
Knitting for fun: a recursive sweater

Anna Bernasconi1, Chiara Bodei1, and Linda Pagli1

Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo, 3, I-56127,
Pisa, Italy. {annab,chiara,pagli}@di.unipi.it

Abstract. In this paper we investigate the relations between knitting
and computer science. We show that the two disciplines share many
concepts. Computer science, in particular algorithm theory, can suggest a
lot of powerful tools that can be used both in descriptive and prescriptive
ways and that apparently have not yet been used for creative knitting.
The obtained results are short (optimal size) recursive descriptions for
complex patterns; creation of new complex recursive patterns; and the
application of three-valued algebra operations to combine and create a
wide variety of new patterns.

Keywords: Modeling Knitting; Pattern Knitting Diagrams; Checker-
board, Sierpinski, and Butterfly patterns; Knitting Complexity.

1 Knitting, Mathematics and Computer Science

Knitting is usually considered a female activity and females are usually
not considered to be inclined to mathematics, or to science in general.
Nevertheless mathematical skills are necessary for knitting, because they
help to realize symmetries, inversions, scalings and proportions; good ab-
straction capabilities are indeed needed to figure the final result out and
to map the idea of a pattern into a knitted form. Therefore, even illiterate
women use mathematics while knitting, without knowing it.

Furthermore, if you think about knitting carefully, you can find a lot
of formal and abstract structures. And here, computer science may come
in, by providing tools and ways of interpreting and re-interpreting these
structures, thus giving a form to knitting.

Knitting offers us a nice chance to revisit some of the main concepts of
computer science from a new perspective and, at the same time, knitting
can be better understood in the light of this theoretical tour. Computer
science, especially algorithm theory, can suggest a lot of powerful tools
that can be used both in descriptive and prescriptive ways and that ap-
parently have not yet been used for creative knitting.

A pattern can be seen as a matrix of stitches (columns) and needles
(rows), and it is usually repeated many times horizontally or vertically,

or inserted into another pattern or interleaved with one or more other
patterns. The stitches can be chosen from a set of possible stitches, but
not all the combinations are allowed: we have to select them according to
a set of predefined rules, which guarantee a consistent result.

Once a new pattern has been created, its description is represented
through the so called pattern knitting diagram; in this way the pattern
can be reproduced many times and communicated to others. The dia-
gram must be read from the bottom to the top, the odd rows from right
to left and the even ones in the opposite direction, i.e., a “bustrophedic”
reading (from ancient greek βoυς, ”ox” + στρεφειν, ”to turn”, imitating
the ox ploughing the field, back and forth). Rows and, in general, pat-
terns exhibit structural regularity, which allows us to use the notion of
grammars to describe them (Section 2). On the other hand, exactly the
bustrophedic reading of the diagram gives the specification, row by row,
of the elementary stitches to be performed and essentially represents the
algorithm to be executed to realize the piece of work.

The relations between mathematics and knitting have been studied
from many points of view. A wide review on this subject can be found in
the web site The Home of Mathematical Knitting [8].

As computer scientists we will mostly consider other aspects of the
creative knitting process, which, as we will see, are interesting and, to
our knowledge, have not yet been investigated. First of all, recall that
one of the first examples of an elementary computer was a mechanical
loom, invented by Joseph Jacquard in 1801. This machine was able to
execute patterns composed of several interleaved threads of different col-
ors following the scheme of punched holes in board punch cards. In this
way the Jacquard machine automatically selected the color of each stitch,
allowing complex combinations. Nowadays we still use the name jacquard
to indicate this kind of pattern and the idea of using punched cards as
knitting diagrams to reproduce particular patterns has been used also
by more modern knitting machines. Now they include very sophisticated
control devices that behave as real dedicated computers and are able to
reproduce any complex pattern.

We started our study by asking ourselves what applying recursion to
knitting could lead to. First of all we wanted to understand if recursive
motives could be employed to obtain beautiful patterns, and then to see
how to exploit the power of recursion to create very short descriptions.
We found some surprising results as shown by the examples of recur-
sive patterns proposed here, which, in our opinion, show some beauty
(Section 4). Moreover, the recursive patterns can be seen as schemes of

patterns, from which it is possible, changing the initial conditions and the
basic stitches, to obtain families of new patterns, thereby opening a new
style of knitting.

