
On Evaluating the Performance of Security

Protocols ⋆

Chiara Bodei1, Mikael Buchholtz3, Michele Curti1, Pierpaolo Degano1,
Flemming Nielson3, Hanne Riis Nielson3, Corrado Priami2

1 Dipartimento di Informatica, Università di Pisa
Largo B.Pontecorvo, 3, I-56127 Pisa, Italy. – {chiara,curtim,degano}@di.unipi.it

2 Dipartimento di Informatica e Telecomunicazioni, Università di Trento
Via Sommarive, I-1438050 Povo (TN), Italy. – priami@science.unitn.it

3 Informatics and Mathematical Modelling, Technical University of Denmark
Richard Petersens Plads bldg 321, DK-2800 Kongens Lyngby, Denmark

– {mib,nielson,riis}@imm.dtu.dk

Abstract. We use an enhanced operational semantics to infer quanti-
tative measures on systems describing cryptographic protocols. System
transitions carry enhanced labels. We assign rates to transitions by only
looking at these labels. The rates reflect the distributed architecture run-
ning applications and the use of possibly different crypto-systems. We
then map transition systems to Markov chains and evaluate performance
of systems, using standard tools.

1 Introduction

Cryptographic protocols are used in distributed systems for authentica-
tion and key exchange, and must therefore guarantee security. The mech-
anisms used are always the result of a judicious balance between their
cost and benefits. Performance costs, in terms of time overhead and re-
source consumption, must be carefully evaluated when choosing security
mechanisms.

Here, we extend a preliminary idea introduced in [6] for the devel-
opment of a single, formal design methodology that supports design-
ers in analysing the performance of protocols, with a semi-mechanizable
procedure. We provide a general framework, where quantitative aspects,
symbolically represented by parameters, can be formally estimated. By
changing only these parameters on the architecture and the algorithm
chosen, one can compare different implementations of the same protocol
or different protocols. This allows the designer to choose among differ-
ent alternatives, based on an evaluation of the trade-off between security
guarantees and their price.

⋆ Supported in part by the EU IST-2001-32072 project DEGAS.

We are mainly interested in evaluating the cost of each cryptographic
operation and of each message exchange. Here, “cost” means any measure
of quantitative properties such as speed, availability, etc.

Usually protocols are described through informal narrations. These
narrations include only a list of the messages to be exchanged, leaving it
unspecified which are the actions to be performed in receiving these mes-
sages (inputs, decryptions and possible checks on them). This can lead,
in general, to an inaccurate estimation of costs. The above motivates the
choice of using the process algebra LySa [3, 5], a close relative of the
π- [24] and Spi-calculus [1], that details the protocol narration, in that
outputs and the corresponding inputs are made explicit and similarly for
encryptions and the corresponding decryptions. Also, LySa is explicit
about which keys are fresh and about which checks are to be performed
on the received values. More generally, LySa provides us with a unify-
ing framework, in which security protocols can be specified and statically
analysed [3, 5] through Control Flow Analysis. This analysis, fully auto-
matic and always terminating, is strong enough to report known flaws on
a wide range of protocols, and even to find new ones [4].

Technically, we give LySa (Sect. 2) an enhanced semantics, follow-
ing [14], and then we associate rates to each transition, in the style of
[26]. It suffices to have information about the activities performed by
the components of a system in isolation, and about some features of the
network architecture. We then mechanically derive Markov chains using
these rates (Sect. 3). The actual performance evaluation is carried out us-
ing standard techniques and tools [33, 31, 32]. Significantly, quantitative
measures, typically on cryptography, here live together with the usual
qualitative semantics, where instead these aspects are usually abstracted
away. Specifically, there exists a very early prototype, based on π-calculus,
on which it is possible to run LySa, that we used for the case study pre-
sented here (Sect. 4), along with a standard mathematical tool such as
Mathematica. Relative approaches are EMPA[8] and PEPA[19], to cite
only a few.

In comparing different versions of the same protocol or different pro-
tocols, specified in LySa, our technique can be suitably integrated with
the Control Flow one, to check security at the same stage.

Our framework can be extended [7] to estimate the cost of security
attacks. The typical capabilities of the Dolev-Yao attacker [16] go beyond
the ones a legitimate principal has. The needed model includes a set of
the possible extra actions in which the attacker exploits its computational
power and its capability of guessing (see also [10] and [23]). It would be

interesting to deal with timing attacks as well, even though this may
considerably complicate our model.

2 LySa and its Enhanced Semantics

The LySa calculus [3, 5] is based on the π- [24] and Spi-calculus [1], but
differs from these essentially in two aspects: (i) the absence of channels:
there is only one global communication medium to which all processes
have access; (ii) the tests associated with input and decryption are natu-
rally expressed using pattern matching. Below, we assume that the reader
is familiar with the basics of process calculi.

Syntax The syntax consists of terms E ∈ E and processes P ∈ P,
E ::= a | x | {E1, · · · , Ek}E0

P ::= 0 | out.P | in.P | P1 | P2 | (ν a)P | dec in P | A(y1, . . . , yn)

where we introduced the following abbreviations: • out
△
= 〈E1, · · · , Ek〉,

• in
△
= (E′

1, · · · , E
′
j ; xj+1, · · · , xk), • dec

△
= decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}E0

.

