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Abstract

We use a special operational semantics which drives us in inferring quantitative
measures on system describing cryptographic protocols. The transitions of the
system carry enhanced labels. We assign rates to transitions by only looking at
these labels. The rates reflect the distributed architecture running applications and
the use of possibly different cryptosystems. We then map transition systems to
Markov chains and evaluate performance of systems, using standard tools.

1 Introduction

Cryptographic protocols, used in distributed systems for authentication and
key exchange, are designed to guarantee security. A “prudent engineering” of
protocols cannot leave out consideration of the trade-off between security and
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its cost. This is a preliminary proposal for partly mechanizing the estimate of
quantitative aspects of protocol design.

Cryptography is a means of adding security to communication protocols:
many algorithms (for hashing and encryption) may be used and each one has
its cost. We are mainly interested in specifying and evaluating the cost of
each cryptographic operation and more in general of each exchange of mes-
sages. Here, “cost” means any measure of quantitative properties of transi-
tions, such as speed, availability, and so on. To measure protocols, we describe
them through a process algebra [4] and use an enhanced version of its seman-
tics (along the lines of [7], see Appendix A) able to associate a cost (see
Appendix B) with each transition, as proposed in [14]. Our approach then
includes somehow cryptography issues in the picture, even at a limited extent,
so allowing the designer to be cryptography-aware. Remarkably, quantitative
measures here live together with usual qualitative semantics, where instead
these aspects are abstracted away.

Consider the following version of the Otway-Rees protocol [15].

(OR1)

1. A → B : N, A, B, {NA, N, A, B}KA

2. B → S : N, A, B, {NA, N, A, B}KA
, {NB, N, A, B}KB

3. S → B : N, {NA, KAB}KA
, {NB, KAB}KB

4. B → A : N, {NA, KAB}KA

Intuitively, A sends to B the plaintext N, A, B and an encryption readable only
by A and the server S; B forwards it to S together with a message readable
only to B and S. The server receives both, checks whether the components
N, A, B are the same. In this case S generates the session key KAB and sends
it to B twice; encrypted one with the shared key KA and the other with the
shared key KB. Finally, B sends the first encryption to A. Here, the basic
cryptographic system is a shared-key one, such as DES [8]: the same key
shared between two principals is used for both encryption and decryption.

Often, designers use more cryptographic operations than strictly needed
just to play safe. Additional encryptions/decryptions make protocols less
efficient, though. This is the case of OR1: according to [2], with the same
cryptosystem, much encryption can be avoided when names are included in
S’s reply, resulting in

(OR2)

1. A → B : A, B, NA

2. B → S : A, B, NA, NB

3. S → B : {NA, A, B, KAB}KA
, {NB, A, B, KAB}KB

4. B → A : {NA, A, B, KAB}KA

Here, it is easy to roughly evaluate the cost and establish that the 2 4-ary
encryptions and 2 binary encryptions in OR1 are more expensive than the 2
4-ary encryptions in OR2.
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However, looking at protocol narrations is not sufficient. Indeed, here
you only have a list of the messages to be exchanged, leaving it unspecified
which are the actions to be performed in receiving these messages (inputs,
decryptions and possible checks on them). This can lead, in general, to an
inaccurate estimate of costs.

The above motivates the choice of using a process algebraic specification
like LySa [4] – a close relative of the π [12] and Spi-calculus [1] – that details
the protocol narration, in that outputs and the corresponding inputs are made
explicit and similarly for encryptions and the corresponding decryptions. Also,
LySa is explicit on which keys are fresh and on which checks are to be per-
formed on values received. More generally, LySa provides us with a unifying
framework, in which protocols can be specified and analysed [4].

Here, we show how we can compare and measure protocols, specified in
LySa. This allows the designer to choose among different protocol versions,
based on an evaluation of the trade-off between security guarantees and the
price for each alternative. Also, our approach makes it possible to estimate
the cost of an attack, if any. Consider again our example based on the two
versions of Otway-Rees protocol. The literature reports that both versions
assure key authentication and key freshness, but they differ with respect to
goals of entity authentication. In (OR2), A has assurance that B is alive,
i.e. that B has been running the protocol; indeed in receiving message .4, she
can deduce that B must have sent message .2 recently. In (OR2) instead, A
does not achieve liveness of B. We will show below that they differ also in
efficiency, confirming the intuition given above.

Technically, we give LySa an enhanced operational semantics, in the style
of [14]. We then mechanically derive Markov chains, once given additional
information about the rates of system activities. More precisely, it suffices
to have information about the activities performed by the components of a
system in isolation, and about some features of the net architecture. The
actual performance evaluation is then carried out using standard techniques
and tools [21,19,20].

The interpretation of the quantities that we associate to transitions can
cover not only rates, but also other measures as fees or whatever. One could,
for instance, think of a system where one has to pay a certain “fee” to a
provider of cryptographic keys, such that certain operations are more “expen-
sive” than others. The economical cost maybe naively taken into account in
our approach as a time delay. Anyway, this is a matter of interpretation of
the model we produce.

Summing up, what we are proposing is a first step towards the development
of a single, formal design methodology that supports its users in analysing both
the behaviour and the performance of protocols, with a semi-mechanizable
procedure. In this way, performance analysis is not delayed until a system is
completely implemented, which may cause high extra-costs. Also, we can use
the available analyser of LySa [4] to check security at the same specification
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stage. Indeed, this integration is possible because we use LySa as a unifying
specification language. Moreover, our approach can be used with any of such
languages endowed with an operational semantics.

