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Abstract

Background: Metabolic networks present a complex interconnected structure, whose

understanding is in general a not trivial task. Several formal approaches have been developed

to support the investigation of such networks, like quantitative models based on ODEs and

machine learning techniques. One of the relevant problems in this context is the

comprehension of causality dependencies amongst the molecules involved in the metabolic

process.

Results: We propose a formal analysis approach aiming at featuring both expressiveness and

ease of use. Its main ingredients are: i) a minimal notation to precisely represent bio-chemical

interactions, and ii) an automated tool allowing the human expert to easily vary conditions of

the in silico experiment. In particular, we exploit an analogy between logical implication and

chemical reaction, i.e., roughly, the reaction of two molecules A and B producing a third one,

C, can be interpreted as A and B logically imply C. Starting from a description of a

metabolic network, in terms of reaction rules and initial conditions, chains of reactions,

causally depending one from the another, can be mechanically deduced. Then, both the

components of the initial state and, noticeably, the clauses ruling reactions can be changed

and a new trial of the experiment started, according to a what-if investigation strategy. The

method is supported by a computational logic counterpart, based on a Prolog implementation,

which allows for a representation language closely correspondent to the adopted chemical

abstract notation. The proposed framework has been validated by studying the robustness of

1



the metabolic network of Escherichia coli K12. Selected genes have been knocked-out by

disabling the rules regarding the encoded enzymes. Results are coherent with the actual

biological behaviour.

Conclusions: Starting from the presented work, our goal is to provide an e�ective analysis

tool, supported by an e�cient full-�edged computational counterpart, which can fruitfully

drive in vitro experiments by e�ectively pruning non promising directions. More large-scale

experiments are ongoing.

Background

In systems biology, the biological knowledge drives the development of models and the in

silico analysis of these models supports the design of in vivo experiments, in a virtuous

circle between empirical and theoretical investigation.

Actually, the models of complex systems code a lot of information and it is not easy

to extract correlations or causal dependencies amongst the elements involved in the

biological interaction networks. By rephrasing [1], �diagrams of interconnections represent

a sort of static roadmaps, but what we really seek to know are the tra�c patterns, why

such patterns emerge, and how we can control them�. Having a formal description of the

interconnections and a methodology to perform software simulation on how these

patterns are, should help in orientating wet-lab experimentation.

In this paper, we focus on �metabolic networks�, i.e. on the set of all the cellular

biochemical pathways involved in energy management and in the synthesis of structural

components. Biochemical pathways are typically composed by chains of enzymatically

catalyzed chemical reactions and are interconnected in a complex way. Thus the study of

the overall behaviour of metabolic networks appears di�cult with traditional

experimental techniques, which often seem to o�er inadequate tools to investigate such

global properties. Indeed, whenever we think to a metabolic network, we just put

together the components of the system under analysis: the role of each component is

clear, whereas the overall behaviour of the whole system is not. Nevertheless, a deep

understanding of the causal relations underlying the functioning of cellular metabolism

appears to be a crucial task for biologists both for theoretical reasons and for the more

applicative purposes of metabolic engineering. Under this regard, causality can play an

important role, by �nding chains of reactions that connect the parts of the system of
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interest, e.g. determining correlations among molecules that are not apparently correlated.

We apply techniques from formal methods and from computational logic to develop

a very abstract qualitative model of metabolic networks, where the focus is on causality.

To this aim, we exploit an analogy between logical implications and chemical reactions,

by interpreting the reaction of two molecules A and B producing a third one, C, as A

and B logically imply C. We obtain a description of a metabolic network, in terms of

reaction rules and initial conditions, from which we start to mechanically deduce chains

of reactions, logically/causally depending one from the another. The framework appears

pro�table for biologists, because their usual representation language has a direct

interpretation in our formalism, which, in turn, can be straightforwardly translated into

an input for a suitable tool, that we have developed using standard logic programming

techniques. What is more, this tool gives the opportunity to think about the model itself,

by making it easy to vary both the components of the initial state and, noticeably, the

clauses that rule reactions.

Our approach is a sort of �what-if� analysis, repeatedly exploring di�erent scenarios, each

one derived from a di�erent set of hypotheses. Our tool allows us to rapidly evaluate the

impact of changes in the hypotheses on a particular observable outcome. Thus, we obtain

an interactive and e�ective analysis, that can be used to suggest which are the deductions

that deserve to be tested in vitro, by pruning those that seem not to be promising.

Related Works and Comparison. A recent research line exploits well established theories

and techniques of Formal Methods for Systems Biology, by using them to support the

interpretation of the big amount of raw data now available for analysis.

