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Abstract

Background: Metabolic networks present a complex interconnected structure, whose

understanding is in general a non-trivial task. Several formal approaches have been developed

to support the investigation of such networks. One of the relevant problems in this context is

the comprehension of causality dependencies amongst the molecules involved in the metabolic

process.

Results: We apply techniques from formal methods and computational logic to develop an

abstract qualitative model of metabolic networks in order to determine possible causal

dependencies. Keeping in mind both expressiveness and ease of use, we aimed at providing: i) a

minimal notation to represent causality in biochemical interactions, and ii) an automated tool

allowing human experts to easily vary conditions of in silico experiments. We exploit a reading

of chemical reactions in terms of logical implications: starting from a description of a metabolic

network in terms of reaction rules and initial conditions, chains of reactions, causally depending

one from the another, can be automatically deduced. Both the components of the initial state

and the clauses ruling reactions can be easily varied and a new trial of the experiment started,

according to a what-if investigation strategy. Our approach aims at exploiting computational

logic as a formal modeling framework, amongst the several available, that is naturally close to
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human reasoning. It directly leads to executable implementations and may support, in

perspective, various reasoning schemata. Indeed, our abstractions are supported by a

computational counterpart, based on a Prolog implementation, which allows for a

representation language closely correspondent to the adopted chemical abstract notation.

The proposed approach has been validated by results regarding gene knock-out and essentiality

for a model of the metabolic network of Escherichia coli K12, which show a relevant coherence

with available wet-lab experimental data.

Conclusions: Starting from the presented work, our goal is to provide an effective analysis

toolkit, supported by an efficient full-fledged computational counterpart, with the aim of

fruitfully driving in vitro experiments by effectively pruning non promising directions.

Background

Understanding the relationships amongst the elements involved in biologic interaction

networks, such as the functioning of cellular metabolism, is a relevant problem in Systems

Biology. In the words of [1], “diagrams of interconnections represent a sort of static

roadmaps, but what we really seek to know are the traffic patterns, why such patterns

emerge, and how we can control them”. Having a formal description of the

interconnections and a methodology to perform software simulation on how these patterns

are, should help in orientating in vitro experimentation. Under this regard, causality can

play an important role in finding chains of reactions that connect the parts of the system of

interest, e.g. for determining causal correlations among molecules that are not apparently

correlated. In general, the proposed models of complex systems code a lot of information

and determining possible correlations and causal dependencies may be not straightforward

or computationally expensive.

We focus here on metabolic networks, i.e. the set of the cellular biochemical pathways

involved in energy management and in the synthesis of structural components. Biochemical

pathways are typically composed of chains of enzymatically catalyzed chemical reactions

and are interconnected in a complex way. Starting from the composition of local, well
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understood behaviour, the study of the overall emerging behaviour of metabolic networks

appears difficult.

We apply techniques from formal methods and from computational logic in order to

develop an abstract qualitative model of metabolic networks, focussing on causality.

Keeping in mind both expressiveness and ease of use, we aimed at providing: i) a minimal

notation to represent causality in biochemical interactions, and ii) an automated tool

allowing the human expert to easily vary conditions of the in silico experiment. We

introduce a simple and skeletal notation, inspired by biochemical reactions, to emphasize

the causality aspects we are concerned with. The choice of relying on computational logic,

which “provides a straightforward and intuitive representation of human reasoning” [2], has

appeared particularly suitable in the multidisciplinary context of our work. On the one

hand, it should be palatable to biologists, since very close to the biochemical intuition. On

the other hand, it has a direct computational counterpart, which computer scientists can

build upon in order to devise the needed analysis tool.

In our notation, biochemical reactions are given an abstract representation: we only

record which are the relations between the source and the target elements of each single

reaction, e.g. between two molecules M and N and the molecule P they produce. In turn,

P can become a source molecule in another reaction and so on and so forth. In other

words, we abstract away from quantities, stoichiometric proportions, kinetical or

thermodynamics parameters that are involved in the production of P . Noticeably, we also

abstract from the actual dynamics of reactions. Intuitively speaking, we project reactions

on a “flat” temporal scale so that the availability of M and N is never spoiled after the

production of P , and other metabolites can be caused by M and N . This is also an

abstraction over quantities, since “infinite copies” of M and N result always available.

Because of the abstraction, the reaction leading to P actually represents the possibility for

P to be generated, or caused, in vivo, by the presence of M and N . Indeed, the model

gives an over-approximation of the set of the actual pathways, possibly including some

pathways that could be actually prevented, for instance, by the lack of a suitable quantity

of reactants or by an inadequate temperature. The payoff of the abstraction adopted is in

terms of expressiveness of the language and effectiveness of its computational counterpart.
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Abstracting from quantitative issues may prevent reasoning about some of the dynamical

features of (bio)chemical objects. However, it makes possible to take into consideration

some aspects of those systems (typically large biochemical networks) whose kinetical and

thermodynamical parameters are scarcely known.