2 Technique

We consider in the following the two versions of the Otway-Rees protocol
specified in LySa, as our running example. In this section we only want to
give the intuitive idea of our framework and therefore we will skip any technical
detail. In particular, we give an intuitive introduction to the semantics, and
the cost functions that enrich transitions with their costs; finally, we give the
intuition on how to extract the necessary quantitative information to derive
the Continuous Time Markov Chains (CTMC). The formal development is
left to the Appendix.

2.1 LySa specification

The formal specifications of our protocols are in Table 1 and Table 2. The right
part has a concise explanation of the action on the left, w.r.t the corresponding
message exchange in the informal protocol narration. LySa [4] is based on on
the π-calculus [12] and Spi-calculus [1], but differs from these essentially in two
aspects: (i) the absence of channels: there is only one global communication
medium to which all processes have access; (ii) the tests associated with input
and decryption are naturally expressed using pattern matching.

We are going to give the intuition of its semantics, on our running example,
by briefly describing parts of the computation of both systems. We postpone
the introduction of enhanced labels, a basic ingredient of our proposal, to the
next sub-section.

Example

In both versions of the protocol, the whole system is given by the parallel
composition (|) of the three processes A, B, S. Each of them performs a certain
number of actions and then re-starts again. In our calculus, new names such
as nonces or keys are created with a restriction operator (νn)P , that acts as
a static binder for n in the process P . In this way, we introduce: (i) the
long-term key KA (resp. KB), shared between the server S and the principal
A (resp. B); (ii) the nonces N ,NA and NB; and (iii) the session key KAB to
be shared between A and B. One of the basic forms of LySa dynamics, i.e. the
communication, can be shown by using the first transition of Sys1, where we
omit (νKA)(νKB). In the transition

(((νN)(νNA)(〈A, B, N, {A, B, N, NA}KA
〉. A′) | (A, B; xN , xA

enc). B
′) | S) −→

((νN)(νNA)(A′ | B′[N/xN , {A, B, N, NA}KA
/xA

enc]) | S)
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the principal B receives (l. 6 in Tab. 1) the message 〈A, B, N, {A, B, N, NA}KA
〉

sent by A (l. 3 in Tab. 1), where the term {A, B, N, NA}KA
represents the

encryption of the tuple (A, B, N, NA) under the symmetric key KA. Tests
associated with input are directly embodied in the input: an input suc-
ceeds, resulting in name instantiation, only if the first terms received coin-
cide with the ones syntactically preceding the semi-colon. In the present
case, the input prefix has the form (A, B; xN , xA

enc). The first two terms
are A, B as intended and, consequently, the remaining variables xN and xA

enc

are bound, within the continuation B′, to the remaining terms of the mes-
sage: N and {A, B, N, NA}KA

, respectively (we indicate these instantiations
as B′[N/xN , {A, B, N, NA}KA

/xA
enc]). Similarly, in the second transition

((νN)(νNA)(A′ | (〈A, B, N, {A, B, N, NA}KA
, {A, B, N, NB}KB

〉.

B′′[N/xN , {A, B, N, NA}KA
/xA

enc]) | (A, B; yN , yA

enc, y
B

enc). S
′) −→

((νN)(νNA)(A′ | B′′[N/xN , {A, B, N, NA}KA
/xA

enc]) |

S′[N/yN , {A, B, N, NA}KA
/yA

enc, {A, B, N, NB}KB
/yB

enc]

Now, in the third transition, the process S ′ that, after the substitutions is

decrypt {A, B, N, NA}KA
as {A, B, N ; wA

N}
KA

in S′′

attempts to decrypt {A, B, N, NA}KA
with the key KA (see line 13 in Tab. 1).

Decryption represents the other basic form of dynamics of our calculus. Simi-
larly to the input case, checks on part of the ciphertext are directly embodied
in decryptions: a decryption succeeds only if the key is the same and the first
terms decrypted coincide with the ones syntactically preceding the semi-colon.
Here, the key is KA and the first three terms are A, B, N as intended and,
consequently, the remaining variable wA

N is bound to NA.

2.2 Enhanced Labels

Once the protocol is specified in LySa, we associate a label to each transition,
in particular to each communication and to each decryption. To this aim, we
use an enhanced version of operational semantics called proved, in the style of
[6,7] (see Appendix A for further details). In our proved operational semantics
the transition labels are enhanced so that they record the syntactic context in
which the actions take place, besides the actions themselves. The context part
represents the low level routines performed by the run-time support to execute
the transition itself. Therefore, the enhanced label of a communication must
record its output and input components and their contexts. We choose instead
not to use contexts to enrich labels of decryptions.

Again, we are not going to formally introduce the enhanced semantics
and its labels; we only give the flavour of it, still using our running example.
The context, used here only for communication labels, takes into account the
parallel composition and the restriction construct, by recalling for each output
(resp. input) which restrictions precede it and in which parallel component of
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1 Sys1 = (νKA)(νKB)((A|B)|S) KA, KB long-term keys

2 A = (νN)(νNA) N, NA fresh nonces

3 (〈A, B, N, {A, B, N, NA}KA
〉. A′) A sends (1)

4 A′ = (N ; vA
enc). A

′′ A receives and checks (4)

5 A′′ = decrypt vA
enc as {NA; vA

K
}

KA
in A A decrypts its Enc

6 B = (A, B; xN , xA
enc). B

′ B receives and checks (1)

7 B′ = (νNB) NB fresh nonce

8 (〈A, B, xN , xA
enc, {A, B, xN , NB}KB

〉. B′′) B sends (2)

