(z), unhide(z), in(x), out(z), move(x)| x € N}. If
in(a) € «(p) then an occurrence of in(a) may occur in the beta-process labelled .

(t,0,6,p,) E* [P]ks iff weux) A (¢s)€a(p) A (v,0,6,p,k) FE* P

(t,0,6,p,6) Fin(z).P iff Va € p(x) :in(a) € o(u) N (1,0,6p,k) F" P
(10,6, p k) = out(x).P iff Ya € p(x) : out(a) € u(i) A (1,0,¢,p,k) =H P
(t,0,€,p,£) =M move(x).P iff Ya € p(x) : a € o(p), Yi' € u(x) : b e (),
[((¢',msd) € o(u) A (dym,mii) € o(p') A
in(b) € (i) A comp(e(u)(a), (1)) =
(¢,m,n;1) € o(p)] A
((¢ymsi) € o) A (¢ msi) € o) A
out(b) € 1(1) A (c()(a) O e(u)(b) # 0)) =
(i) eo(w)] A (v,0,6,p,5) E' P
The clause for in (out) (see above) demands that for all the possible values a of z,

20

in(a) (out(a), resp.) belongs to ¢(u). The rule for move is more structured, because
it takes into account both the synchronisation with in and with out actions. The
first conjunct requires that if exists a beta-process residing in a sub-compartment
of the compartment of the analysed process in which a in action may occur, if the
corresponding beta binders are compatible and possibly active, then the process can
move inside and change its label accordingly. Similarly, the second conjunct requires
that if exists a beta-process residing in a compartment surrounding the compart-
ment of the analysed process in which a out action may occur, if the corresponding
binders are compatible and possibly active, then the process can move outside and

change its label accordingly. Suppose to have S = Bpf(z : F)[move(w).P]g;fH

Bqp(y - A)[in(y).Q]g,%;b. Dynamically, the following transition is possible, pro-
vided that T N A # (: S — Bpf(z : T)[Ply5./Bqb(y : A)[Q]g’%;b. Statically,
we have that 2 € «(up), in(y) € t(ug), comp(e(up)(x), e(uqg)(y)), (0;i) € o(up),
(0,0;b) € o(pg). Therefore, we also have that (0,0;4) € o(up).

Compartments are seen as static localities, because they represent the sites
at which events occur and because they not change during the dynamic execu-
tion. Here, we only consider some of the locality relations reported in [9], where
the function compart applied to a label ¢, returns the compartment identifier,
i.e. compart({0,c)) = c.

Definition 6.1 Given a computation By ﬂ B, ﬁ Bs... ﬁ n, On has a

* same compartment dependency on ¢p, if h < n A compart(¢p) = compart(¢,) = c.
* father-son dependency on ¢y if h < n A compart(¢r), m = compart(py,).
* son-father dependency on ¢, if h < n A compart(¢n), m = compart(ép,).

It is not difficult to imagine the generalisations of the last two relations, obtained
by their relative transitive closures.

In order to obtain their static counterparts, we need to enrich our analysis,
reported in Table 3 (where only the interesting clauses are included), with a further
component 1 decorating the = symbol in the new judgement (¢, 0, €, p, k)):;Z B and
(t,0,€,p,K) |:Z P. This new component records for each possible communication
or interface operation the corresponding static labels that include the prefixes used,
the beta-process identifier and the set of all the possible compartments in which the
beta-process can reside, according to the analysis. They represent a sort of static
approximation of the corresponding dynamic labels ¢ = (6, ¢). The new component
called label repository is defined as 1 € p(C), where C € C is defined as follows,
where a ::= expose(z,T")| hide(x)| unhide(z).

C u= (na(d)Qo(u), p a(y)Qo(p))| (p b{d)Qo(n), 1" a(y)Qo(y'))|

(1 a@o ()] 1 in(b)Q(c!, m, 3), i move(a)@(c!, m: i))|

(u out(b)Q(c,m; i), i’ move(a)Q(c,m;i))

Note that in order to obtain the static counterpart of the relations presented above,
we could also have dealt with simpler labels, both dynamic and static, carrying only

21

(t,0,€,p,K)

5 (P

iff € u(x) A (e18) €o(n) A (1,0,6,p,5) = P

(L? 0-7 67 p’ K'/)
(t,0,€,p,)

(L’ 0-7 67 p’ K'/)

(t,0,€,p,K)

(L? O-, 67 p’ K‘/)