In [2, 3], the authors apply a causal semantics of the π-calculus [4] to describe

biochemical processes. The process computations that can be obtained quite accurately

capture and re�ect the real behaviour of biological systems and causality has a key role in

enhancing precision in such simulations. Our starting point is quite similar, but our

model is even more skeletal and abstract, based on descriptions of biological systems

given in terms of molecular entities and reaction rules that specify their interactions and

implicitly code the causes of reactions. Di�erently from precise behaviour descriptions,

like the one based on process algebras such as π-calculus, logical deductions allows us to

summarise possible pathway evolutions, of which causal chains form the backbone.

Another formal approach close to ours is that of Pathway logic (see e.g. [5, 6]),

based on rewriting logic it can be fruitfully used to model biological processes. Rewrite

rules describe local changes and the molecular patterns that cause them. Rules can be

concurrently applied and this corresponds to the actual possibility of biological
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compartments to independently evolve. This o�ers a basis for in silico experiments and

for advanced forms of symbolic analysis. At present, in our framework, the concurrent

aspect is deliberately ignored.

Other phenomena of metabolic networks may bene�t from a logic-based

representation, as done, for instance, in [7], with motivations similar to ours. That

proposal is based on a combination of Abduction and Induction: abduction allows

inference from observable e�ects (see also [8]) and therefore it is used to generate

hypotheses, while induction has the aim of learning general rules from these abduced

hypotheses. The predictive accuracy increases with the number of training examples.

This methodology has a richer representation language than ours and aiming to address a

di�erent class of problems in a di�erent experimental setting.

Also graph theory is exploited to model metabolic network. For instance, in [9], the

authors focus on the topology of metabolic networks, by abstracting away from

stoichiometric aspects. Networks are represented as graphs of metabolites and reactions.

The idea underlying their work is not very far from ours, in terms of interests in chains of

reactions. Nevertheless, their approach is clearly dynamic and graph theory o�ers

di�erent methodological features.

Results and Discussion
Representation language and logical interpretation

Several formal languages have been proposed to model aspects of biological interaction,

like interaction sites or membrane compartments, e.g. [10�12]. Although they precisely

capture the features of interest, it has seemed to us worth starting from the de�nition of

a more abstract and intuitive �common� language, which, from the one hand is close to

biochemical intuition, and from the other hand possess a straightforward computational

counterpart. The underlying idea is to o�er both to biologists and to computer scientists

a simple and skeletal �lingua franca� to abstractly specify the desired network of causal

dependencies. In particular, starting from a given chemical reaction in the form:

aA + bB → cC + dD

we de�ne a relation having the form:

A ◦B → C ◦D

that is an abstraction of the chemical counterpart. This abstraction actually represents

the possibility for C and D to be produced or caused by the presence of both A and B
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(whose availability could in turn generate other species). Since we focus on causality

relationships, we abstract away from features related to kinetics, thermodynamics and

stoichiometry. Moreover we do not take into accout quantities, since we consider the

needed amount of reactants always available. Finally, we also abstract from the actual

dynamics of the studied system. Therefore, our representation is alternative to the

standard notation of chemical reactions and it is tailored to catch those features we are

interested in. Furthermore, it naturally leads towards an executable language.

More in general, we can de�ne systems composed by an initial set I of elements that may

cause new species according a set of rules, re�ecting the known chemical reactions, as

showed below.

I ::= A1 ◦ . . . ◦ An A ◦B → C ◦ . . . ◦D A → C ◦ . . . ◦D

Here ◦ stands for spatial co-location, and → for possible causal relation.

For instance, let us consider an abstraction of some reactions pertaining to

glycolysis. In particular, let us model the phosphorilation of the Glucose done by the

PTS-system (a bacterial membrane carrier) that lead to the production of Glucose

6-phosphate, and Pyruvate starting from Phosphoenolpyruvate and Glucose. With

obvious mnemonic codes, this can be written as

glc ◦ pep → pyr ◦ glc6p

pep → pyr

Note that pep is involved into two rules, according to its multiple roles played in

glycolysis. The second rule actually corresponds to the reaction catalysed by the

pyruvate carboxylase enzyme, that is this rule corresponds to the activity caused by the

gene coding for the enzyme; �nally �removing� the rule has the same conceptual meaning

of �knocking-out� the gene in the simulation.