9 B′′ = (xN ; zA
enc, z

B
enc). B

′′′ B receives and checks (3)

10 B′′′ = decrypt zB
enc as {NB; zK}

KB
in B′′′′ B decrypts its Enc and checks

11 B′′′′ = 〈xN , zA
enc〉. B B sends (4)

12 S = (A, B; yN , yA
enc, y

B
enc). S

′ S receives and checks (2)

13 S′ = decrypt yA
enc as {A, B, yN ; wA

N
}

KA
in S′′ S decrypts the 1st Enc and checks

14 S′′ = decrypt yB
enc as {A, B, yN ; wB

N
}

KB
in S′′′ S the 2nd Enc and checks

15 S′′′ = (νKAB) KAB fresh session key

16 (〈yN , {wA

N
, KAB}KA

, {wB

N
, KAB}KB

〉. S) S sends (3)

Table 1
OR1 Specification

the whole system the output (resp. input) is. We obtain it by a pre-processing
step. Given a LySa process (fully parenthesized), we statically enrich each
prefix (output or input) with sequences ϑ of tags, where a tag can be νn,
‖0 or ‖1. The tag νn appears in the sequence if the prefix occurs after a
restriction; while the tag ‖0 (resp. ‖1) appears, if the prefix is collocated in
the left (resp. right) branch of a parallel composition. Parallel composition
and restrictions can be nested.

Example (cont’d)

Coming back to our example, the sequence of tags preceding the output
〈A, B, N, {A, B, N, NA}KA

〉 of A (line 3 in Tab. 1) is νKA
νKA

νNνNA
‖0‖0: in-

deed it comes after the four restrictions of KA,KA,N , NA and the process A is
inside the left branch of the parallel composition (A|B), in turn on the left of
the parallel composition ((A|B)|S). In our systems, sequences of tags reduce
to the following:

• ϑA = νKA
νKA

νNνNA
‖0‖0 preceding the prefixes of A in Sys1 and

ϑ′
A = νKA

νKA
νNA

‖0‖0 preceding the prefixes of A in Sys2;

• ϑB = νKA
νKA

‖0‖1 (resp. ϑ′
B = νKA

νKA
νNB

‖0‖1 preceding the first input of
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1 Sys2 = (νKA)(νKB)((A|B)|S) KA, KB long-term keys

2 A = (νNA) NA fresh nonce

3 (〈A, B, NA〉. A′) A sends (1)

4 A′ = (NA; vA
enc). A

′′ A receives and checks (4)

5 A′′ = decrypt vA
enc as {A, B, NA; vA

K
}

KA
in A A decrypts its Enc

6 B = (A, B; xA

N
). B′ B receives and checks (1)

7 B′ = (νNB) NB fresh nonce

8 (〈A, B, xA

N
, NB〉. B′′) B sends (2)

9 B′′ = (; zA
enc, z

B
enc). B

′′′ B receives and checks (3)

10 B′′′ = decrypt zB
enc as {A, B, NB; zK}

KB
in B′′′′ B decrypts its Enc

11 B′′′′ = 〈zA
enc〉. B B sends (4)

12 S = (A, B; yA

N
, yB

N
). S′ S receives and checks (2)

13 S′ = (νKAB) KAB fresh session key

14 (〈A, B, {wA

N
, KAB}KA

, {A, B, wB

N
, KAB}KB

〉. S) S sends (3)

Table 2
OR2 Specification

B (resp. of B′) in Sys1 and Sys2;

• ϑS = νKA
νKA

‖1 (resp. ϑ′
S = νKA

νKA
νKAB

‖1) preceding the first input of S
(resp. preceding the last output of S) in Sys1 and in Sys2.

Fig. 1 and 2 depict the finite transition system of the OR1 and OR2 LySa

specifications, respectively. The transition system is a graph, in which pro-
cesses form the nodes and the arcs represent the possible transitions between
them. For our present purpose, we just refer to abstract transitions from

state P to state P ′ in the form: P
(label,caption)

−→ P ′, where the first part refers
to the label of the transition. The second part is only added to recall the
reader which part of the protocol the transition represents, e.g. the caption
(1 : A −→ B) says that the transition represents the communication between
A and B, reported in the first message of protocol. These captures are of no
other use.

The following are the enhanced labels of the first three transitions of Sys1

discussed above:

(i) l1 = 〈ϑA〈A, B, N, {A, B, N, NA}KA
〉, ϑB(A, B; xA

N )〉,

(ii) l2 = 〈ϑ′
B〈A, B, N, {A, B, N, NA}KA

, {A, B, N, NB}KB
〉, ϑS(A, B; yA

N , yB
N)〉,

(iii) l3 = {A, B, N ; wA
N}.
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The other labels can be computed analogously.

A | B | S A′ | B′ | S A′ | B′′ | S′

A′ | B′′ | S′′

A′ | B′′ | S′′′

A′′ | B | S A′ | B′′′′ | S A′ | B′′′ | S

l1,1:A−→B l2,2:B−→S

l3,2:S dec

l4,2:S dec

l5,3:S−→B

l6,3:B decl7,4:B−→A

l8,4:A dec

Fig. 1. Sys1 state transition system.

A | B | S A′ | B′ | S A′ | B′′ | S′

A′′ | B | S A′ | B′′′′ | S A′ | B′′′ | S

l′
1
,1:A−→B l′

2
,2:B−→S

l′
3
,3:S−→B

l′
4
,3:B decl′

5
,4:B−→A

l′
6
,4:A dec

Fig. 2. Sys2 state transition system.