=, T(y).P
=y (y).P

=, expose(z,T').P

=, hide(z).P

=, unhide(z).P

iff Va € p(z) : p(y) € w(p)(a) A (,0.6,p,5) =), P
iff Va € p(z) : Vd € k(u)(a) : d € p(y) A

(nald)Qo(p), p aly)Qo(p)) € ¢ A

Va € p(x) : a € (), Vu' € () = beu(u),
)= Vd e w(i)(b) : de ply) A
Qo (u)) € ¥ A

comp(e(p)(a), e(u’) (b
(' b(d)Qo (1), p aly
(t,0,€6,p, k)):’12 P

iff z, expose(x) € t(u) N z € p(x) A p(T) € e(p)(x) A
(1 expose(, T)Ga () €6 A (1,0,6,,%) |2 P
iff Ya € p(x) : a”, hide(a) € o(p) A
(u hide(a)Qo(p)) € ¥ A (1,0,€,p,5) =) P
iff Va € p(z) : a,unhide(a) € t(p) A
(1 unhide(a)Bo (1)) € % A (1,,e,p,) D P

)
)

(L7 O" 67 107 H)
(L? 0-7 67 p’ K'/)
(t,0,€,p,)

= in(z).P

=, out(z).P

=, move(z).P

iff Va € p(z) 1in(a) € u(n) A (t,0,€6,p,5) = P
iff Va € p(z) : out(a) € () N (1,0,¢,p,5) = P
iff Va € p(x) : a € o(p), V' € 1(x) 1 b € (1),
[((¢',msd) € o(u) A (dym,nsi) € o(u') A
in(b) € u(p) N (e(p)(a) Ne(u')(b) #0)) =
(¢, m,nyi) € o ()] A
(0" in(b)@(c’,m,n; i), u move(a)@(c’,m;i)) € P A
[((¢d,m;i) € a(u) A (¢ymii) € a(u') A
out(b) € ¢(u') N comp(e(p)(a), e(n')(b)) =
(c1) € o ()] A
(i out(b)Q(c', m;i), p move(a)Q(c',m;i)) € ¥ A

(t,0,€,p, k)):Z P

Table 3

Analysis for Extended Beta-processes: (1,0,€,p,£) =), B and for Pi-processes: (¢,0,¢,p, k) |:Z P.

22

information on the compartment. Nevertheless, the complete labels allows for an
immediate extension to other relations, such as the ones in [9] that are not reported
here, or the ones based on causality, like the ones in [6].

The correspondence with the dynamic labels is easy to establish as stated by
the following theorem, that states that for each transition labelled ¢, there is a
corresponding label ¢ in).

Theorem 6.2 (Label Correspondence)

IfB 2 B and (t,0,€6,p,K) |:;’L B then

o if ¢ = ((n Z(2), 1 z(w));c) then (p a(d)Qo(p), 1 a(y)Qo(n)) € ¥, with (c;s) €
o(p);

« if & = ((po T 2(w))ic) then (o Bid)Go (o), 1 aly)Bo(m)) € o, with

(co;s) € o(po), (c158) € o(p1), and ¢g = c1-; or ¢g = c1—;,n and ¢ = ¢;
* if ¢ = (p a;c) then (p aQo(p)) € b, with (c;s) € o(p);
e if ¢ = ((pin(x), ' move(y));c,n) then (u in(b)Q(c,n;i), W’ move(a)@(c;i)) € 9;
e if ¢ = ({(p out(z), ' move(y))c,n) then (1 out(b)Q(c,n;i), ' move(a)@Q(c,n;i)) € 1.

The subject reduction result still holds in the new framework, i.e. our extended
analysis is semantically correct with respect to the extended semantics.

Theorem 6.3 (Subject reduction)
If B 2 B and (t,o,€,p.K) [y B then also (1,0,¢,p, k) B.

7 Example: the cAM P-signaling Pathway in Olfactory
Sensory Neurons

We use here the example presented in [9], i.e. the cAM P-signaling pathway in
olfactory sensory neurons (OSNs). The pathway [1] represents the way the G
protein-coupled receptors indirectly modulate the activity of ion channels via the
action of second messengers. An odorant ligand O can bind an odorant receptor
OR, activating it. The active OR stimulates the G-protein GD Paf3~y, causing the
dissociation of the trimer in two active subunits GT' Pa and GT PB~y. Afterwards,
GTPa can either hydrolyse, returning GDPa, or activate the adenylyl cyclase
(AC), his target protein. In the first case, the subunit GD P« associates again with
the subunit GDPS3v. In the second case, instead, the activation of AC produces,
through the synthesis of AT P, an increase in concentration of the second messenger
cAMP. A cAM P molecule can open, through a reversible binding, the ion channel
IC, allowing Na™ and Ca?T molecules to enter. The hydrolysis of GTP to GDP
causes GT P« to dissociate from AC and associate again with GT'P(3~. The Beta-
binder specification of the presented pathway is showed in the upper part of Table 4.
It is slightly different from the one given in [9], because we do not use the join and
split operations. In order to synchronise the hide and unhide operations in the beta-
processes Bg, Bac, and Barp we resort to a communication protocol, based on I/0O
actions on the beta binders o, c¢g in Bg and 0 4¢, cac in B g¢. The most meaningful
analysis results are reported in the lower part of Table 4. They show that the
analysis gives a correct approximation of the communications and movements of the