From the computer science point of view, we need to address the task of providing a

computational, i.e. executable, interpretation of our representation language. Each rule,

A ◦B → C say, can be read as the logical implication A ∧B ⇒ C. Moreover, the

elements present in the initial state of the experiments can be understood as logical facts,

i.e. premise-less clauses like true ⇒ A. This interpretation, for a quite large class of rules,

viz. the Horn Clauses, has a well studied computational counterpart: Logic

Programming [13]. The main di�erence of this format rule with our notation is that

implications can have only one element in the head, so that the above rule

glc ◦ pep → pyr ◦ glc6p has to be compiled into the couple of rules glc ◦ pep → pyr and
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glc ◦ pep → glc6p. However, according to the chosen semantics, this is an admissible

transformation as far as the causality relation we are interested in is concerned.

Technically, the chosen semantics is the bottom-up semantics that, starting from the

given initial state iteratively computes all the �consequences� of it, according to the given

set of rules. Informally speaking, at each step all the rules are checked, and the species

caused by rules whose premises are ful�lled are considered as caused and added to

semantics. For the assumptions being, the process necessarily converges to the �nite set,

if the model is �nite, of the species produced by the network. Causality can be explicitly

traced, for instance by keeping trace of all the elements that have caused a specie of

interests, as well as the rules, i.e., as mentioned, the genes involved in the process. This

semantics has been preferred to other backward semantics � from the species of interest to

the species that cause them � because of its implementation simplicity, the generality of

the solutions provided (the set of all the species caused are ready for further processing)

and the easy treatment of cycles (instead of implementing a fair rule-selection discipline

to guarantee termination, the semantics naturally follows the shortest non-cyclic paths

for generating each specie). The tool has been developed in Sicstus Prolog1, exploiting its

features to keep the state of an in silico experiment alive between di�erent, revised,

executions of it, easily supporting subsequent �what-if� queries under updated hypothesis.

It is worth pointing out, as a consequence, that the causal map we are going to

design is based on a monotonic assumption: once available, species always remain so, and

then there may be limitations in dealing with the dynamical aspects of causality. For

instance, cyclic behaviour or homeostatic states are di�cult to treat. If from the one

hand this approach o�ers good expressiveness and e�ectiveness, on the other hand, being

conscious of the price in terms of quantitative aspects that in this way are left outside, we

think about it as a basis for further re�nements. A natural direction for extending the

framework, according to the given logical interpretation of causality, is to accept forms of

non-monotonic reasoning, i.e. (limited) forms of negation allowing, for instance, to

reclaim the availability of a specie.

Experimental results

We exploited our toolkit over a biological model based upon the E. coli K-12 metabolic

genotype proposed in [14] and [15]. This group of genes represents a subset of the whole

genome of E. coli K-12 that includes genes encoding enzymes involved in energetic and

biosynthetic metabolism.

1http://www.sics.se/isl/sicstuswww/site/index.html
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Using our formalism we have described the metabolic network composed by the enzymes

encoded by the selected gene set and the metabolites involved in the catalyzed reactions.

We obtained a list of 120 causal rules having the form described above. As an example,

we report below the description of the upper part of the glycolytic pathway speci�ed

according to our formalism:

glc6p → fru6p (1)

fru6p ◦ ATP → fru16p ◦ ADP (2)

fru16p → gap ◦ dhap (3)

dhap → gap (4)

gap → dhap (5)

gap ◦ nad → bpg13 ◦ nadh (6)

Here the acronyms glc6p, fru6p, fru16p, gap, dhap, nad, nadh, bpg13 stand for Glucose

6-phosphate, Fructose 6-phosphate, Fructose1,6-bisphosphate, Glyceraldehyde

3-phosphate, Dihydroxyacetone phosphate, NAD+, NADH and 1,3 Bisphosphoglicerate,

respectively. The rules 1, 2, 3, 4 and 5 together, and 6 describe the reaction catalyzed by

the enzymes phosphoglucose isomerase, 6-phosphofructo 1-chinase, fructose bisphosphate

aldolase, triose phosphate isomerase, glyceraldehyde 3-phosphate dehydrogenase,

respectively.

We have performed some in silico �what if� experiments, comparing the obtained

results with the correspondent in vitro counterpart.

Mutually essentially genes We have simulated gene knock-out mimicking an homologous

in vitro experiment presented in [16]. There, the authors silenced two target genes of

E. coli K-12 (sucAB and sucCD) that encode for two enzymes (α-ketoglutarate

dehydrogenase and succinyl-CoA synthase respectively) involved in the Krebs cycle.

They found those genes �mutually essential� for the production of succinyl-CoA,

i.e. sucAB and sucCD could be knocked-out individually, but not simultaneously in order

to achieve Succinyl-CoA production. Succinyl-CoA is a critically important metabolite

involved in several biochemical pathways leading e.g. to energy production or

peptidoglycan biosynthesis (via Diaminopimelate).