Intuitively, the process 0 or nil represents the null inactive process. The
operator | describes parallel composition of processes. The operator (νa)
acts as a static declaration for the name a in the process P the restriction
prefixes. Restriction is therefore used to create new names such as nonces
or keys. The process 〈E1, · · · , Ek〉. P sends E1, · · · , Ek on the net and then
continues like P . The process (E1, · · · , Ej ; xj+1, · · · , xk). P receives the tu-
ple E′

1, · · · , E
′
k and continues as P [Ej+1/xj+1, . . . , Ek/xk], provided that

Ei = E′
i for all i ∈ [1, j]. The intuition is that the matching succeeds when

the first j values E′
i pairwise correspond to the values Ei, and the effect is

to bind the remaining k−j values to the variables xj+1, · · · , xk. Note that,
syntactically, a semi-colon separates the components where matching is
performed from those where only binding takes place. The same sim-
ple form of patterns is also used for decryption (see [9] for a more flexible
choice). In fact, the process decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}E0

in P
decrypts E = {E′

1, · · · , E
′
k}E′

0
with the key E0. Whenever Ei = E′

i for all
i ∈ [0, j], the process behaves as P [Ej+1/xj+1, . . . , Ek/xk]. Finally, an
agent is a static definition of a parameterised process. Each agent iden-
tifier A has a unique defining equation of the form A(ỹ) = P , where ỹ
denotes a tuple y1, . . . , yn of distinct names occurring free in P .

Working Example Consider the following basic Kerberos key agreement
protocol [22] that is part of our case study. We assume that the AES
algorithm [12] is the crypto-system used here.

(Kerberos)

1. A → S : A,B
2. S → A : {B,T,L,KAB}KA

, {A,T,L,KAB}KB

3. A → B : {A,T,L,KAB}KB
, {A,T}KAB

4. B → A : {T, T}KAB

Intuitively, principal A asks the Key Distribution Center S for a session
key to share with B. S generates the key KAB , a timestamp T and lifetime
L and produces an encryption of these components for A and another one
for B, including the identity of the other principal. Both encryptions are
sent to A, that can decrypt the first and forward the second to B, along
with another encryption that A obtains by encoding (A,T) with the new
key. B can decrypt the first encryption so to obtain KAB then B decrypts
the second encryption, and uses KAB to encrypt (T, T) as a replay to A.
To simplify, we use {T, T}KAB

rather than the usual {T + 1}KAB
.

1 Sys1 = (νKA)(νKB)((A|B)|S) KA, KB long-term keys

2 A = (〈A, B〉. A′) A sends msg (1)
4 A′ = (; vA

enc, v
B
enc). A

′′ A receives and checks msg (2)
5 A′′ = decrypt vA

enc as {B; vT , vL, vK}
KA

in A′′′ A decrypts the enc in msg (2)

6 A′′′ = 〈vB
enc, {A, vT }vK

〉. A′′′′ A sends msg (3)
7 A′′′′ = (; wA

enc). A
′′′′′ A receives and checks msg (4)

8 A′′′′′ = decrypt wA
enc as {vT , vT ; }

vK
in A A decrypts the enc in msg (4)

9 B = (; z1
enc, z

2
enc). B

′ B receives and checks msg (3)
10 B′ = decrypt z1

enc as {; zA, zT , zL, zK}KB
in B′′ B decrypts the 1st enc in msg (3)

11 B′′ = decrypt z2
enc as {zA, zT ; }

zK
in B′′′ B decrypts the 2nd enc in msg (3)

12 B′′′ = 〈{zT , zT }zK
〉. B B sends msg (4)

13 S = (; yA, yB). S′ S receives and checks msg (1)
14 S′ = (νKAB)(νT)(νL) KAB fresh session key
15 (〈{yB , T, L, KAB}KA

, {yA, T, L, KAB}KB
〉. S) S sends msg (2)

Table 1. Specification of Kerberos Protocol

The protocol specification in LySa is in Tab. 1, where the right column
reports a concise explanation of the action on the left, in terms of the
number of the message (called msg, while enc stands for an encrypted
term) in the protocol narration. The whole system is given by the parallel
composition (|) of the three processes A,B, S. Each part of the system
performs a certain number of actions and then restarts.

Enhanced Operational Semantics. Here, we give a concrete version of op-
erational semantics, called enhanced in the style of [13, 14]. Our enhanced
semantics for LySa is a reduction semantics, built on top of the stan-

dard reduction semantics [3], where both processes and transitions are
annotated with labels that will be helpful for computing costs.

Formally, each transition is enriched with an enhanced label θ which
records both the action corresponding to the transition and its syntactic
context. Actually, the label of a communication transition records the two
actions (input and output) that lead to the transition. To facilitate the
definition of our reduction semantics, for each given process, we annotate
each of its sub-processes P with an encoding of the context in which
P occurs. The encoding is a string of tags ϑ, that essentially record the
syntactic position of P w.r.t. the parallel composition nesting. To do this,
we exploit the abstract syntax tree of processes, built using the binary
parallel composition as operator. We introduce a tag ‖0 (‖1, resp.) for
the left (for the right, resp.) branch of a parallel composition. Labels are
defined as follows.