2.3 Cost Function

We now introduce a function $(·) that intuitively assigns costs to individual
transitions derived from their labels, alone (see Appendix B for further de-
tails). Recall that by “cost” we mean any measure that affects quantitative
properties of transitions. In particular, we are interested in cryptographic rou-
tines that implement encryptions and decryptions. By inspecting enhanced
labels we derive the costs of transitions. The context in which the action
occurs, represents a suitable representation of the execution of the run-time
support routines leading to that action on the target machine. Following this
intuition, we let the cost of the transition depend on both the current action
and on its context. Technically, this cost represents the rate of the transition,
i.e. the parameter which identifies the exponential distribution of the duration
times of the transition. In other words, with “cost” we intend a measure of
the time the system is likely to remain within a given transition. Our function
therefore specifies the cost of a protocol in terms of the time overhead due to
its primitives (see also [16]). In the next sub-section we will perform opera-
tions on costs to tune a probabilistic distribution with respect to the expected
speed of actions.

We intuitively present the main factors that influence costs.
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• The cost of a communication depends on both the input and the output
components. Finally, it also depends on its context.
· The cost of an output depends on the size of the message and on the cost

of each part (or term) of the message. Note that the cost of an encryption

is not constant: it depends on the algorithm that implements it, on the
size of the cleartext, on the kind of the key (on its size and on its intended
use, e.g. long-term or short-term).

· The cost of an input depends on the size of the message and on the cost
of the terms to be matched. It depends also on the number of checks to
make in order to accept the message.

• The cost of a decryption of a ciphertext depends on the algorithm that im-
plements it, on the size of the ciphertext, on the kind of the key. It depends
also on the number of checks to make in order to accept the decryption. To
simplify our presentation, we let the cost of a decryption not depend on its
context.

Here, we do not fix the cost function: we only propose for it a possible set
of parameters that reflect some features of a somewhat idealized architecture
and of a particular cryptosystem, e.g. we take into account the number of
processors or the kind of cryptographic algorithms. Although very abstract,
this suffices to make our point.

As discussed before, the context of each action must be considered. Con-
texts indeed slow down the speed of actions. We therefore determine a slowing
factor for any construct of the language. Nevertheless, for simplicity, in our
example, we only consider the cost due to parallel composition.

• Parallel composition is evaluated according to the number np of processors
available.

• The cost of restriction depends at least on the number of names n(P ) of
the process P because its resolution needs a search in a table of names.
Furthermore, it depends on the kind of the name introduced (nonce, long-
term key or short-term key).

• The activation of a new agent via a constant invocation has a cost depending
on the size and the number of its actual parameters, as well as on the number
of processors available. We do not associate any cost to activations, though.

Example (cont’d)

We now associate a cost to each transition in the transition systems in
Fig. 1 and 2. For the sake of simplicity, in computing the performance, we
neglect the cost due to restrictions. Also, since we can assume that each
principal has its own processing unit, we can give cost 1 to each tag ‖i (i =
0, 1). In other words, we can ignore the context, in our example. Moreover,
we give the same cost to output and input. More precisely:

• in a transition representing a communication we assign a cost equal to n ∗

9
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c1 = 7s + 4e,

c2 = 8s + 4e,

c3 = 4d,

c4 = 4d,

c5 = 5s + 4e,

c6 = 2d,

c7 = 2s

c8 = 4d;

c1 = 3s,

c2 = 4s,

c2 = 8s + 6e,

c2 = 4d,

c2 = s

c2 = 4d.

Table 3
Cost Labels in Sys1 (on the left) and Sys2 (on the right).

s +
∑l

i=1 mi ∗ e, where n is the size of the message, s denotes the cost of a
unitary output, mi is the size of the ith encryption included in the message
(if any) and e denotes the cost of a unitary encryption.

• in a transition representing a decryption we assign a cost equal to n ∗ d,
where n is the size of the decryption and d denotes the cost of a unitary
decryption.

For instance, the cost of the first transition in Fig. 1, carrying label l1 =
〈ϑA〈A, B, N, {A, B, N, NA}KA

〉, ϑB(A, B; xA
N)〉, is given by (7s + 4e), where 7

are the unary terms used for the output message and 4 is the size of the en-
crypted cleartext (we assume that input and output have the same cost). The
cost of the third transition is instead 4d, that represents the cost of decrypting
a ciphertext, obtaining a cleartext of size 4. The full list of the costs ci relative
to the labels li in Sys1 and Sys2 are in Tab. 3. Note that cost parameters
depend on the platform and on the actual protocol. For instance, in a system
where cryptographic operations are performed at very high speed (e.g. thanks
to a cryptographic accelerator), but with a slow link (low bandwidth), the
cost for encryptions will be low and high for communication.

2.4 Markov Chains

Now, we show how to extract quantitative information from a transition sys-
tem (obtained using our enhanced operational semantics) by transforming it
into a CTMC.

Our first step is introducing a function that assigns costs to individual
transitions, we perform operations on costs. Although we interpret costs as
parameters of exponential distributions, our relabeling functions are not in-
tended to manipulate random variables. The intuition is that cost functions
define a single exponential distribution by subsequent refinements as soon as
information on the run-time becomes explicit. Operationally we start with

10
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an optimistic selection of an exponential distribution and then, while scan-
ning contexts, we jump to other distributions until the one suitable for the
current transition is reached. The cost functions encode this jumping strat-
egy. Once the exponential distributions of transitions have been computed,
we make some numerical calculations, possibly by collapsing those arcs that
share source and target.