Chains of causal reactions can be, step by step, automatically deduced. To this aim,

we exploit an analogy between logical implications and chemical reactions, by interpreting

the reaction of M and N that produces P as a logical clause stating that M and N imply

P . Our method is supported by a computational logic counterpart, based on a Prolog

implementation of a bottom-up semantics. This allows us to compute the set of all the

metabolites that can be produced as consequences of a given set of rules and starting from

a set of initially available metabolites. This is step-wise determined by repeatedly adding

the metabolites that can be immediately caused by the application of the rules to the set of

the so-far produced metabolites. We then relate the computational construction with the

original model and prove convergence properties of the process.

Despite the abstract working hypotheses adopted, our framework has revealed

sufficient to provide meaningful approximations of the possible chains of reactions during

experiments. Moreover, the approach facilitates thinking and revising the biological model

itself, by making easy to vary both the components of the initial state and the clauses that

rule reactions.

The proposed approach can serve as a sort of “what-if” analysis, repeatedly exploring

different scenarios, each one derived from a different set of working hypotheses. Our tool

allows us to rapidly evaluate the impact of changes in the hypotheses on a particular

observable outcome. Thus, we obtain an interactive and effective analysis, that can be used

to differentiate the most promising causal relations deduced, which deserve to be tested in

vitro, from those that instead can be pruned.

We have validated our approach by studying the robustness of the metabolic network

of E. coli K12. Selected genes have been knocked-out by disabling the rules regarding the

corresponding encoded enzymes. Results are coherent with the actual biological behaviour,

observed in vitro and reported in [3] and in the “Geno Base” (http://ecoli.aist-nara.ac.jp/),

a database entirely dedicated to E. coli K-12.
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This paper is organized as follows. Next, we will discuss related work and then

present our formal framework, illustrating how biochemical processes can be represented

inside it. Results about experiments with the metabolic network of the E. coli K-12

metabolic genotype follow. Conclusions are followed by a section Methods, in which we

report on the techniques used.

Related work and comparison. Our work can be included in the recent research trend which

exploits well established theories and techniques from formal methods in order to support

the interpretation of the big amount of the raw biological data now available.

By using logic, we slightly diverge from the line of research in which biological modelling is

inspired by the use of concurrent models. Concurrency theory offers a wide choice of

models naturally expressing causality, that is one of its essential notions. Nevertheless,

causality is a natural notion also in the logic framework. Concurrent models are focussed

on the description of the dynamic behaviour of whole systems. Considering these aspects

can be computationally demanding. This has led us to the choice of an even more abstract

model, where – as mentioned above – the notion of time is abstracted away. An abstraction

similar to ours can be performed a posteriori on a concurrent model, for instance by

resorting to static analysis techniques, which offer static approximations of the dynamic

behaviour. Usually, static techniques extract information by systematically inspecting the

specification of the dynamic behaviour of systems. In our approach instead, we want to

infer information by directly inspecting the set of reactions, modulo the abstractions we

discussed above, thus skipping the specification of the chemical dynamics. Resorting to

static techniques represents a typical way to drastically reduce the computational cost due

to the study of all the possible dynamic evolutions of a system. The price to pay amounts

to a loss of precision, since they usually provide over-approximations of the behaviour.

Among the several formalisms developed in concurrency theory and applicable to

Systems Biology, we recall below the most relevant for our purposes. Petri Nets [4] offer a

way to graphically represent the structure of distributed systems. They have been
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successfully applied to the modelling of metabolic pathways and simple genetic networks

(see e.g. [5, 6] to cite only a few). They model pathways and networks in terms of their

dynamic evolutions.

Process calculi describe interactions and communications between independent agents

or processes. The underlying idea is that a biological system can be seen as concurrent

systems. In particular, π−calculus [7] and Ambient Calculus [8] have been transferred from

theoretical computer science setting to the biology setting, leading to suitably extended

biological versions of them, such as the Biochemical stochastic π-calculus [9, 10] and

BioAmbients [11]. Also a version of CCS, RCCS [12] has been introduced to address

biological issues. Other calculi have been instead specifically defined for biological

modelling, such as κ-calculus [13], Brane calculi [14] and Beta Binders [15]. Chemistry has

been already invoked explicitly in the process algebraic context many years before the

coming of systems biology. In [16], an abstract machine based on the chemical metaphor is

introduced: states are chemical solutions where floating molecules can interact according to

reaction rules. Rules specify how to produce new molecules from old ones.