Definition 1. Let L = {‖0, ‖1}. Then, the set of context labels is defined
as L∗, i.e. the set of all the string generated by L, ranged over by ϑ.

We choose to have tags concerned with the parallel structure of processes,
i.e. linked to parallel composition “|”. For our present purpose, this is
the only necessary annotation (for other annotations, see [26, 14]).

Technically, labelled processes are inductively obtained in a pre pro-
cessing step, by using the function T . This function (inductively) prefixes
actions with context labels: T unwinds the syntactic structure of pro-
cesses, until reaching a 0 or a constant. Given a process P , this transfor-
mation operates in linear time with the number of prefixes. Note that this
pre-processing step can be completely mechanized. An auxiliary function
⊲ is needed to distribute context labels on processes.

Definition 2. Let LP be the set of Labelled Processes, ranged over by
T, T ′, T0, T1. The functions T : P → LP and ⊲: L∗ × LP → LP, written
as ϑ⊲T , are defined by induction in the box below:

− T (0) = 0

− T (µ.P) = µ.T (P), µ ∈ {out, in}
− T (P0|P1) = ‖0⊲T (P0) | ‖1⊲T (P1)
− T ((νa)P) = (νa)T (P)
− T (A(y1, . . . , yn)) = A(y1, . . . , yn)
− T (dec in P) = dec in T (P)

− ϑ⊲0 = 0

− ϑ⊲ (ϑ′µ.T) = ϑϑ′µ.(ϑ⊲T), µ ∈ {out, in}
− ϑ⊲ (T0 | T1) = (ϑ⊲T0) | (ϑ⊲T1)
− ϑ⊲ (νa)T = (νa) ϑ⊲T
− ϑ⊲ϑ′A(y1, . . . , yn) = ϑϑ′A(y1, . . . , yn)
− ϑ⊲ϑ′ dec in T = ϑϑ′ dec in (ϑ⊲T)

The following example illustrates how T works on the process Sys1 =
((A | B) | S). The context labels preceding the prefixes of the three
processes are: ϑA = ‖0‖0 for A, ϑB = ‖0‖1 for B, and ϑS = ‖1 for S.

T (((A | B) | S)) = ‖0 ⊲ (T (A | B))|‖1 ⊲T (S) =

‖0 ⊲ (‖0 ⊲ (T (A)|‖1 ⊲ (T (B))|‖1 ⊲T (S) = (‖0‖0 ⊲ (T (A)|‖0‖1 ⊲ (T (B))|‖1 ⊲T (S)

For instance B is annotated with the label ϑ = ‖0‖1 as B is inside the
right branch of the inner parallel composition (A | B), and in turn on the
left branch of the outermost parallel composition in ((A | B) | S).

The enhanced label of a transition records its action, i.e. decryption
or input and output communications that lead to the transition. Also,
actions come prefixed by their context labels.

Definition 3. The set Θ ∋ θ, ϑO, ϑI of enhanced labels is defined by

θ ::= 〈ϑO out, ϑI in〉 | 〈ϑ dec〉

As usual, our semantics consists of the standard structural congruence
≡ on processes and of a set of rules defining the transition relation.

Our reduction relation
θ

−→⊆ LP × LP is the least relation on closed
labelled processes that satisfies the rules in Tab. 2. In the rule (Com), the
context labels ϑO (and ϑI , resp.) of both the partners are recorded in the
pair 〈ϑOout, ϑIin〉 together with the corresponding output (and input,
resp.) prefix. In the rule for decryption, the context label ϑ is recorded
together with dec in the label of the transition. The other rules are quite
standard. Our semantics differs from the standard one [3] because (i)
processes are enriched with context labels ϑ and (ii) reductions carry en-
hanced labels θ. By eliminating labels from both transitions and processes,
it is possible to recover the original reduction semantics −→⊆ P × P.

For technical reasons, hereafter, we will restrict ourselves to finite
state processes, i.e. whose corresponding transition systems have a finite
set of states. Note that this does not mean that the behaviour of such
processes is finite, because their transition systems may have loops.

Example (cont’d) In Fig. 1, we present the (finite) transition systems cor-
responding to Sys1. To improve readability, we add a further component
to the labels ϑi of transitions. A transition from state T to state T ′ has

the form T
(θ,caption)

−→ T ′, where caption is a concise description of the step
of the protocol narration. More precisely, it refers to message exchanges
and decryptions (abbreviated as dec). Captions are of no other use.

The enhanced labels of Sys1 are reported below. Since in our example,
transitions have different labels each, we feel free to use hereafter the label
θi for the i-th transition.