To simulate this gene knock-out, we have removed the rules corresponding to the

reactions catalysed by α-ketoglutarate dehydrogenase and succinyl-CoA synthase. Then

we set the starting experimental conditions, including in the initial state all the

metabolites that the cell is assumed to uptake from the external environment. This is
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represented in the form of rules with no premises, as the following:

true → glc

true → pep

true → o2

where glc, pep, o2 stand for α-D Glucose, Phosphoenolpyruvate and oxygen, respectively.

Checking for the presence of succinyl-CoA at the end of the computation, we found that

this metabolite was not produced (i.e. the correspondent fact was not deduced) only

when both the target genes (i.e. the rules corresponding to the action of the encoded

enzyme) were simultaneously turned o�. This re�ects what actually happens in vitro.

Gene knock-out and viability We pushed forward our experimentation performing other in

silico gene knock-outs and comparing our results with the information contained in the

�Geno Base� (http://ecoli.aist-nara.ac.jp/), a database entirely dedicated to E. coli K-12.

In this database genes are classi�ed according to various criteria among which their

essentiality, i.e. their capability of causing cell death when turned o�.

In our in silico knock-out experiments, we tried to test gene essentiality verifying whether

or not our knock-out mutants exhibited features typically pertaining to living cells. We

assumed that these characteristics could reasonably include the production of energy

(ATP) and of not dispensable structural components, such as the cell wall and biomass in

general.

We performed several tests, each time removing the rules corresponding to the enzyme

encoded by the silenced genes and checking for the presence of the observed elements at

the end of each computation. It turned out that, in all the tested cases, in silico mutants

corresponding to real viable mutants did produce energy (ATP), biomass and cell wall.

Furthermore, we have found that, in most of the cases, in silico mutants corresponding to

real non-viable mutants did not produce energy and biomass. Nevertheless, in two cases

we have obtained an in silico mutant potentially capable of producing energy and

biomass, but corresponding to a non viable counterpart according to Geno Base. The

presence of false negatives (the mutant is predicted viable, but actually it is not) is

expected in our framework as a consequence of the abstraction and over-simpli�cation we

used in the model. This corresponds to the fact that something that has in�uence on

viability and that has a causal explanation, it is not actually produced in live systems.

This could depend, for instance, on the fact that we do not take into account some aspects

related to dynamics that instead play an important role e.g. the simultaneous availability

of two necessary ractants at a given instant. The preliminary results obtained up to now
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are encouraging and make us con�dent of the reliability of our method. Nevertheless,

further investigations are ongoing to systematically compare (and measure the accuracy

of) our in silico predictions against the knock-out experiments reported in the Geno Base.

Conclusions

We have proposed a simple and skeletal language to describe metabolic networks, in terms

of molecular entities and reaction rules that specify their interactions and implicitly code

causal dependencies amongst reactions. It intends to be a sort of common basic language

between biologists and computer scientists. We have then exploited the analogy between

these reaction rules and logical implications, that have led us to develop a logical-based

tool, able to mechanically deduce chains of causally related reactions. This makes the

tool pro�table for biologists that can have their intuitive description of the metabolic

network easily translatable in the language used by the tool. Moreover, our methodology

makes it possible to think about the model itself, by allowing to vary both the initial

conditions and the rules. It is easy to program such modi�cations and evaluating the

impact of changes in the hypotheses is quite immediate, because the tool quickly reacts

to the queries (the typical answer time for a reasonable large network is about 1 second).

The what-if approach satis�es the need to simulate and investigate the behaviour of a

certain metabolic network, under di�erent scenarios. In particular it allows to perform

perturbative experiments which results are not trivial to predict. In fact, if the studied

network is complex enough, it results unfeasible to estimate a priori the e�ect produced

by a local perturbation on the overall network. Finally, we have applied our methodology

to the metabolic network of the E. coli K-12 metabolic genotype. In general, the in silico

experiments re�ect the in vitro ones and have suggested interesting research directions.

Even though we are at a preliminary stage, the results obtained up to now show our

method not to underperform analogous ones. Noticeably it grounds on an formalism that

allows e�cient and straightforward implementations. This fact represents an advantage

when compared, e.g. with approaches relying on graphs (see e.g. [9]) that, additionally,

are more di�cult to compose. Actually, using graphs, it result harder w.r.t. our method

to combine the single building blocks to obtain the overall description of the system.

Our ultimate goal is that of supporting a heuristic process for searching causal

explanations of metabolic phenomena, with in mind the �emphasis on hypothesis-driven

research in biology� advocated in [1].
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