Recall that the exponential distributions we use enjoy the memoryless

property. Roughly speaking, the occurrence of the next transition is inde-
pendent of when the last transition occurred. This means that any time a
transition becomes enabled, it restarts its elapsing time as if it were the first
time that it was enabled. Furthermore, all transitions are assumed to be time

homogeneous, meaning that the rate of a transition is independent of the time
at which it occurs.

We first associate a parameter r with a transition to derive some transition
probabilities, defined as the rate at which a system changes from behaving like
process Pi to behaving like Pj: it corresponds to the sum of the costs of all
the possible transitions from Pi to Pj . Note that in our example, in both
transition systems, there is only one transition between each pair of nodes
and consequently rates coincide with single costs.

Definition 2.1 The transition rate between two states Pi and Pj, written

q(Pi, Pj), is the rate at which the transitions between Pi and Pj occur

q(Pi, Pj) =
∑

Pi

θk−→Pj

$(θk).

Remember that $ is the cost function as defined in Appendix B. A con-
tinuous time Markov chain C can be conveniently represented as a directed
graph whose nodes are the states of C, and whose arcs only connect the states
that can be reached by each other.

The rates at which the process jumps from one state to another can be ar-
ranged in a square matrix Q, called generator matrix. Apart from its diagonal,
it is the adjacency matrix of the graph representation of the of the Contin-
uous Time Markov Chain of the process under consideration (CTMC(P )).
The entries of Q are called instantaneous transition rates and are defined by

qij =







q(Pi, Pj) =
∑

Pi

θk−→Pj

$(θk) if i 6= j

−
n∑

j=1

j 6=i

qij if i = j

(1)

Performance measures of systems make sense over long periods of execu-
tion. These measures for a process P are then usually derived by exploiting
the stationary probability distribution Π for the CTMC we associate with P
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(it exists, because both transition systems are finite and cyclic).

Definition 2.2 Let Πt(xi) = p(X(t) = xi) be the probability that a CTMC is

in the state xi at time t, and let Π0 = (Π0(x0), . . . , Π
0(xn)) be the initial dis-

tribution of states x0, x1, . . . , xn. Then a CTMC has a stationary probability
distribution Π = (Π(x0), . . . , Π(xn)) if

ΠQ = 0 and

n∑

i=0

Π(xi) = 1.

The stationary distribution for each of the two systems in Fig. 1 and 2, is
the solutions of the system of linear equations, defined as above.

Note that we can use standard numerical techniques and exploit the pre-
ferred numerical package available to make all the computations needed above;
the very same for the stochastic analysis, we will make afterwards.

Finally, we measure the performance of a process P by associating a reward

structure with it, following [11,10,5]. Since our underlying performance model
is a continuous time Markov chain, the reward structure is simply a function
that associates a value with any state passed through in a computation of P ,
i.e. with any derivative of P , rather than to each transition, as often done in
the literature, e.g. in [14]. For instance, when calculating the utilisation of
a cryptosystem, in order to perform a decryption, we assign value 1 to any
transition in which the decryption is enabled. All the other transitions earn
the value 0 as transition reward.

Definition 2.3 Given a function ρθ associating a transition reward with each

transition θ in a transition system, the reward of a state P is

ρP =
∑

P
θ

−→Q

ρθ.

Intuitively, the reward structure of a process P is a vector of rewards with
as many elements as the number of derivatives of P . From it and from the sta-
tionary distribution Π of CTMC of a process P we can compute performance
measures.

Definition 2.4 Let Π be the stationary distribution of CTMC(P ). The total
reward of a process P is computed as

R(P ) =
∑

Pi∈d(P )

ρPi
× Π(Pi).

For instance, we obtain the utilisation of a cryptosystem by summing the
values of Π multiplied by the corresponding reward structure. This amounts to
considering the time spent in the states in which the usage of the cryptosystem
is enabled.
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Example (cont’d)

Consider again the transition systems in Fig. 1 and 2 which are both
finite and have cyclic initial states. These features ensure that they have
stationary distributions. We derive the following generator matrices Q1 and
Q2 of CTMC(Sys1) and CTMC(Sys2).

Q1 =














b b 0 0 0 0 0 0
0 g g 0 0 0 0 0
0 0 −4d 4d 0 0 0 0
0 0 0 −4d 4d 0 0 0
0 0 0 0 −a a 0 0
0 0 0 0 0 −2d 2d 0
0 0 0 0 0 0 −2s 2s
2d 0 0 0 0 0 0 −2d














Q2 =










−3s 3s 0 0 0 0
0 −4s 4s 0 0 0
0 0 −f f 0 0
0 0 0 −4d 4d 0
0 0 0 0 −s s
4d 0 0 0 0 −4d










The stationary distributions of the Markov chains Πi = (X0, . . . , Xn−1)
(i = 1, 2 and n = 6, 8) for Sys1 and Sys2, solutions of the following systems
of linear equations

ΠQ = 0 and

n−1∑

i=0

Xi = 1.

are the following:

Π1 =
[A

b
,

A

4c
,

A

4d
,

A

4d
,

A

a
,

A

2d
,

A

2s
,

A

2d

]

where:

A =
4abcds

6bcs + 4adcs + adbs + 2adbc + 4dbcs

and

a = 5s + 4e b = 7s + 4e c = 2s + e g = 8s + 4e

Π2 =
[4B

3s
,

B

s
,

4B

f
,

B

d
,

4B

s
,

B

d

]

where

B =
3dfs

20df + 12sd + 6sf
f = 8s + 6e

We compare now the relative efficiency of the two versions of the protocol,
in terms of their utilization of cryptographic routines, as discussed above.
We assign value 1 (a non-zero transition reward) to any transition in which
the decryption is enabled and we assign value 0 to any other transition. In
particular, we assign value 1 to the 3rd, 4th, 6th, 8th transitions in Sys1 and to
the 4th and 6th transitions in Sys2.