In addition, recursive patterns can be defined in a very succinct way,
i.e., their pattern knitting diagrams can be automatically generated with
very short recursive algorithms. Applying, by analogy, the well known
concept of Kolmogorov Complexity in this framework, we might say that
recursive knitting patterns have low “knitting complexity” (Section 5).
This result shows how recursion allows us to get an optimal compression
of patterns, whose standard description would have a much higher com-
plexity. The usual knitting instructions, described in natural language,
can then be derived from the recursive algorithms, or directly from the
generated pattern diagrams, in an automatic way by some sort of knitting
compiler.

A second part of this study is still devoted to creating new patterns,
but based on the combination of given patterns. Different combinations of
stitches give rise to different textures, among which the most famous are
flat stockinette, reverse stockinette, and seed stitches (Section 3). Patterns
and motifs are obtained by using different textures for different areas of
the knitting piece. Consequently, the elementary unit to be considered
seems to be the texture unit, i.e., the stitch processed according to a
particular texture. We call this unit knitting element or knittel, in analogy
with pixel (picture element).

We show how considering a set of possible textures and their com-
binations as a three-valued algebra, it is possible to combine shapes and
patterns in a very simple and elegant way, using the algebra operations,
and to easily obtain the specifications of many nice patterns (Section 6).
This is only an example of how a formal approach offers a way to enhance
the design possibilities.

2 The Grammar of Knitting

In specialistic journals, patterns are specified both with pattern knitting
diagrams and verbal descriptions. A pattern knitting diagram is a ma-
trix, where each element corresponds to a single stitch and every row
corresponds to a needle. The pattern can be repeated as many times as
needed. Every kind of stitch is represented by a special knitting symbol.
In other words, there is a finite alphabet S of knitting symbols S and a

Cast on over a number of stitches multiple of 4 plus 3.

Row 1: * knit 2, purl 2; repeat from *: to last 3 sts, knit 3.

Repeat row 1.

| | | - - | |

| | - - | | |

| | | - - | |

| | - - | | |

| | | - - | |

| | - - | | |

| | | - - | |

Fig. 1. Standard description (top) and pattern knitting diagram (bottom) of Mistake
Rib.

precise syntax of these symbols.

S ::= stitches
| knit
− purl
o cast on
...

The verbal description is compressed horizontally by inserting the repeti-
tions between two stars, and vertically indicating the rows to be repeated,
as in Fig. 1 (see also Fig. 5). The explanation of each row resembles the
production rules in a regular grammar [3], where terminals are knitting
symbols in S and one special non terminal symbol suffices to generate
each row. Consider, e.g., the first row in Fig. 1. It is easy to rephrase it
as the following production (remember that the row should be read from
right to left):

R ::= ||| | R −−||

that, in turn, generates the following language of words L(R) = |||{− −
||}∗ = {|||, ||| − −||, ||| − −|| − −||, ...} (see the diagram in Fig. 1, which
presents just a single repetition). It is interesting to observe that the
pattern descriptions use the star with the same meaning of the Kleene
star.

Consequently, grammars appear a good tool for pattern modeling,
as they provide simple and elegant representations of patterns. Actually,
a pattern corresponds to a two-dimensional word and this calls for a
generalization of formal word language theory. There are many possible
models for two-dimensional languages that can be used for the knitting

- - - - | | | | - | - |

| | | | - - - - - | - |

- - - - | | | | - | - |

| | | | - - - - - | - |

Fig. 2. Pattern Knitting Diagrams for Stockinette (left), Reverse Stockinette (center),
Seed Stitch (right).

- - - - | | | | a a a a b b b b

| | | | - - - - a a a a b b b b

- - - - | | | | a a a a b b b b

| | | | - - - - a a a a b b b b

| | | | - - - - b b b b a a a a

- - - - | | | | b b b b a a a a

| | | | - - - - b b b b a a a a

- - - - | | | | b b b b a a a a

Fig. 3. Checkerboard: Pattern Knitting Diagram (left), Visible Pattern (right).

framework. This subject is left for future work. The nice thing is that we
can define a sweater as a piece of a particular language.

3 Knit Textures

Different combinations of stitches give rise to knit fabrics that result in
different textures (see Fig. 2). The basic knit fabric is called stockinette
pattern and it is obtained by alternating rows of knits with rows of purls
on the right side. The visual effect is a grid of V shapes. On the wrong
side the pattern has a different texture, the effect is a grid of ∼ shapes
and it is used as a pattern in itself (obtained by alternating rows of
purls with rows of knits) with the name of reverse stockinette. Another
common fabric is called seed stitch and it is obtained by alternating knits
and purls. Generally, the visible patterns are not completely congruent to
their diagrams. For instance, the visual effect of the seed stitch is that of
a checkerboard, while its diagram (the right one in Fig. 2) has a different
aspect. This is due to the fact that the odd rows describe the right side of
the fabric, whereas even ones refer to the wrong side. When following the
diagram, this corresponds to the perspective on the fabric of the person
who knits it.