23

B = Bol|Borl|Bgl|Bacl|Barpl|Bicl|Bye+ 1Boaz+

O = m(z0).w0(wo).0 o
Bo = Blao: Ao)O]H0 OR = z{(wor)unhlde(yl).hide(yl).zg(wOR).OR
A = 7y1(za).A
Bor = B(z} : : A1)[OR| AJFGR
or = Aah &0)3"(11 A)IOR) Joros GDP = z1(wgpp)-hide(z1).GTP
Bg = B(z1:41)8 (5 1 Ag) 1" ; ;
Blo : Am)B(ca : As)[GDP|Pa|Pyn]G GTP = unhide(y’).o0¢(jac) - y2(werp).unhide(z1).
G- G:-os Arlo,0:0 eG(sac)-hide(y).GDP
Po = y2{za).Pa
AC = oac(zac).unhide(y)).y5(wac).
: /
Bac = B"(yh: A2)Bloac : A7)B(cac : As)[ACIHHG cac (vac)-hide(yy).AC
Barp = B(xs: A3)B(yY : A2)[yh (zarp).cAMPIGATY cAMP = Z5lzoarp) zalwearp) cAMP
. . 1 — !/ H
Bic = Bl : Ay)Bh(us : AgUICIMIIS, 16 T e unides)
Byo+ = B(@s: As)[Nat]hNat 0 _hlde(y4).a:3<zzc).lc
Bgyor = Blws : A)[Ca2+],ﬂ}ca2+ M = in(ya).M
Ca?*t 676 034 Nat = move(zs).NaT
Ca?t = move(zg).Ca?t

AiNAj#0Pwheni=jori=4and j=5,6

L(*) 3 PO, HORs G MAC, HAT P, MIC) BN a+ > BCa2+

(ko) 2 zo; t(tor) 3 b, ¥l vl ulng) D w15 ulpac) 3 vb"lparp) > z3,y4;

(nrc) 3 o,y ya, in(y); (ot) D w55 t(pog2+) D T6;

t(par) 3 =5 u(pa2) 3 o luaac) 3 o, vh;

(054) € a(p0)s T (Una+)s T (a2+): (0,059) € o(Barp);

(0,0;b) € o(Bor),o(Bg),0(Bac),0(Brc); 0(Ba1),0(Bg2),0(Bcac) 0(na+), 0 (Boa2+)i

~

~

k(po) (o) 3 zo; p(wo) 3 20R;
ror)(xy) 3 zor; P(WoOR) 3 zo; k(LoR) (Y1) 3 2a;
wapp) D za; k(pa)(Y2) D za; p(waTP) D Za; p(wac) = 0;

(p
(
(
(0G) 3 jac,k(cg) 3 sac,ploac) 3 jac,p(cac) 3 sac;
(
(
(

x

RS

k(parp)(yy) 3 zarp; k(parp)(®3) 3 2zeam p; P(WeAMP) D 2105
wrc)(xh) 3 zro; p(wrc) 3 zeampp(WaTP) 3 2as p(wapp) = 0; k(ka1)(¥2) 3 Za;

p(waTP) 3 Zas zaTp; p(wapp) = 0; k(1a1)(Y2) 3 2a; pP(Wac) D za, zaTP

=

Table 4
Specification of the cAM P-Signaling Pathway in OSNs (upper part) and some entries of the analysis
(lower part)

specified system. Note, for instance, that (0,0;0) € o(ng+), 0(og2+) correspond
to the possible movements of By,+ and Bg,2+ in the compartment identified by
0,0. Let us analyse part of the computation, also presented in [9], where the ion-
channel IC is activated and causes the entrance of a Ca?>T molecule. For the sake
of simplicity, below we only report the transitions labels ¢;, in the left-hand side
together with the corresponding static labels C; recorded in), in the right-hand
side.