(Com)

∧j
i=1 Ei = E′

i

ϑO out.T | ϑI in.T ′ 〈ϑOout,ϑIin〉
−→ T | T ′[Ej+1/xj+1, · · · , Ek/xk]

(Decr)

∧j
i=0 Ei = E′

i

ϑ dec in T
〈ϑ dec〉
−→ T [Ej+1/xj+1, · · · , Ek/xk]

(Par)

T0
θ

−→ T ′
0

T0 | T1
θ

−→ T ′
0 | T1

(Res)

T
θ

−→ T ′

(ν a)T
θ

−→ (ν a)T ′

(Ide) :

T (P){K̃/ỹ}
θ

−→ T ′

ϑA(K̃)
ϑθ
−→ ϑ⊲T ′

, A(ỹ) = P

(Congr)

T ≡ T0 ∧ T0
θ

−→ T1 ∧ T1 ≡ T ′

T
θ

−→ T ′

out = 〈E1, · · · , Ek〉,
in = (E′

1, · · · , E
′
j ; xj+1, · · · , xk),

dec = decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}E0

Table 2. Enhanced Reduction Semantics, T
θ

−→ T ′.

θ0 = 〈ϑA〈A, B〉, ϑS(; z1
enc, z

2
enc)〉

θ1 = 〈ϑS〈{y
B, T, L, KAB}KA

, {yA, T, L, KAB}KB
〉, ϑA(; vA

enc, v
B
enc)〉

θ2 = 〈ϑA decrypt {B, T, L, KAB}KA
as {B; vT , vL, vK}KA

〉
θ3 = 〈ϑA〈{A, T, L, KAB}KB

, {A, T}KAB
〉, ϑB(; z1

enc, z
2
enc)〉

θ4 = 〈ϑB decrypt {A, T, L, KAB}KB
as {; zA, zT , zL, zK}KB

〉
θ5 = 〈ϑB decrypt {A, T}KAB

as {A, T ; }KAB
〉

θ6 = 〈ϑB〈{T, T}KAB
〉, ϑA(; wA

enc)〉
θ7 = 〈ϑA decrypt {T, T}KAB

as {T, T ; }KB
〉

A | B | S A′ | B | S′ A′′ | B | S′′

A′′′ | B | S′′

A′′′′ | B′ | S′′

A′′′′′ | B′′′′ | S′′ A′′′′ | B′′′ | S′′ A′′′′ | B′′ | S′′

θ0,1:A−→S θ1,2:S−→A

θ2,A dec msg(2)

θ3,3:A−→B

θ4,B dec msg(3)

θ5,B dec msg(3)θ6,4:B−→A

θ7,A dec msg(4)

Fig. 1. Sys1 Transition System.

3 Stochastic Analysis

Costs of transitions are derived by inspecting enhanced labels, following
[26]. This information is sufficient to extract the necessary quantitative
information to obtain the Continuous Time Markov Chains (CTMC) (see
[2, 25] for more details on the theory of stochastic processes). In general,
by “cost” we mean any measure that affects quantitative properties of
transitions: here, we intend the time the system is likely to remain within
a given transition. We specify the cost of a protocol in terms of the time
overhead due to its primitives (along the same lines as [28]). The cost
of (the component of) the transition depends on both the current action
and on its context. Since the semantics of a language specifies its abstract
machine, the context in which an action occurs represents the run-time
support routines that the target machine performs to fire that action.

First, we intuitively present the main factors that influence the costs
of actions and those due to their context. For simplicity, here we ignore
the costs for other primitives, e.g. restriction or constant invocation (see
[26] for a complete treatment).

– The cost of a communication depends on the costs of the input and
output components. In particular, the cost of an (i) output depends
on the size of the message and on the cost of each term of the mes-
sage sent, in particular on its encryptions; (ii) input depends on the
size of the message and on the cost of checks needed to accept the
message. Actually, the two partners independently perform some low-
level operations locally to their environment, each of which leads to
a delay. Since communication is synchronous and handshaking, the
overall cost corresponds to the cost paid by the slower partner.

– The cost of both encryption and decryption depends on the sizes of
the cleartext and ciphertext, resp.; the complexity of the algorithm
that implements it; the cipher mode adopted; the kind of the key
(short/long, short-term/long-term). The length of the key is impor-
tant: usually, the longer the key, the greater the computing time. In
addition, the cost for decryption depends on the cost of the checks
needed to accept the decryption.

– The cost of parallel composition is evaluated according to the number
of available processors and to the speed of system clock.

To define a cost function, we start by considering the execution of each
action on a dedicated architecture that only has to perform that action,
and we estimate the corresponding duration with a fixed rate r. Then we
model the performance degradation due to the run-time support. To do

that, we introduce a scaling factor for r in correspondence with each rou-
tine called by the implementation of the transition θ under consideration.
Here, we just propose a format for these functions, with parameters to be
instantiated on need. Note that these parameters depend on the target
machine, e.g. in a system where the cryptographic operations are per-
formed at very high speed (e.g. by a cryptographic accelerator), but with
a slow link (low bandwidth), the time will be low for encryptions and high
for communication; vice versa, in a system offering a high bandwidth, but
poor cryptography resources.