Patterns are usually obtained by combining different textures as in the
checkerboard pattern in Fig. 3, where stockinette and reverse stockinette
are combined in a checkerboard style in four tiles (see also Section 4).
Again, the diagram does not give the immediate intuition of the pattern.
To better visualize the pattern, we can use a symbol for the generic point
of the stockinette texture, e.g., “a” and another, e.g., the “b” for the

generic point of the reverse stockinette. Sometimes a similar convention
is used in pattern knitting diagrams. In other words, we are using an
abstraction of the texture, namely the knitting element or knittel, the
elementary texture unit. In our example, the knittel symbol “a” stands
for the generic point of the stockinette, that can be either a knit or a
purl, depending on the position in the stockinette area. Of course, we
can also associate “a” and “b” to other pairs of textures and obtain new
combinations. For ease of presentation, in Section 6 we will use a color
code for textures, associating them to different scales of gray.

4 Recursive knitting: an algorithmic description

How can we apply the powerful concept of “recursion” to the knitting
world? Probably, the most natural way is that of exploiting the recursion
in the description of the knitting patterns, by using recursive algorithms
to automatically generate them. One additional advantage of our algo-
rithmic description over standard ones based on instructions in natural
languages as well as pattern knitting diagrams, is that with just one al-
gorithm it is possible to obtain whole families of new patterns by simply
changing the initial conditions and the basic stitches.

We propose here three examples of families of patterns of increasing
difficulty, as well as beauty, that can be generated recursively. The first
example concerns a pattern that could be easily defined in an iterative
way; in the second example we consider a pattern based on a well known
plane fractal; finally, the pattern shown in the third example is nothing
other than a knitted butterfly network.

Without loss of generality, we consider the generation of square knit-
ting diagrams, each represented as a matrix a, whose entries describe
single stitches. The generation of the knitting diagram is performed in
two steps: first the execution of a recursive algorithm generates the pat-
tern, which resembles its final aspect, and then the associated knitting
diagram is simply produced by inverting every other row (i.e., changing
the knit stitches into purl ones, and viceversa).

Checkerboard pattern. As said above, a Checkerboard pattern is com-
posed of identical squares that alternate between stockinette stitch and re-
verse stockinette stitch. The only variable is the dimension of the squares,
i.e., the number of stitches across and rows long. This pattern can be seen
as a generalization of the well known seed stitch, obtained when the di-
mension of the squares is one. The input of the algorithm is given by

| | | | - - - - | | - - | | - - | - | - | - | -

| | | | - - - - | | - - | | - - - | - | - | - |

| | | | - - - - - - | | - - | | | - | - | - | -

| | | | - - - - - - | | - - | | - | - | - | - |

- - - - | | | | | | - - | | - - | - | - | - | -

- - - - | | | | | | - - | | - - - | - | - | - |

- - - - | | | | - - | | - - | | | - | - | - | -

- - - - | | | | - - | | - - | | - | - | - | - |

- - - - | | | | - - | | - - | | - | - | - | - |

| | | | - - - - | | - - | | - - - | - | - | - |

- - - - | | | | | | - - | | - - - | - | - | - |

| | | | - - - - - - | | - - | | - | - | - | - |

| | | | - - - - - - | | - - | | - | - | - | - |

- - - - | | | | | | - - | | - - - | - | - | - |

| | | | - - - - | | - - | | - - - | - | - | - |

- - - - | | | | - - | | - - | | - | - | - | - |

Fig. 4. Checkerboard visible patterns (top) and their knitting diagrams (bottom), with
increasing resolution. In the visible patterns the symbol | (-) stands for a knittel of a
(reverse) stockinette fabric.

a matrix a, whose entries are initialized as knit stitches, its dimension
n = 2k, the dimension d of the basic pattern, and the indexes x and y
used to indicate the portion of matrix to fill.