= (puarp ¥ (zaTp), ac yh(wac);0,0) Cr = (parp yy(zarp)@{(0,0;1)}, pac vh(wac)@{(0,0;b)})
¢2 = {parp T3(2cAMP), p1c T5(w1c);0,0) Co = (uarp T3(2canp)@{(0,0;4)}, urc o5(wrc)@{(0,0;b)})
(
(

¢3 = (urc unhide(ya4); 0,0) Cs = (urc unhide(y4)@{(0,0;b)})
®4 = (p1c in(y4), L2+ move(zs); 0, 0) Cyq = (urc in(ya)@(0,0;b), g2+ move(ws)@(0; 1))

By analysing this computation, we can observe that there is a same compartment
dependency between the transition labelled ¢; and the one labelled ¢4, because
1 < 4 and compart(¢1) = compart(¢4) = 0,0. We can observe that the corre-

24

sponding static labels present the same dependency. Biologically, this dependency
corresponds to the relation between the entrance of a Ca®* molecule and the acti-
vation of the target protein AC.

8 Conclusions and Future Work

We have presented a Control Flow Analysis for Beta-binders, able to describe the
essential behaviour of each of its boxes, in terms of possible interactions. When ap-
plied to the version of Beta-binders, modelling biological compartments, the analysis
has been extended accordingly. To this aim, it is also able to approximate the pos-
sible movements across compartments. Furthermore, the analysis can offer a set
of approximations of all the possible actions the beta-process under analysis can
perform, with indication on the possible boxes and the compartments involved.

Simply exploiting the soundness of our analysis, in the first part of the work,
we have proved some basic facts, that can be immediately used to establish simple
properties, such as the absence of interaction of two boxes or the isolation of a box.
In the second part, we have addressed, for brevity, only part of the locality relations
reported in [9]. Our approach can be easily extended to the other relations in [9]
and also to the causality-based relations, like the ones in [6] for the m—calculus.

Both results are useful for illustrating how suitable static techniques can be
adapted to model biological systems, giving some insights on their behaviour.

In classical process algebras, communications are modelled in a key-lock style,
by requiring that an input and an output can communicate only if they synchronize
on the same channel. In Beta-binders the key-lock model for interaction is partially
relaxed. Interactions between boxes are allowed when the types of binders show
some form of compatibility. This is a nice feature, when formalising biological
behaviour, maybe collecting part of specifications in different databases, because it
allows to easily put together the needed components. It is sufficient to put them in
different boxes, just establishing the proper binders. Under this regard, code re-use
is easier than in the w-calculus. It would be interesting to exploit this is feature
also from a static analysis point of view, looking for suitable ways of composing
independent analyses of parts of systems.

In perspective, static analysis can be fruitfully exploited to study dynamic prop-
erties of large biological systems, by keeping the computational costs low. Further-
more, it can be used to reason about the model chosen for describing the biological
system under consideration, by checking the properties on the model and by com-
paring the obtained results with the experimental ones reported in the literature.

Acknowledgments. We are grateful to Pierpaolo Degano and Linda Brodo for
their helpful discussions and comments.

References

[1] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts and Peter Walter.
Molecular Biology of the Cell. Garland Science, 2002.

[2] Chiara Bodei. A static analysis for Beta-Binders. Proceedings of From Biology To Concurrency and
back Workshop (FBTC’07). Electronic Notes in Theoretical Computer Science 194(3): 69-85, 2008.

25

[3] Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Nielson. Static analysis for the
m-calculus with their application to security. Information and Computation (165): 68-92, 2001.

[4] Luca Cardelli. Brane Calculi - Interactions of Biological Membranes. Proceedings of Computational

Methods in Systems Biology (CMSB’04). Lecture Notes in Computer Science 3082, pp. 257-278,
Springer, 2005.

[5] Luca Cardelli and Andrew D. Gordon. Mobile Ambients. Theoretical Computer Science 240(1): 177-213
(2000).

[6] Michele Curti, Pierpaolo Degano, Corrado Priami, Cosima Baldari. Modeling biochemical pathways
through enhanced pi-calculus. Theoretical Computer Science325:111-140, 2004,

[7] Vincent Danos, Jean Krivine. Transactions in RCCS. Proceedings of Conference on Concurrency Theory
(CONCUR’05). Lecture Notes in Computer Science 3653, pp. 398-412, Springer 2005.

[8] Vincent Danos, Cosimo Laneve. Graphs for Core Molecular Biology. Proceedings of Computational

Methods in Systems Biology (CMSB’03). Lecture Notes in Computer Science 2602, pp. 34-46, Springer
2003.