Technically, we interpret costs as parameters of exponential distri-
butions F (t) = 1 − e−rt, with rate r and t as time parameter (general
distributions are also possible see [30]). The rate r associated with the
transition is the parameter which identifies the exponential distribution
of the duration times of the transition, as usual in stochastic process al-
gebras (e.g. [19, 18]). The shape of F (t) is a curve which grows from 0
asymptotically approaching 1 for positive values of its argument t. The
parameter r determines the slope of the curve: the greater r, the faster
F (t) approaches its asymptotic value. The probability of performing an
action with parameter r within time x is F (x) = 1−e−rx, so r determines
the time, ∆t, needed to have a probability near to 1.

3.1 Cost Functions

We define in a few steps the function that associates rates with communi-
cation and decryption transitions, or, more precisely, with their enhanced
labels. We first give the auxiliary function fE : E → IR+ that estimates
the effort needed to manipulate terms E ∈ E .

• fE(a) = size(a) • fE({E1, . . . , Ek}E0) = fenc(fE(E1), ..., fE(E1), kind(E0))

The size of a name a (size(a)) matters. For an encrypted term, we use
the function fenc, which in turn depends on the estimate of the terms to
encrypt and on the kind of the key (represented by kind(E0)), i.e. on its
length and on the corresponding crypto-system.

Then we assign costs to actions in {in, out, dec}. Formally, the func-
tion $α : {in, out, dec} → IR+ is defined as
• $α(〈E1, . . . , Ek〉) = fout(fE(E1), ..., fE(E1), bw)
• $α((E1, . . . , Ej ;xj+1, . . . , xk)) = fin(fE(E1), ..., fE(Ej),match(j), bw)
• $α(decrypt E as {E1, · · · , Ej ;xj+1, · · · , xk}E0) =

fdec(fE(E), kind(E0),match(j))

The functions fout and fin define the costs of the routines which im-
plement the send and receive primitives. Besides the implementation cost

due to their own algorithms, the functions above depend on the band-
width of the communication channel (represented by bw) and the cost
of the exchanged terms, in turn computed by the auxiliary function fE.
Also, the cost of an input depends on the number of tests or matchings
required (represented by match(j)). Finally, the function fdec represents
the cost of a decryption. It depends on the manipulated terms (fE(E)), on
the kind of key (kind(E0)) and on the number of matchings (match(j)).

We now consider the context in which the actions occur. To determine
the slowing factor due to parallel composition, we associate a cost to each
context label ϑ, as expressed by the function $l : {‖0, ‖1}

∗ → (0, 1]. Par-
allel composition is evaluated according to the number np of processors
available, and on the number of processes that run on them. Another
factor is given by the speed of clock, the system clock.

• $l(ϑ) = f||(np, |ϑ|, clock)

Finally, the function $: Θ → IR+ associates rates with enhanced labels.

• $(〈ϑOout, ϑIin〉) = min{$l(ϑO) · $α(out), $l(ϑI) · $α(in)}
• $〈ϑdec〉 = $l(ϑ) · $α(dec)

As mentioned above, the two partners independently perform some low-
level operations locally to their environment, represented by the two con-
text labels ϑO and ϑI . Each label leads to a delay ($l(ϑO) and $l(ϑI),
resp.) in the rate of the corresponding action ($α(out) and $α(in), resp.).
Thus, the cost paid by the slower partner corresponds to the minimum
cost of the operations performed by the participants, in isolation. Indeed
the lower the cost, i.e. the rate, the greater the time needed to complete
an action and hence the slower the speed of the transition occurring. The
smaller r, the slower F (t) = 1 − e−rt approaches its asymptotic value.

Note that we do not fix the actual cost function: we only propose for
it a set of parameters to reflect some features of an idealized architecture
and of a particular cryptosystem. Although very abstract, this suffices
to make our point. A precise instantiation comes with the refinement
steps from specification to implementations as soon as actual parameters
become available.

We now associate a rate to each transition in the transition system
Sys1. For the sake of simplicity, we assume that each principal has enough
processing power and then we can map each ϑ to 1. We could vary this
value considering e.g. differences in the speed of clock for the two pro-
cesses. We instantiate the cost functions given above, by using the fol-
lowing parameters each used to compute the rate corresponding to a
particular action (sending, receiving and decryption) or a part of it, such
as an encryption or a pattern matching: (i) e and d for encrypting and for

decrypting, (ii) s and r for sending and for receiving, (iii) m for pattern
matching. The functions are:

• fE(a) = 1

• fE({E1, . . . , Ek}E0) = e
s
·
∑k

i=1 fE(Ei) +
∑k

i=1 fE(Ei)
• $α(〈E1, . . . , Ek〉) = 1

s·
Pi

i=1 fE(Ei)

• $α((E1, . . . , Ej ;xj+1, . . . , xk)) = 1
r·k+m·j

• $α(decrypt E as {E1, · · · , Ej ;xj+1, · · · , xk}E0) = 1
d·k+m·j

Intuitively, these parameters represent the time spent performing the cor-
responding action on a single term. They occur in the denominator, there-
fore keeping the rule that the faster the time, the slower the rate. Since
transmission is usually more time-consuming than the corresponding re-
ception, the rate of a communication, will always be that of output.
Example (cont’d) The rate c0 of the first transition of Sys1 is 1

2s :
c0 = $(θ0) = min{($l(ϑA) · $α(〈A,B〉, $l(ϑS) · $α((; z1

enc, z
2
enc))} = min{ 1

2s
, 1

2r
}.