13
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Using this performance measure, which we call R, we obtain that the
performance of OR1 is lower than the one of OR2, as expected. Indeed

R(Sys1) =
3A

2d
R(Sys2) =

2B

d
It is possible to prove that R(Sys1) is less or equal to R(Sys2), for every
positive s, d and e, assuming that encryption and decryption have the same
cost. So, we could measure and compare the performance of different versions
of the same protocol and establish which is the more efficient.

3 Conclusion

We have presented a framework in which the performance analysis of security
protocols, is driven by the semantics of their specifications, given in terms of
the process algebra LySa [4].

We used an enhanced operational semantics, whose transitions are labelled
by (encodings of) their proofs. Taking advantage of enhanced labels, we me-
chanically associate rates, i.e probabilistic information, with transitions. This
is done symbolically, by looking at the enhanced labels, alone. Actual values
are obtained as soon as the user provides some additional information about
the architecture and the cryptographic tools relative to the analysed system.

Since enhanced labels can be tightly connected to the routines called by the
run-time support to implement each operator of the language, the information
about architectural features and about algorithms used can be supplied by a
compiler.

We are particularly interested here in the evaluation of the aspects due
to cryptography, such as those depending on the cryptosystem and on the
kind of keys used in a particular protocol. This makes it possible to weigh
and compare different versions of protocols by the performance point of view.
Each cryptosystem implies a different cost that depends on how it consumes
resources and time. Furthermore, the algorithm behaviour is influenced by
the target platform and vice versa, e.g. in a shared-key architecture where
many principals want to communicate each other requires a higher number
of different keys than in Client-Server architecture. Therefore our approach
makes the critical cost factors evident and helps the designer in choosing
efficient solutions.

In this paper we have assumed that any activity is exponentially dis-
tributed, but general distributions are also possible (see [18]), as they depend
on enhanced labels, alone. Once rates have been assigned to transitions, it
is easy to derive the CTMC associated with a transition system of a process.
From its stationary distribution, if any, we evaluate the performance of the
process in hand. Moreover, although many different timing models can be
used, in this paper we concentrate on a continuous time approach.

It is worth noticing that our approach follows the same pattern presented
in [6] to derive behavioural information from our enhanced labels. Also,

14
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behavioural properties, such as confidentiality and authentication, can be
checked by using a tool integrated with ours, like the analyser of LySa [4].
Therefore, we propose our operational semantics as a basis to uniformly carry
out integrated behavioural and quantitative analysis.

We hope that our proposal is a little step in supporting the designers in the
development of applications, by driving and assisting them in error-prone steps
such as the translation of a specification into a model, suitable for quantitative
analysis.
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A Enhanced Operational Semantics of LySa

The syntax of LySa consists of terms E and processes P , where N and X
denote sets of names and variables, respectively. Encryptions are tuples of
terms E1, · · · , Ek encrypted under a term E0 representing a shared key. Values,
that correspond to closed terms, i.e. terms without free variables, are used to
code keys, nonces, messages etc. ,

E ::= terms ∈ E

n name (n ∈ N )

x variable (x ∈ X )

{E1, · · · , Ek}E0
symmetric encryption (k ≥ 0)
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P ::= processes ∈ P

0 nil

〈E1, · · · , Ek〉. P output

(E1, · · · , Ej ; xj+1, · · · , xk). P input (with matching)

P1 | P2 parallel composition

(ν n)P restriction

A(y1, . . . , yn) constant definition

decrypt E as {E1, · · · , Ej; xj+1, · · · , xk}E0
in P

symmetric decryption (with matching)

The set of free variables/free names, written fv(·)/fn(·) and α-equivalence ≡α

are defined in the standard way. As usual we omit the trailing 0 of pro-
cesses and use the standard notion of substitution: P [E/x] is the process
P where the occurrences of x are replaced by E. Here, 〈E1, · · · , Ek〉 and
(E1, · · · , Ej; xj+1, · · · , xk) represent the output and the input prefix, respec-
tively. At run-time prefixes contain closed terms (apart from the variables
xj+1, · · · , xk). To denote run-time prefixes we will use the meta-variables µout

and µin, resp. in the following. Our enhanced operational semantics for LySa

is built on the top of a reduction semantics. As usual, processes are consid-

ered modulo structural congruence ≡. The reduction relation
θ

−→ is the least
relation on closed processes, i.e. processes with no free variables, that satisfies
the rules in Table A.1.

We first focus on the actions (similar to the standard semantics) and after-
wards on the new form of processes and on the labels that enrich transitions.

The rule (Com) expresses that an output 〈E1, · · · , Ej, Ej+1, · · · , Ek〉. T is
matched by an input (E ′

1, · · · , E
′
j ; xj+1, · · · , xk).T

′ in case the first j elements
are pairwise the same. When the matchings are successful each Ei is bound
to each xi.