[9] Maria Luisa Guerriero, Corrado Priami and Alessandro Romanel. Static Biological Compartments

with Beta-binders. Proceedings of Algebraic Biology, Second International Conference (AB’07), Lecture
Notes in Computer Science 4545, pp. 247-261. Springer, 2007.

[10] Hiroaki Kitano Systems Biology: a brief overview. Science 2002, 295(5560):1662-1664.
[11] Robin Milner. Communicating and mobile systems: the 7-calculus. Cambridge University Press, 1999.

[12] Hanne Riis Nielson and Flemming Nielson. Flow Logic: a multi-paradigmatic approach to static analysis.
The Essence of Computation: Complezity, Analysis, Transformation, Lecture Notes in Computer
Science 2566, pp. 223-244, Springer, 2002.

[13] Flemming Nielson, Hanne Riis Nielson, and Ren Rydhof Hansen. Validating firewalls using flow logics.
Theoretical Computer Science 283(2): 381-418 (2002).

[14] Flemming Nielson, Hanne Riis Nielson, Corrado Priami, and Debora Schuch da Rosa. Control Flow
Analysis for BioAmbients. Electronic Notes in Theoretical Computer Science 180(3): 65-79. 2007.

[15] Flemming Nielson, Hanne Riis Nielson, Debora Schuch da Rosa, and Corrado Priami. Static analysis
for systems biology. Proceedings of workshop on Systeomatics - dynamic biological systems informatics.
Computer Science Press, Trinity College Dublin, 2004.

[16] Flemming Nielson and Helmut Seidl. Control Flow Analysis in cubic time. Proceedings of Proceedings

of European Symposium on Programming (ESOP’01), Lecture Notes in Computer Science 2028, pp.
252-268. Springer Verlag, 2001.

[17] Davide Prandi, Corrado Priami and Paola Quaglia. Communicating by compatibility. Journal of Logic
and Algebraic Programming 75 (2): 167-181, 2008.

(18] Corrado Priami. Computational thinking in Biology. TR-10-2007. Centre for Computational and
Systems Biology, University of Trento, 2007.

[19] Corrado Priami and Paola Quaglia. Beta-binders for Biological Interactions. Proceedings of Proceedings
of Computational Methods in Systems Biology (CMSB’04), Lecture Notes in Computer Science 3380,
pp- 20-33. Springer, 2005.

[20] Corrado Priami and Paola Quaglia. Operational patterns in Beta-binders. Proceedings of Transactions
on Computational Systems Biology, Lecture Notes in Computer Science 3380, pp. 50-65, Springer, 2005.

[21] Corrado Priami, Aviv Regev, Ehud Y. Shapiro, William Silverman. Application of a stochastic name-
passing calculus to representation and simulation of molecular processes. Inf. Process. Lett. 80(1): 25-31
(2001).

[22] Paola Quaglia. On Beta-binders Communications. Proceedings of Montanari Festschrift. Lecture Notes
in Computer Science 5065, pp. 457-472, Springer, 2008.

[23] Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli, and Ehud Y. Shapiro.
BioAmbients: An abstraction for biological compartments. Theoretical Computer Science 325(1): 141-
167. 2004, Elsevier.

[24] Aviv Regev, William Silverman, Ehud Y. Shapiro. Representation and Simulation of Biochemical
Processes Using the pi-Calculus Process Algebra. Pacific Symposium on Biocomputing, pp. 459-470,
2001.

[25] Jeannette M.Wing. Computational thinking. Communications of the ACM, 49(3):33-35, 2006.

26

A Proofs

In this appendix restates the lemmata and theorems presented earlier in the paper
and gives the proofs of their correctness.

A.1 Correctness of the Analysis
Lemma A.1 (Substitution result)

(i) (t,e,p,8) E* P andv € p(x) imply (v, €,p, k) = P{v/x};
(i) (t,€,p,6) =" B andv € p(z) imply (v, €,p, k) E* B{v/z};

Proof. Both proofs proceed by structural induction and uses the following fact:

Yy : p(y({v/z})) € p(y)