All the rates ci = $(θi) are: c0 = 1
2s , c1 = 1

8s+8e , c2 = 1
4d+m

, c3 = 1
6s+6e ,

c4 = 1
4d+m

c5 = 1
2d+2m , c6 = 1

2s+2e and c7 = 1
2d+2m .

3.2 Markov Chains and Performance Measures

Our first step is obtaining a Continuous Time Markov Chain (CTMC)
from a transition system. Then, we shall calculate the actual performance
measure, e.g. the throughput or utilization of a certain resource. We use
the rates of transitions computed in Subsection 3.1, to transform a tran-
sition system T into its corresponding CTMC(T): a state is associated
with each node of the transition system, while the transitions between
states are defined by the arcs.

Actually, the rate q(Ti, Tj) at which a system changes from behaving
like process Ti to behaving like Tj is the sum of the single rates of all the
possible transitions from Ti to Tj. Note that q(Ti, Tj) coincides with the
off-diagonal element qij of the generator matrix of the CTMC, namely Q.
Recall that a CTMC can be seen as a directed graph and that its matrix Q

(apart from its diagonal) represents its adjacency matrix. Hence, hereafter
we will use indistinguishably CTMC and its corresponding Q to denote
a Markov chain. More formally, the entries of the generator matrix Q are

defined as qij =

q(Ti, Tj) =
∑

Ti

θk−→Tj

$(θk) if i 6= j

−
n
∑

j=0,j 6=i

qij if i = j

Example (cont’d) Consider the transition system Sys1. Since it is finite
and has a cyclic initial state, then there exists its stationary distribution.

The stationary probability distribution of a CTMC is Π = (X0, . . . ,Xn−1)
such that Π solves the matrix equation ΠTQ = 0 and

∑n
i=0 Xi = 1.

We derive the following generator matrix Q1 of CTMC(Sys1) and the
corresponding stationary distributions is Π1, where C = 9s+8e+6d+3m.

Q1 =

2

6

6

6

6

6

6

6

6

6

4

−c0 c0 0 0 0 0 0 0
0 −c1 c1 0 0 0 0 0
0 0 −c2 c2 0 0 0 0
0 0 0 −c3 c3 0 0 0
0 0 0 0 −c4 c4 0 0
0 0 0 0 0 −c5 c5 0
0 0 0 0 0 0 −c6 c6

c7 0 0 0 0 0 0 −c7

3

7

7

7

7

7

7

7

7

7

5

Π1 =

»

s

C
,
4(s + e)

C
,
4d + m

C
,
3(s + e)

C
,
4d + m

C
,
d + m

C
,
e + s

C
,
d + m

C
,

–

Evaluating the Performance In order to define performance measures for
a process T , we define a reward structure associated with T , following [21,
19, 11]. Usually, a reward structure is simply a function that associates
a reward with any state passed through in a computation of T . For in-
stance, when calculating the utilisation of a resource, we assign value 1 to
any state in which the use of the resource is enabled (typically the source
of a transition that uses the resource). All the other states earn the value
0. Instead we use a slightly different notion, where rewards are computed
from rates of transitions [26]. To measure instead the throughput of a
system, i.e. the amount of useful work accomplished per unit time, a rea-
sonable choice is to use as nonzero reward a value equal to the rate of the
corresponding transition. The reward structure of a process T is a vector
of rewards with as many elements as the number of states of T . By looking
at the stationary distribution of and varying the reward structure, we can
compute different performance measures. The total reward is obtained by
multiplying the stationary distribution and the reward structure.

Definition 4. Given a process T , let Π = (X0, . . . ,Xn−1) be its station-
ary distribution and ρ = ρ(0), ..., ρ(n − 1) be its reward structure. The
total reward of T is computed as R(T) =

∑

i ρ(i) · Xi.

Example (cont’d) The throughput for a given activity is found by first
associating a transition reward equal to the activity rate with each tran-
sition. In our systems each transition is fired only once. Also, the graph
of the corresponding CTMC is cyclic and all the labels represent different
activities. This amounts to saying that the throughput of all the activ-
ities is the same, and we can freely choose one of them to compute the

throughput of Sys1. Thus we associate a transition reward equal to its
rate with the last communication and a null transition reward with all the
others communications. From them, we compute the reward structures as
ρ1 = (0, 0, 0, 0, 0, 0, c7), where c7 = 1

2d+2m . The total reward R(Sys1) of

the system amounts then to d+m
(2d+2m)(9s14+d+3m) . To use this measure, it

is necessary to instantiate our parameters under various hypotheses, de-
pending on several factors, such as the network load, the packet size, the
number of mobile stations and so on. We delay this kind of considerations
to the next section, where this measure will be compared with the one
obtained for a different protocol.