Similarly, the rule (Decr) expresses the result of matching the term re-
sulting from an encryption {E1, · · · , Ej, Ej+1, · · · , Ek}E0

, against the pattern
inside the decryption decrypt E as {E ′

1, · · · , E
′
j ; xj+1, · · · , xk}E′

0
in T : the first

j components should be the same, additionally, the keys must be the same,
i.e. E0 = E ′

0 — this models perfect symmetric cryptography. When suc-
cessful, each Ei is bound to each xi. The rules (Par), (Res) and (Congr)
are standard. Finally, P (a1, . . . , an) is the definition of constant (hereafter ã
denotes the sequence a1, . . . , an). Each agent identifier A has a unique defin-
ing equation of the form A(y1, . . . , yn) = P , where the yi are distinct and
fn(P ) ⊆ {y1, . . . , yn}. Hereafter, we will restrict ourselves to processes that
generate finite state spaces, i.e. which have a finite set of derivatives. 5 Note

5 A sufficient condition for a process to be such is that all the agent identifiers occurring in
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that this does not mean that the behaviour of such processes is finite, because
their transition systems may have loops. Indeed, particular forms of loops are
essential to apply the steady state analysis that we carry out in our examples.
The above ensures that our processes have a finite set of derivatives.

(Com)

∧j
i=1 Ei = E′

i

ϑ||iϑO〈E1, · · · , Ek〉
︸ ︷︷ ︸

out

T |

ϑ||1−iϑI(E
′
1, · · · , E

′
jxj+1, · · · , xk)

︸ ︷︷ ︸

in

T ′

〈out,in〉
−→ T | T ′[Ej+1/xj+1, · · · , Ek/xk]

(Decr)

∧j
i=0 Ei = E′

i

decrypt ({E1, · · · , Ek}E0
)

as {E′
1, · · · , E

′
j ;xj+1, · · · , xk}E′

0
︸ ︷︷ ︸

dec

in T
〈dec〉
−→ T [Ej+1/xj+1, · · · , Ek/xk]

(Par)

T0
θ

−→ T ′
0

T0 | T1
θ

−→ T ′
0 | T1

(Res)

T
θ

−→ T ′

(ν n)T
θ

−→ (ν n)T ′

(Ide) :

T{ã/ỹ}
θ

−→ T ′

A(ã)
θ

−→ T ′
, A(ỹ) = T

(Congr)

T ≡ T0 ∧ T0
θ

−→ T1 ∧ T1 ≡ T ′

T
θ

−→ T ′

Table A.1
Proved Operational semantics, T

θ
−→ T ′.

For the (proved) operational semantics of the our calculus, we need to as-
sociate to each transition an enhanced label in the style of [6,7]. An enhanced
label records: the action corresponding to the transition and the syntactic con-
text in which the action takes place, in particular to the input and output part
of a communication. To associate the context to each component, we stati-
cally associate a context label ϑ to each prefix of a given process. Mainly, these
labels take into account the parallel composition and the restriction construct
(by distinguishing which kind of name the restriction creates). Technically, we
use two functions: the firstBdistributes context labels on a given process and
the second T builds the label, by introducing a ‖0 (resp. ‖1) for the left (resp.

it have a restricted form of definition A(ỹ) = P . Namely, A can occur in P only if prefixed
by some action and cannot occur within a parallel context.
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for the right) branch of a parallel composition and a νa for each restriction of
the name a. In the end, we will have a new kind of processes LP, ranged over
by T, T ′, where each prefix is associated by a context label.

Definition A.1 Let L = {‖0, ‖1} with χ ∈ L∗, O = {νa, νK , νN} 3 o. Then

the set of context labels is then defined as (L ∪O)∗, ranged over by ϑ.

Definition A.2 (Distributing labels)

− ϑB0 = 0

− ϑB(ϑ′µ.T ) = ϑϑ′µ.(ϑBT )

− ϑBT0 | T1 = (ϑBT0) | (ϑBT1)

− ϑB(νa)T = (νa) ϑBT

− ϑBA(y1, . . . , yn) = A(y1, . . . , yn)

−ϑB decrypt {E1, · · · , Ek}E0
as {E ′

1, · · · , E
′
j; xj+1, · · · , xk}E′

0
in T =

decrypt {E1, · · · , Ek}E0
as {E ′

1, · · · , E
′
j ; xj+1, · · · , xk}E′

0
in ϑBT

We can now define the function T mapping processes from P in LP .

Definition A.3 Let A, B be standard processes and let B the operator intro-

duced in the previous definition. The following is a bijection:

− T ((νa)T ) = (νa)νa BT (T )

− T (T0|T1) = ‖0BT (T0) | ‖1BT (T1)

− T (0) = 0

− T (µ.T ) = µ.T (T )

− T (A(y1, . . . , yn)) = A(y1, . . . , yn)

− T (decrypt E as {E1, · · · , Ej; xj+1, · · · , xk}E0
in T ) =

decrypt E as {E1, · · · , Ej; xj+1, · · · , xk}E0
in T (T )

We need the following structural congruence rule to distribute the restric-
tion labels to parallel processes:

(νa)(νa BT0)|T1 ≡ (νa)(νa BT0|νa BT1)

Now, we are ready to introduce the enhanced labels of transitions. Note
that in the first label (the one relative to communication), there is a common
part between the input and the output contexts.

Definition A.4 The set Θ of enhanced labels, ranged over θ, is defined by

θ ::= 〈ϑ‖1−iϑOµO
︸ ︷︷ ︸

out

, ϑ‖iϑIµI
︸ ︷︷ ︸

in

〉|〈{E ′
1, · · · , E

′
j; xj+1, · · · , xk}E′

0
︸ ︷︷ ︸

dec

〉
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Labelled transitions
ϑ

−→ are introduced in (Com) and (Dec). The re-

duction
ϑ

−→ is closed under the other inference rules (parallel composition,
constant invocation, restriction and congruence rule).