Checkerboard(a, n, d, x, y)
if (n == d)

for (i = 0; i < d/2; i++)
for (j = 0; j < d/2; j++)

a[i+d/2+x][j+y] = a[i+x][j+d/2+y] = − ;
else

for (k = 0; k < 4; k++)
i = k/2;
j = k mod 2;
Checkerboard(a, n/2, d, x + i ∗ n/2, y + j ∗ n/2);

Observe that by changing the value of d from its maximum value n down
to its minimum value 2, we obtain patterns with progressively increas-
ing resolution. Examples of patterns of the Checkerboard family and of
their corresponding knitting diagrams are shown in Fig. 4. Finally, Fig. 5
shows a standard description of a Checkerboard pattern of resolution 2,
by instruction in natural languages.

Sierpinski pattern. The definition of this pattern is based on the plane
fractal known as Sierpinski carpet, first described by Wac law Sierpiński in
1916. The construction of the Sierpinski carpet begins with a square. The
square is cut into 9 congruent subsquares in a 3-by-3 grid, and the central

Cast on over a number n of stitches, multiple of 4.

Row 1: * knit 2, purl 2; repeat from *.

Row 2: repeat row 1.

Row 3: * purl 2, knit 2; repeat from *.

Row 4: repeat row 2.

Repeat rows 1, 2, 3, and 4 for n/4 times.

Fig. 5. Standard description of a Checkerboard pattern for a fixed value d = 2.

subsquare is removed. The same procedure is then applied recursively to
the remaining 8 subsquares, depending on the chosen resolution.

To realize such a pattern with our tools, i.e., needles and handwork,
we only have to decide how to “remove” a square. This could be done,
e.g., by using stockinette stitch as background, and reverse stockinette
stitch for the removed squares, or viceversa. As before, the input of the
algorithm is given by a matrix a, whose entries are initialized as knit
stitches, its dimension n = 3k, the dimension d of the basic pattern, and
the indexes x and y indicating the portion of matrix to fill.

Sierpinski(a, n, d, x, y)
if (n == d)

for (i = d/3; i < 2 ∗ d/3; i++)
for (j = d/3; j < 2 ∗ d/3; j++)

a[i+x][j+y] = − ;
else

for (i = n/3; i < 2 ∗ n/3; i++)
for (j = n/3; j < 2 ∗ n/3; j++)

a[i+x][j+y] = − ;
for (k = 0; k < 9; k++)

if (k 6= 4)
i = k/3;
j = k mod 3;
Sierpinski(a, n/3, d, x + i ∗ n/3, y + j ∗ n/3);

Again, decreasing d from n down to 3, we obtain patterns of progressively
increasing resolution. Examples of patterns of the Sierpinski family, to-
gether with their knitting diagrams, are shown in Fig. 6. Whereas in the
previous example we were able to give a concise standard description for
a given resolution by verbal knitting instructions, for the present pattern
a similar concision could not be attained.

Butterfly pattern. Our last example of recursive knitting pattern is
based on the well known notion of butterfly network (see [5]):

Definition 1. A d-dimensional butterfly has (d + 1)2d nodes and d 2d+1

edges. The nodes correspond to pairs (w, i) where i is the level of the node

| | | | | | | | | | | | | | | | | |

| | | | | | | | | | - | | - | | - |

| | | | | | | | | | | | | | | | | |

| | | - - - | | | | | | - - - | | |

| | | - - - | | | | - | - - - | - |

| | | - - - | | | | | | - - - | | |

| | | | | | | | | | | | | | | | | |

| | | | | | | | | | - | | - | | - |

| | | | | | | | | | | | | | | | | |

| | | | | | | | | | | | | | | | | |

- - - - - - - - - - | - - | - - | -

| | | | | | | | | | | | | | | | | |

- - - | | | - - - - - - | | | - - -

| | | - - - | | | | - | - - - | - |

- - - | | | - - - - - - | | | - - -

| | | | | | | | | | | | | | | | | |

- - - - - - - - - - | - - | - - | -

| | | | | | | | | | | | | | | | | |

Fig. 6. Sierpinski visible patterns (top) and their knitting diagrams (bottom), with in-
creasing resolution.

(0 ≤ i ≤ d) and w is a d-bit binary number that denotes the row of the
node. Two nodes (w, i) and (w′, i′) are linked by an edge if and only if
i′ = i + 1 and either w and w′ are identical (straight edge) or they differ
in precisely the i′th bit (cross edge).

This time, a recursive algorithm, in a classical à la divide et impera
style, is used to generate a scheme of a d-dimensional butterfly (see Fig. 7).
For aesthetic reasons, we only consider cross edges. Starting from such
a scheme, one can easily derive a matrix describing the visible pattern,
and then build the associated knitting diagram. Observe that as in the
previous example, yet even more so, a request for brief standard knitting
instructions cannot be satisfied for the present pattern.