If indeed y # x then p(y({v/z})) = p(y), while if y = x, then p(y({v/z})) = p(v).
Furthermore, v € p(y), because v € p(z) and x = y. Therefore p(v) C p(y).
[(1)] The proof is by structural induction on P. We consider here only the two most
interesting cases.
Case P = z(w).P’. We may assume that w # v,z. Now, (i,€,p,k) E* P amounts
to checking that (i,€,p,k) E* P and that (1) Va € p(z) : k(p)(a) C p(w);
(2) Va € p(z) : a € () and V' € 1(x) : b € (i) then comp(e(p)(a),e(p’)(b)) =
k(1) (b) C p(y). By the induction hypothesis and the fact stated above, we have
that (¢,€,p,k) E* P'{v/x}. Furthermore, since p(z{v/x}) C p(z), we have that a
certain condition holds for Va € p(z) then a fortioriit holds also for Va € p(z{v/z}).
As a consequence: (1) Va € p(z{v/z}) : k(p)(a) C p(w), and (2) Va € p(z{v/z}) :
a € o(p) and Vu' € o(x) : b € o(u') then comp(e(p)(a), €(1) (b)) = K(1)(b) S p(y).
This is equivalent to the required (¢, €, p, k) =F P{v/x}.
Case P = hide(z).P’. Now, (., €6p,k) E* P amounts to checking that
(t,€,p,k) | P'and that Va € p(z) : a® € 1(u). As above, since p(z{v/z}) C p(2),
we have that Ya € p(z{v/z}) : a" € «(u). For this reason and by the induction
hypothesis, we obtain the required (¢, €, p, k) E* P{v/x}.
[(ii)] The proof is by structural induction on B. We consider here only one case.
Case B = p(z : T)BIP* Now (t,€,p,6) E* B is equivalent to
(t,6,p,k) E* B{v/x}, because z{v/x} = z.

O

Lemma A.2 (Invariance of Structural Congruence)
() If P=Q and (1,,p,r) EV P then (t.e,p,5) " Q
(ii) If B= B’ and (1,¢,p,k) E* B then (1,€,p,k) E=* B’

Proof. The proof amounts to a straightforward inspection of each of the clauses
defining the structural congruence clauses. O

Theorem A.3 (Subject reduction)
If B— B’ and (1,¢,p,k) E* B then also (1,¢,p, k) E* B'.

Proof. By induction on the inference of —.
Case (Intra). Let B be B[P]*, where P = (va)(z(w).P1| ZT(z).P2| P3), and

27

B’ = Bl(va)(Pi{z/w}| P| P3)]*. We have to prove that (,€,p,k) E* B'.
(1,6,p,k) =* B[P]*, amounts to p € u(x), VB(z : T) in B : 2 € ¢(p) and p(T') €
e(p)(z), and — furthermore — to: (1) Va € p(x) : p(z) C k(p)(a) A (v,€,p,8) EF Py,
(2a) Va € p(z) : k(p)(a) C p(w) A (t,6,p,k) E* Py and (2b) Va € p(2) : (a € 1(p)
and V' € o(*) : b€ u(u) then comp(e(p)(a), e(p’) (b)) implies that «(u')(b) C p(y),
(3) A (1, e,p,k) EF Ps. Since p(z) = {z} and p(z) = {z}, (1) is equivalent
to z € p(x) C k(p)(z) and (2a) to k(p)(xz) C p(w), and therefore we have that
z € p(w). By Lemma A.1 and (1), we have that (¢,¢,p, k) E* Pi{z/w}, by (2a)
and (3) we have that (i,¢,p, k) E* Pi{z/w}| P2| Ps. We can obtain the required
(ep.n) = Bl(va)(Pi{z/w}] Pa| Py

Case (Inter). Let B be pB(x:T)Bj[P]*?||6(y: A)BS[Q]"?, where
P = (va)(z(w).P| P), Q@ = (v0)(y(z).Q1] Qg) and B’ be
B;i[(va)(Pi| P2)]*?||Bs[(v0)(Q1] Q2)]*e, with TNA # 0 and z,z ¢ 4 and y, z ¢ 0.
We have to prove that (i,€,p,k) E*B. (t,e,p,6) E* B in particu-
lar, implies that pup,pg € u(*), (1) =z € u(pp), Gp = pI) € e(pp)(x)
and (v, €,p,5) " Bi[P]'r; (2) y € (MQ) Go = p(A) € €(ug)(y) and
(t,6,p,k) E* B5[Q]*?; (3) Va € p(x) : a € o(u) and V' € u(x) : b € (i)
then since Gp N Gg # 0, comp(e(p)(a), ((b)) implies that x(u')(b) € p(y),
and (1,,p,5) ¥ Py (4) Ya € p(y) : p(=) C 6(1)(@) A (e,p,) B Qu. Since
p(x) = {z} and p(z) = {z}, we have that a = = € () and that z C x(u)(y).
Condition (3) is verified with b = y and then {z} = k(u@)(y) C p(w), i.e. z € p(w).
By Lemma A.1 and the fact that z € p(w), we have that (v,€,p, k) EHP Pi{z/w},
and also that (t,¢,p,k) EMP (va)(P1| P2) and (i,€,p,k) EHQ (v0)(Q1] Q2) and
finally the required (¢, €, p, k) =* Bj[(va)(P| Pg)]“PHBQ[(Vv)(Qﬂ Q2)]He.