To recover the original reduction semantics that, by definition, does not
use labels, it is sufficient to eliminate them and to eliminate context labels
from processes.

B Cost function

We are going to formally define the function which associates a cost with each
transition labelled by θ. This cost represents the rate of the transition, i.e. the
parameter which identifies the exponential distribution of the duration times
of θ.

Therefore the cost of each component of an enhanced label ϑµ depends on
the action µ and on the context ϑ.

To define a cost function, we start by considering the execution of the
action µ on a dedicated architecture that only has to perform µ, and we
estimate once and for all the corresponding duration with a fixed rate r. Then
we model the performance degradation due to the run-time support. In order
to do that, we introduce a scaling factor for r in correspondence with each
routine called by the implementation of the transition θ under consideration.

We proceed now with our definitions. First we assign costs to the composi-
tion of terms (in particular of encryptions), and to the components of actions
µin, µout. The functions fu(n) and fu(n) represent the cost of unary terms, the
functions, while fenc represents the cost function for the encryption (comput-
ing the cost of the routines that implement the encryption algorithm). The
cost function of a tuple coincides with the minimum cost among the costs of
each component, to reflect the speed of the slower operation. Moreover, the
functions fin, fout define the costs of the routines which implement the send
and receive primitives, where the function f=(j) represents the cost function
for a pattern matching of size j. In the following, fkind(crypt) denotes the
cost of an encryption or a decryption, due to the cryptosystem used; similarly
for fkind(EO) denotes the cost due to the choice of a particular key (depend-
ing on the size and the intended use). Moreover, for fsize(ctxt) denotes the
cost due to the size of the cleartext to encrypt.

Furthermore, fsize(msg) stands for the cost due to size of the message
to send or to receive in the evaluation of the cost of an output or an input.
Finally, f=(j) is the function that computes the cost of performing a pattern
matching on j terms.

• $T (n) = fu(n)

• $T (x) = fu(x)

• $T ({E1, . . . , En}E0
) = fenc(fkind(crypt), fsize(ctxt), fkind(EO), $T (E1, . . . , Ek))
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• $T ((E1, . . . , En)) = min($T (E1), . . . , $T (En))

• $in(µin) = fin(fsize(msg), f=(j), $T (E1, . . . , Ej))

• $out(µout) = fout(fsize(msg), $T (E1, . . . , Ek))

According to the intuition that contexts slow down the speed of actions,
we now determine a slowing factor for any construct of the language. The
idea is to devise a general framework in which real situations

The cost of the operators is expressed by the function

$o(‖i) = f‖(np), i = 0, 1

$o((νa)) = fν(n(P ), fkind(a))

Parallel composition is evaluated according to the number np of processors
available. A particular case is $o(‖) = 1 which arises when there is an un-
bound number of processors. (Recall that we are not yet considering commu-
nications.) The cost of restriction depends at least on the number of names
n(P ) of the process P because its resolution needs a search in a table of names.
Furthermore, it depends on the kind of the name fkind(a) (nonce, long-term
key, short-term key).

Let the label of the transition in hand be 〈ϑ||iϑinµin, ϑ||1−iϑoutµout〉. The
two partners perform independently some low-level operations locally to their
environment. These operations are recorded in ϑin and ϑout, inductively built
by the application of the function T . Each of the tags of ϑi leads to a delay in
the rate of the corresponding µi, which we compute through the auxiliary cost
function $o. Then the pairing 〈||iϑinµin, ||1−iϑoutµout〉 occurs and corresponds
to the actual communication. Since communication is synchronous and hand-
shaking, its cost is the minimum of the costs of the operations performed by
the participants independently to make communications reflect the speed of
the slower partner. Recall indeed that the lower the cost, the greater the time
needed to complete an action and hence the slower the speed of the transi-
tion occurring. 6 We estimate the corresponding duration with a fixed rate
r = min{$in(||iϑinµin), $out(||1−iϑoutµout)}. Finally, there are those operations,
recorded in ϑ, that account for the common context of the two partners.

If the label is 〈dec〉, then the cost is the one computed with the func-
tion fdec, that corresponds to the cost of the routines that implement the
decryption algorithm, including the cost of pattern matching.

We now have all the ingredients to define the function that associates costs
with enhanced labels. It is defined by induction on θ and by using the auxiliary

6 An exponential distribution with rate r is a function F (t) = 1 − e−rt, where t is the
time parameter. The value of F (t) is smaller than 1 and limt→∞ F (t) = 1. The shape
of F (t) is a curve which monotonically grows from 0 approaching 1 for positive values of
its argument t. The parameter r determines the slope of the curve. The greater r, the
faster F (t) approaches its asymptotic value. The probability of performing an action with
parameter r within time x is F (x) = 1−e−rx, so r determines the time, ∆t, needed to have
a probability near to 1.
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functions $µ as basis, and then $o.

Definition B.1 Let the cost function, where i = 0, 1, can be defined as

$(µ) = $µ(µ)

$(oθ) = $o(o) × $(θ)

$(‖iθ) = $o(‖i) × $(θ)

$(〈ϑ‖iϑinµin, ϑ‖1−iϑoutµout〉) = $(ϑ) × min{$(‖iϑinµin), $(‖1−iϑoutµout)

$(〈dec〉) = fdec(fkind(crypt), fsize(ctxt), f=(j), fkind(EO), $T (E1, . . . , Ej))
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