The input of the algorithm is given by a matrix a, its dimension
n = 2d+1 − 2, and the index x used to indicate the portion of matrix to
fill.

Butterfly(a, n, x)
m = (n + 2)/2;
if (m == 2)

a[0][x] = a[1][x+1] = \;
a[0][x+1] = a[1][x] = /;

else
Butterfly(a, m − 2, x);
Butterfly(a, m − 2, x + 1 + n/2);
Combine(a, m, x);

Fig. 7. A three-dimensional butterfly scheme recursively generated.

Combine(a, m, x)
r = m − 2;
for (d = 0; d < m; d = d + 2)

for (j = r; j < 2 ∗ m − 2; j++)
a[j][d+j-r+x] = \;

for (d = m − 1; d < 2 ∗ m − 2; d = d + 2)
for (j = r; j < 2 ∗ m − 2; j++)

a[j][d-j+r+x] = /;

The Butterfly pattern can be realized with needles in various way. For
instance, one could play with the two basic stitches, knit and purl, and
use them to realize the diagonal lines representing its edges, or, even
better, the cable stitch, as shown in Fig. 8.

5 Knitting complexity

In computer science, the Kolmogorov complexity (also known as algorith-
mic entropy, or program-size complexity) of an object is a measure of the
computational resources needed to specify the object [6]. For the world
of knitting, by analogy we introduce the following:

Definition 2. The knitting complexity of a knitting pattern is the length
in bits, expressed in order of magnitude, of the shortest description of its
knitting diagram.

We pose a basic proposition providing an immediate lower bound.

Proposition 1. A knitting pattern of dimension n × m has a knitting
complexity Ω(log n + log m).

Fig. 8. Cable stitch realization of the Butterfly pattern.

Proof. The bound easily follows by noting that log n + log m bits are
required to specify the diagram size.

Observe that the more a pattern is elementary, the more its diagram is
repetitive and easy to describe with “concise” instructions. On the other
hand, if a pattern does not present any structural regularity, the shortest
description of its knitting diagram will consist of the diagram itself, thus
requiring Θ(nm) bits.

We will now analyse the knitting complexity of the three examples
described in Section 4. We have

Proposition 2. The Checkerboard, Sierpinski and Butterfly patterns have
knitting complexity Θ(log n), therefore their recursive descriptions are op-
timal.

Proof. First of all observe that in this case m = n. The proof is construc-
tively obtained from the algorithmic description of these three patterns,
specified in Section 4. In fact, each algorithm consists of a constant num-
ber of instructions, and the values of the variables and input parameters
are all upper bounded by n. Therefore Θ(log n) bits are sufficient to de-
scribe them. The optimality immediately follows from Proposition 1.

Observe that the optimality has been obtained thanks to the power of
the recursive description of the patterns. It can be easily seen that using

Fig. 9. A Sierpinsky visible pattern of size n = 27 and d = 3.

the standard knitting description techniques (natural language or pat-
tern knitting diagrams) only the complexity of the Checkerboard pattern
would be of order Θ(log n), since it takes a constant number of instruc-
tions to be described (see Fig. 5). For the Sierpinski pattern, an optimal
compression can be easily obtained when the resolution is very low, e.g.,
d = n. For higher resolution (d < n), we can observe that the whole vis-
ible pattern can be obtained by the composition of only two basic d × d
subsquares, as those shown in Fig. 9. For any d, these two squares can
be described with Θ(log d) bits, because of their regularity. The overall
diagram can then be described as an n/d×n/d array of such subsquares.
In this way we obtain a description of size Θ(n2/d2 + log d).

Using the standard knitting description techniques, for the Butterfly
pattern we are not able to find a better description than the whole array
of stitches, requiring Θ(n2) bits.

6 Designing Patterns using Algebra

Patterns and motifs are obtained by using different textures for different
areas of the knitting piece. Previous studies in this direction can be found
in [2, 7]. For ease of presentation, suppose we only have three different
kinds of texture in the same pattern. To obtain new patterns, we play

with a three-valued algebra, i.e., an algebra over the finite field GF (3).
GF (3) contains three elements, usually labelled with 0, 1 and 2, and
arithmetic is performed modulo 3. As operations, we mainly focus on the
sum and multiplication modulo 3 (typical of this ring). Note that the
sum and multiplication modulo 2, i.e. the logical exclusive or (XOR) and
AND operations, and the other boolean operations can be obtained as
combinations of the typical GF (3) operations.