Closer to our approach is the work presented in [17], where the authors apply a

causal semantics of the π-calculus in order to describe biochemical processes. The process

computations that can be obtained quite accurately capture and reflect the behaviour of

biological systems and causality has a key role in enhancing precision in such simulations.

Our starting point is quite similar, but in our model the description of biological systems is

given in terms of molecular entities and reaction rules that implicitly code the causal

relationships, and hence the possible pathways. The causal semantics in [17] is based on an

enhanced form of transition systems [18], that makes it possible to capture truly

concurrent aspects like causality in an interleaving setting, like the process algebraic one.

There are also other proposals, introduced with the same aim, see for instance the

distributed transition systems in [19].

It is interesting to observe that our results could be comparable with the one

obtained by using a quite efficient static technique like Control Flow Analysis

(CFA) [20,21], applied to the π-calculus. In these settings, a reaction between M and N

that produces P can be abstractly modelled as the synchronization of the process M and
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N on a shared channel c, with a process P as a continuation. Notice that in this case the

full expressiveness of the π-calculus and, in particular, name-passing seems not to be

needed. In its simplest form, CFA considers as effective all the communications that might

occur through given shared channels, disregarding their actual viability, due for instance to

synchronization dynamics. In modelling reactions in such a way, also CFA would not

consider the possible consumption of reactants. Under this regard, our approach can offer

an analogous result, within a more skeletal and abstract setting. Having an

over-approximation of the exact behaviour of a system, both in the case of static analysis

and in our framework, means that all those events that the prediction does not include will

never happen, while when included, the events can happen, i.e. they are only possible.

Another recent proposal that shares some similarities with our approach is the one

based on the biochemical abstract machine BIOCHAM [22], which also offers a formal

modelling environment for biochemical processes, oriented towards qualitative aspects.

It is based on a rule-centered language for specifying biochemical systems. Differently from

our approach, BIOCHAM semantics takes into consideration the dynamics of systems and

provides tools for querying temporal properties of these systems by using Computation

Tree Logic. Refraining from dealing with quantities, BIOCHAM offers explicit controls on

reactant consumption during reactions and, by default, all the possibilities are considered.

This suggests further developments for our approach, where, currently, only the case of no

consumption is admitted. The reason for this choice is effectiveness: in this way, branching

semantics is avoided.

Still close to our approach and also to BIOCHAM is Pathway logic (see e.g. [23, 24]),

where rewriting logic is used for modelling biological processes. Rewrite rules describe local

changes and the molecular patterns that cause them. Rules can be concurrently applied

and this corresponds to the actual possibility of biological compartments to independently

evolve. This offers a basis for in silico experiments and for advanced forms of symbolic

analysis. We choose an alternative approach, by not resorting to a concurrent semantics,

that is not in accordance with our aims.

Amongst the computational logic tradition, which largely influences our proposal, it

is interesting to cite some recent proposals based on Abductive Logic Programming.
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Complexity of bio-networks, understood as lack of complete knowledge, has been addressed

by means of the capability of making assumptions provided by abduction. This approach

has been applied to gene networks in [25], with motivations similar to ours. That proposal

is based on a combination of Abduction and Induction: abduction allows inference from

observable effects (see also [26]) and therefore it is used to generate hypotheses, while

induction has the aim of learning general rules from these abduced hypotheses. The

representation language has been ad-hoc devised. The predictive accuracy increases with

the number of training examples. This methodology has a richer representation language

than ours and aims at addressing a different class of problems in a different experimental

setting. Differently, [2], and then [27], are based on a quite general class of languages,

extended to deal with the biological context. These language, also known as action or

event calculi, are suited to describe the non-monotone evolution of a dynamical

environment, and specifically biological networks. Abduction is again used as an expressive

means to compute/deduce explanations for missing information due to the dynamical

nature of the world. Although perhaps more expressive than our approach, these proposals

deal again with an explicit treatment of the dynamics of the systems, differently from our

proposal that strives for simplicity in order to address, even approximately, causality in

very large metabolic networks.

Finally, it is important to refer to the wide usage of graphs as representation

language, traditionally close to biologist experience. Amongst the huge set of papers

adopting graphs to model bio-networks, our work is closer to those that use arcs and nodes

to directly represent reactions. For instance, an approach quite corresponding to our

logical view of reactions – as far as the abstraction level is concerned – is in [28]. There,

starting from a chosen qualitative interpretation of biochemistry analogous to ours, the

authors focus on the topology of metabolic networks, aiming at defining a representative

measure of network activity, the Synthetic Accessibility (the number of chemical reactions

needed to transform a set of initial metabolites into a set of output ones). This notion has

also been tested for predicting viability of mutant strains with accuracy results comparable

to ours, although under a different perspective.
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Results and discussion

A constructive formalisation of metabolic causality

We clarify our interpretation of the metabolic causal relations by introducing the notation

used to represent biochemical reactions. We consider the assumptions on which such

idealised notatation relies, discussing why, according to our aims, these assumptions can be

considered viable working hypotheses. Such a notation represents our adopted

formalisation of the biochemical reactions. Then, under the chosen hypotheses, we give a

formal account of the fact that a metabolite, hereafter also called reactant, is caused by a

network. In the section Methods, we will present the computational counterpart of the

formalisation and we will relate the computational construction with the adopted model.