Case (Hide). Let B be B*f(z:I')[P]*, with P = (va)(hide(x).P1| P») and
B’ be B*p"(z:T)[(va)(Py| P)]*. We have to prove that (i€, p, k) =* B
(t,€,p,k) E* B in particular, implies that p € (%), z € v(u), p(T') € e(u)(z) and
that Va € p(z) : a® € () A (1,¢6,p,k) E* P. Since x is a value, then p(z) = {z}
and the above amounts to z" € «(y). From this, from p(I') € e(u)(x) and
(t,€6,p,k) E=* P, we can conclude that (i, €, p, k) [=* B*"(z : T)[(vi)(Py| P)]".
Case (Par) follows directly from the induction hypothesis.

Case (Struct) uses Lemma A.2.

Theorem A.4 (Outputs in k)

(i) If (t,e,p, k) E* B and B —* B' — B”, such that the last transition B' — B"
is derived using the rule (Intra) on the output prefix T(z) in the box labelled p,
then z € k(p)(zx).

(i) If (t,e,p,k) E* B and B —* B' — B”, such that the last transition B — B”
is derived using the rule (Inter) on the output prefiz y(z) in the box labelled p,
then z € k(p)(y).

Proof. By induction on the length of the computation. By Theorem A.3, we have
that (t,€,p, k) E* B’. Therefore the proof proceeds by induction on the transition
rules used to derive B" — B”.

[(1)]

Case (Intra). If this rule is applied, than B’ is in the form
28

B'[(va)(z(w).Py| T(z).P2| Ps)]*. Since (i,€6,p,k) E* B, we have that, in
particular, (t,€,p,k) FE* Z(z).P» and also the required z € k(u)(x), because
p(z) = x and p(z) = z.

Cases (Inter), (Expose), (Hide), (Unhide). Transitions that use any of these rules
will not use (Intra) and are therefore disregarded.

Cases (Par), (Struct) are straightforward, by applying the induction hypotheses.
[(ii)]

Case (Inter). If this rule is applied, than B’ is in the form [(x
DBj[va)(w(w) P PS8y 5 ABS0)@).Qil Q. Since
(t,6,p,k) E* B, we have that, in particular, (i,€,p,k) EMQ 7(2).Q1 and
also the required z € k(u)(x), because p(y) = y and p(z) = z.

Cases (Intra), (Expose), (Hide), (Unhide). Transitions that use any of these rules
will not use (Intra) and are therefore disregarded.

Cases (Par), (Struct) are straightforward, by applying the induction hypotheses. O

In a completely similar way can be proved the following theorem, whose proof
we skip.

Theorem A.5 (Values in p) If (1,¢,p,k) E* B and B —* B’ — B", such that
B" is either in the form B[P{v/x}|P'] or in the form B1[P{v/x}|P’']||B2[Q] then
v € p(x).

Theorem A.6 (Binders in . and €)

If (t,e,p,6) E* B and B —* B' — B", such that the last transition is derived using
an interface rule (Expose) or (Hide) or (Unhide) on the binder x with type I' and
B" includes B[P* and if (& : T') occurs in B” then & € 1(u) A p(T') € e(p).

Proof. By induction on the length of the computation. By Theorem A.3, we have
that (t,€,p, k) E* B'. Therefore the proof proceeds by induction on the transition
rules used to derive B" — B”.

Cases (Expose), (Hide) and (Unhide) are similar.

Case (Expose). If this rule is applied, than B’ is in the form
B*[(va)(expose(z,T').P1| P2)]*. Since (t,€,p,k) E* B" and therefore
(t,€6,p,k) EF (va)(expose(x,T').Py| Ps) then, in particular, we have that z € «(u)
and p(I") € e(p).

Cases (Expose), (Hide) and (Unhide) are similar.
Cases (Intra) and (Inter). Transitions that use any of these rules will not change
the interface and are therefore disregarded.
Cases (Par), (Struct) are straightforward, by applying the induction hypotheses.
O

A.2 FEuxistence of FEstimates

Theorem A.7 (Moore Family)
For any beta-process B the set {(v,€,p, k)| (t,€,p, k) E* B} is a Moore family.