4 A Case Study

It is well known that asymmetric key cryptography is more expensive
than symmetric key cryptography. This is why often the first technique
is adopted for long-term keys, while the other is exploited for session
keys. We want to apply our framework and compare public versus secret
encryption techniques. Following [20], we compare the two key-agreement
protocols Kerberos [22] (the one used as working example) and Diffie-
Hellman, compared there for their energy consumption.

Before the comparison, we need to illustrate the second protocol and
to apply it the introduced technique. The Diffie-Hellman protocol is based
on the use of two functions, i.e. g(x) = αx mod p and f(x, y) = yx mod p,
where p is a large prime (public) and α of Z∗

p (the set of all the num-
bers prime with p) is a generator. Here, we can safely abstract from the
underlying number theory. We need to slightly extend the syntax with
the following productions, where E and E′ are terms and each of the two
functions g and f are considered as term constructors. The semantics is
modified accordingly, by adding a case for the function T and by adding
an axiom to the reduction semantics.

E ::= g(E) |f(E, E′)
P ::= let x be f(E, E′) in P

T (let x be f(E, E′) in P) = let x be f(E, E′) in T (P)
ϑ⊲ϑ′ (let x be f(E, E′) in T) = ϑϑ′ let x be f(E, E′) in (ϑ⊲T)

ϑ let x be f(E, E′) in T
〈ϑf〉
−→ T [f(E, E′)/x]

The protocol is simply: (Diffie-Hellman)
1. A → B : g(KA)
2. B → A : g(KB)

At the end of the exchange A computes the key as f(KA, g(KB)), while B
computes it as f(g(KA),KB). These steps are made explicit in the LySa

specification of the protocol, Sys2 = (A|B), given in Tab. 3. The two keys

coincide, because of the following algebraic rule: f(x, g(y)) = f(y, g(x)).
Here, KA and KB serve as private keys, while g(KA) and g(KB) serve
as public keys. Note that here we do not need to extend our syntax with
asymmetric encryption (we refer the reader to [3]).

1 Sys2 = (A|B)
2 A = (νKA) KA private key
3 (〈g(KA)〉. A′) A sends msg (1)
4 A′ = (; vA

g). A′′ A receives msg (2)
5 A′′ = let vA

g be f(KA, vA
g) in A A computes f

6 B = (νKB) KB private key
7 B′ = (; vB

g). B′′ B receives msg (1)
8 (〈g(KB)〉. B′) B sends msg (2)

9 B′′ = let vB
g be f(KB , vA

g) in B B computes f

Table 3. Specification of Diffie-Hellman Protocol

The Diffie-Hellman protocol can be efficiently implemented using the
Elliptic Curve Asymmetric-key (ECC) algorithm [17], that operates over
a group of points on an elliptic curve. For each curve a base point G is
fixed, a large random integer k acts as a private key, while kG (scalar
point multiplication that results in another point on the curve) acts as
the corresponding public key. Scalar point multiplication is obtained by
a combination of point-additions and point-doublings. So, we can use (1)
g(x) = xG and (2) f(x, y) = xy.

For lack of space, we omit here the (finite) transition systems of Sys2,
that like the one of Sys1 has a unique cyclic path. We directly give the
rates corresponding to the transitions:

c′0 = 1
s+4pm , c′1 = 1

s+4pm , c′2 = 1
4pm , c′3 = 1

4pm .

We use the same cost parameters as in Section 3. In particular, we assume
that the sending parameter s is the same used for Sys1 (again transmis-
sion is more expensive than reception). Since the functions g and f in
Sys2 are both implemented with four elliptic curve point multiplications,
we assume that the cost for g and f depend on the parameter pm (pa-
rameter for point multiplication), more precisely $α(f(E,E′)) = 1

4pm and

$α(〈g(E)〉) = 1
s+4pm . Again, for the sake of simplicity, we assume that

each principal has enough processing power, so $||(ϑ) = 1 for each ϑ.
The stationary distribution Π2, where D = 2(8pm+s), corresponding

to Q2 of CTMC(Sys2), here omitted, is:

Π2 =

»

s + 4pm

D
,
s + 4pm

D
,
4pm

D
,
4pm

D

–

We can now compare the performance of the two protocols by relating
their throughputs. As done before, we associate a transition reward equal
to its rate with the last communication and a null transition reward with
all the others communications. We compute then the reward structure
ρ2 = (0, 0, 0, c′3) for Sys2 where c′3 = 1

4pm . Furthermore, we assume the
same cost for encryption and decryption, i.e. e = d. The total reward of
Sys2 is R(Sys2) = 1

2(s+8pm) and is such that:

R(Sys1) − R(Sys2) =
8pm− (8s + 14d + 3m)

2((s + 8pm))((9s14 + d + 3m))
> 0 if pm >

(8s + 14d + 3m)

8

Experimentally, we know that point multiplication is significantly
more time-consuming than decryption, therefore, we can assume that pm
is significantly higher than d. Consequently, we conclude that R(Sys1) >
R(Sys2), i.e. the first system has a better performance. Clearly, energy
consumption of a cryptographic algorithm is strongly related to its time
complexity and thus our result agrees with the one obtained in [20].