We apply element-wise these operations to matrices of knittels, as-
suming values in {0, 1, 2}, depending on the corresponding texture. We
will take two patterns, suitably coded in our algebra, and apply one or
more operations. We can also combine more than two patterns. We use
a color code for each value in {0, 1, 2}, by associating them to different
scales of gray, to help in visualizing the patterns (0.01 for 0, 0.5 for 1, and
0.95 for 2).

Boolean operations are usually used to combine patterns and shapes
in computer vision. Resorting to a third value increases the number of
possible combinations. The role of values is twofold: on the one hand we
can associate each value to a different texture and obtain three textures;
on the other hand, their combination with different operations can play a
role in the manipulation of patterns. We can think about a generalization
of the masking notion, to manipulate knittel areas in bulk. It suffices
to use the second pattern as a mask for the first one. If the operation
applied is the multiplication modulo 3, we can obtain the following effects
on the first pattern: (i) if the mask area consists of 0 the effect on the
corresponding area in the first pattern is that of clearing, i.e., the area
it is cleared to zero regardless of the initial value; (ii) if the mask area
consists of 1, the original values in the corresponding area are not changed,
while (iii) if the mask area consists of 2, the values 1 and 2 are inverted.
Similar considerations can be made for the sum modulo 3, and for all the
operations possible in GF (3).

We present two experiments, in which we consider n × n square ma-
trices. In the first example, in Fig. 10, we can observe the effect of the
multiplication modulo 3, depending on the values.

An interesting variation could be to apply different operations to dif-
ferent sub-matrices, i.e., having also matrices of operations, as in Fig. 11,
where each operation is applied to each n/2×n/2 sub-matrix. The matrix
of operations comb is the following: the effect is nicely kaleidoscopic.[

+mod 3 ×mod 3

×mod 3 +mod 3

]

Fig. 10. Multiplication modulo 3 (right) of the two patterns A (left) and B (center).

Fig. 11. Combination (right) of the two patterns C (left) and D (center) with the matrix
of operations comb.

7 Concluding remarks

We conclude here our tour of the computational aspects of the knitting
world. Summarizing, the results we have obtained are:

– Short (optimal size) recursive description for complex patterns.
– Creation of new complex patterns.
– Application of three-valued algebra operations to combine and create

a wide variety of new patterns.

Beside the theoretical interest, the above results have also practical
impact. In fact, using a deep level of recursion and high resolution, we
can obtain automatically and in a very simple way, arbitrarily complex
patterns, never designed nor produced before, to our knowledge. Their
pattern knitting diagrams can be also obtained in an automatic way.
Note that, even if a very complex pattern will probably require a greater
skill or concentration in the executor, if human, knitting is a sequential
process where one stitch is processed after the other, and therefore the
overall processing time remains linear in the size of the array. A complex

pattern can be obtained in approximately the same time as a simple one.
This is true in particular for knitting machines whose execution time,
following a program, is independent of the difficulty of the diagram.

The exploration of the knitting world with the eye of the computer
scientist opens a variety of interesting topics beside those considered: this
paper is only the starting point for further investigation.

It could be also nice to organize, for educational purposes, an introduc-
tion to basic concepts of computer science completely based on knitting,
obviously for women only!

Acknowledgments. We would like to thank the numerous men who, with
a mixture of diffidence and curiosity, helped us with this paper.

References

1. P. Allen, T. Malcolm, R. Tennant, and C. Fall, Knitting for Dummies, 2002.
2. R.E. Griswold, Designing Weave Structures Using Boolean Operations, Part 1, 2,

3, http://www.cs.arizona.edu/patterns/weaving/webdocs.html
3. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman Introduction to Automata

Theory, Languages, and Computation Addison-Wesley, 2001.
4. D.E. Knuth, The Art of Computer Algorithms: Sorting and Searching, Vol. 3,

Addison-Wesley, Reading, MA, 1973.
5. F.T. Leighton, Parallel Algorithms and Architectures: Array, Trees, Hypercubes,

Morgan Kaufmann Publishers, San Mateo, CA, 1992.
6. M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Appli-

cations, Springer Verlag, New York, 2005.
7. D. Suzuki, T. Miyazaki, K. Yamada, T. Nakamura, and H. Itoh, A Supporting

System for Colored Knitting Design, Proc. of the 13th Int. Conf. on Industrial and
engineering applications of artificial intelligence and expert systems, IEA/AIE,
Springer-Verlag New York, 2000.

8. The Home of Mathematical Knitting
http://www.toroidalsnark.net/mathknit.html