Proof. We proceed by structural induction on B. Let Z a set of proposed estimates

29

and let J and (¢, €;, pj, k;) such that J C T = {(¢, €5, pj, k5)| j € J}. Next, define
(L/, el’pl’K//) — |—|j

We have to check that (¢/,€,p', k") E* B. We just consider one case. The others
are similar.

Case (B(x : I')B[P]*). Since Vj € J : (v, €5, pj, k) =* B(z : T')B[P]*, then

ViedJ:xzeuj(p) and p;(T') € €j(n)(z) A (14,€j,p5,K5) E* B[P*

Using the induction hypothesis and the fact that ." and € are obtained in a pointwise
way, we then obtain that

x € (), p(T) € €(u)(x) and that (/, €, p', ") =" B[P]*

thus establishing the required (/, €', p', k") E* B(x : T)B[P]*. 0

Theorem A.8 (Existence of Estimates)
For any beta-process B, there ezists an analysis result (i,€,p, k) such that

(t,e,p,k) F* B.

Proof. The thesis follows from Theorem A.7, because a Moore family is never
empty, then there always exists an estimate satisfying the rules in Table 2. a

A.8 Correctness of the Extended Analysis

Theorem A.9 (Label Correspondence)

If B 2 B and (t,0,€,p.5) =y, B then

o if ¢ = ((p Z(2), 1 x(w));c) then (p a(d)Qo(u), p aly)Qo(p)) € ¥, with (c;s) €
a(u);

« if ¢ = ({no §(z),m z(w))ic) then (no b{d)Qo (o), 1 aly)Qo(wm)) € 1, with

(co;s) € o(po), (c158) € o(p1), and ¢g = c1-; or ¢g = c1—;,n and ¢ = ¢;
e if o = (u a;c) then (u aQo(p)) € ¥, with (¢;s) € o(p);
e if ¢ = ((uin(x), ' move(y));c,n) then (u in(b)Q(c,n;i), ' move(a)@(c;i)) € 1;
e if ¢ = ({u out(x), 1’ move(y))e,n) then (u out(b)Q(c,n;i), ' move(a)Q(c,n;i)) € 1.

The proof coincides with that of Theorem A.10. In fact, ¥ just collects information
recorded in the remaining components of the analysis.

Theorem A.10 (Subject reduction)
If B 2 B and (1o,€,p,5) =y B then also (1,0,¢,p, k) |y, B’

Proof. [Case (In)]. Let B be B(z : I)Bi[Pl; |IB(y : A)B3[Ql., with
P = in(z).P] P, and @ = move(y).Q1] Q2 and with ANT = 0.
Let B’ be B(z : T)Bi[P| B I8y = A)B3[Qi] Qoliy,; and ¢ =

(up in(z), pg move(y);c,n). We have to prove that if (:,0,¢,p,£) |, B then
(t,0,€,p,K) }:;Z B'. (t,0,€,p,kK) }::‘p B implies that:

(i) = € v(up), (c,n;b) € o(pup), and (¢, 0,¢€, p, K) }:Z P, with i = 1,2;
30

(i) in(z) € (pwp);
(iii) y € t(pg), and (¢,0,¢€,p,K) |:Z Q;, with i =1, 2;
(iv)

(¢;8) € o(pg) and €(pp)(x) Ne(ug)(y) # O (by Therorem A.6)
(c,m;s) € o(pg) and (pp in(z)Q(c,n;b), ug move(y)Q(c;i)) €
Now, by (i) we have that (v, 0,€,p,r) =}, B(z : T')Bi[F1] PHEP . By (iii) and (v)

c,n;b’
we have that (¢, 0,¢€, p, k) }:Z} By : A)B3[Q1] QQ]Zi;i, and therefore the thesis.
Furthermore, note that (up in(z)Q(c,n;b), g move(y)Q(c;i)) € ¢ corresponds
to ¢ = (up in(x), ug move(y); c,n). We recall that in the dynamic label, the com-
partment identifier is the one annotating the sub-comparment.
[Case (Out)]. The proof is analogous to the above one.

The other cases are similar to the ones proved in Theorem A.9. a

31

	Introduction
	The Calculus
	Syntax
	Semantics

	Static Analysis
	On the Precision of the Analysis
	Correctness of the Analysis
	Existence of Estimates

	Possible Application of the Analysis
	Example: An Abstract Virus Attack
	Static Biological Compartments
	Example: the cAMP-signaling Pathway in Olfactory Sensory Neurons
	Conclusions and Future Work
	References
	Proofs
	Correctness of the Analysis
	Existence of Estimates
	Correctness of the Extended Analysis