Actually, our working example presents a simple setting, in which
the involved transition systems have a unique cyclic path. In general,
transition systems have more loops. Typically, this happens with a multi-
session version of the protocols presented before, where more copies of
each principal (A, B and S) running in parallel, lead to more transitions
with the same source. Also, this happens with non-repudiation protocols.

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols - The Spi
calculus. Information and Computation, 148(1):1–70, Jan 1999.

2. A. A. Allen. Probability, Statistics and Queueing Theory with Computer Science
Applications. Academic Press, 1978.

3. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Automatic
validation of protocol narration. Proc. of CSFW’03, pages 126–140. IEEE, 2003.

4. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Control Flow
Analysis can find new flaws too. Proc. of Workshop on Issues in the Theory of
Security (WITS’04), 2004.

5. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. Riis Nielson. Static vali-
dation of security protocos. To appear in Journal of Computer Securuty.

6. C. Bodei, M. Buchholtz, M. Curti, P. Degano, F. Nielson, and H. Riis Nielson and
C. Priami. Performance Evaluation of Security Protocols specified in Lysa. Proc.
of (QAPL’04), ENTCS 112, 2005.

7. C. Bodei, M. Curti, P. Degano, C. Priami. A Quantitative Study of Two Attacks.
Proc. of (WISP’04), ENTCS 121, 2005.

8. M. Bravetti, M. Bernardo and R. Gorrieri. Towards Performance Evaluation with
General Distributions in Process Algebras.Proc. of CONCUR98, LNCS 1466, 1998.

9. M. Buchholtz, F. Nielson, and H. Riis Nielson. A calculus for control flow analysis
of security protocols. International Journal of Information Security, 2 (3-4), 2004.

10. I. Cervesato Fine-Grained MSR Specifications for Quantitative Security Analysis.
Proc. of WITS’04, pp. 111-127, 2004.

11. G. Clark. Formalising the specifications of rewards with PEPA. Proc. of PAPM’96,
pp. 136-160. CLUT, Torino, 1996.

12. J. Daemen and V. Rijndael. The design of Rijndael. Springer-Verlag, 2002.
13. P. Degano and C. Priami. Non Interleaving Semantics for Mobile Processes. The-

oretical Computer Science, 216:237–270, 1999.
14. P. Degano and C. Priami. Enhanced Operational Semantics. ACM Computing

Surveys, 33, 2 (June 2001), 135-176.
15. W. Diffie and M. E. Hellman. New directions in Cryptography. IEEE Transactions

on Information Theory, IT-22(6):644-654, 1976.
16. D. Dolev and A. Yao. On the security of public key protocols. IEEE TIT, IT-

29(12):198–208, 1983.
17. IEEE P1363 Standard Specification for Public-Key Cryptography, 1999
18. H. Hermanns and U. Herzog and V. Mertsiotakis. Stochastic process algebras

– between LOTOS and Markov Chains. Computer Networks and ISDN systems
30(9-10):901-924, 1998.

19. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

20. A. Hodjat and I. Verbauwhede. The Energy Cost of Secrets in Ad-hoc Networks.
IEEE Circuits and Systems Workshop on Wireless Communications and Network-
ing, 2002.

21. R, Howard. Dynamic Probabilistic Systems: Semi-Markov and Decision Systems.
Volume II, Wiley, 1971.

22. J.T. Kohl and B.C. Clifford. The Kerberos network authentication service (V5).
The Internet Society, Sept. 1993.RCF 1510.

23. C. Meadows. A cost-based framework for analysis of denial of service in networks.
Journal of Computer Security, 9(1/2), pp.143 - 164, 2001.

24. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (I and II).
Info. & Co., 100(1):1–77, 1992.

25. R. Nelson. Probability, Stochastic Processes and Queeing Theory. Springer, 1995.
26. C. Nottegar, C. Priami and P. Degano. Performance Evaluation of Mobile Pro-

cesses via Abstract Machines. Transactions on Software Engineering, 27(10), 2001.
27. D. Otway and O. Rees. Efficient and timely mutual authentication. ACM Operating

Systems Review, 21(1):8–10, 1987.
28. A. Perrig and D.Song. A First Step towards the Automatic Generation of Security

Protocols. Proc. of Network and Distributed System Security Symposium, 2000.
29. G. Plotkin. A Structural Approach to Operational Semantics. Tech. Rep. Aarhus

University, Denmark, 1981, DAIMI FN-19
30. C. Priami. Language-based Performance Prediction of Distributed and Mobile

Systems Information and Computation 175: 119-145, 2002.
31. A. Reibnam and R. Smith and K. Trivedi. Markov and Markov reward model

transient analysis: an overview of numerical approaches. European Journal of
Operations Research: 40:257-267, 1989.

32. W. J. Stewart. Introduction to the numerical solutions of Markov chains. Princeton
University Press, 1994.

33. K. S. Trivedi. Probability and Statistics with Reliability, Queeing and Computer
Science Applications. Edgewood Cliffs, NY, 1982.