From biochemical reactions to causal relations. Let us consider a biochemical reaction

written in the classical notation:

mM + nN → pP + qQ (1)

M,N,P and Q are the species involved and m,n, p and q the corresponding stoichiometric

coefficients. Expression (1) indicates that, when the reaction occurs, a certain amount of

M and N becomes a certain amount of P and Q according to the stoichiometric

proportions. Besides stoichiometry, in order to exhaustively characterize a chemical

reaction, one should take into account a number of factors related to thermodynamics and

kinetics that represent the propensity for a reaction to occur and the rate at which

reactants eventually become products.

Since we are interested in investigating causality relationships only, we can omit the

description of many of the factors cited above. Then, we can give an abstract

representation of (1) as follows:

M ◦N → P ◦Q (2)

We call such an expression a reaction rule. It simply states that the presence of both M

and N represents the possibility for P and Q to be produced or caused. If applicable, i.e.
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it is known that the premises M and N are producible by a network, then also P and Q

are producible. Informally speaking, a standard dynamical reading of (2) would be:

M ◦N → M ◦N ◦ P ◦Q (3)

indeed, not considering the evolution of the network, reactants are not consumed at any

step.

The description of causal relations within a metabolic network can be made by

defining a set of metabolites initially present I and a set of reaction rules R that describe

how new metabolites can be produced. Initial metabolites are represented in the form of

rules with no premises like → P .

Example 1 Let us consider an experiment about a pathway occurring in an environment

providing α-D Glucose, Glycerol and oxygen. By using suitable acronyms like glc, gly and

o2, respectively, the initial conditions of such an experiment I will include:

→ glc

→ gly

→ o2

Moreover, let us imagine that the overall process to be described includes (some steps of)

the upper part of the glycolytic pathway. Then, the set R will contain reaction rules like:

glc6p → fru6p (4)

fru6p ◦ ATP → fru16p ◦ ADP (5)

fru16p → gap ◦ dhap (6)

dhap → gap (7)

gap → dhap (8)

gap ◦ nad → bpg13 ◦ nadh (9)

where the acronyms glc6p, fru6p, fru16p, gap, dhap, nad, nadh, bpg13 stand for Glucose

6-phosphate, Fructose 6-phosphate, Fructose1,6-bisphosphate, Glyceraldehyde 3-phosphate,

Dihydroxyacetone phosphate, NAD+, NADH and 1,3 Bisphosphoglicerate, respectively.
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The rules (4), (5), (6), (7) and (8) together, and (9) describe the reaction catalyzed by the

enzymes phosphoglucose isomerase, 6-phosphofructo 1-chinase, fructose bisphosphate

aldolase, triose phosphate isomerase, glyceraldehyde 3-phosphate dehydrogenase,

respectively. Note that a reactant appearing on the right side of the operator → may well

appear on the left side in another rule.

We eventually decompose the rules into simpler monadic rules, e.g. (2) will be

written as:

M ◦N → P (10)

M ◦N → Q (11)

This transformation is causality preserving in the sense of the following proposition.

Proposition 1 Let M1 ◦ ... ◦Mm → P1 ◦ ... ◦ Pn be an applicable rule, i.e. M1, ...,Mn are

producible, and then P1, ..., Pn are producible. Then, also the simplified rules

M1 ◦ ... ◦Mm → Pi, with i = 1, ..., n, are applicable in any order, and their application

makes P1, ..., Pn producible, as well.

The above proposition holds because causality behaves in a monotone way, since the

application of subsequent rules cannot spoil the fact that any metabolite is producible.

The fact that a reactant is caused by a network is made precise by means of the

following definition relating the metabolite to the chain of reactions that have made it

exist, starting from an initial state I and according to a set of rules R.

Definition 1 Given a set of rules R, an initial state I, and a reactant a let us consider the

following construction:

ER,I(a) =



a if → a ∈ I

a [ ER,I(a1), . . . , ER,I(an) ] if a1 ◦ . . . ◦ an → a ∈ R and
ER,I(ai) 6= ⊥ ∀i ∈ [1..n]

⊥ otherwise

Then, any ER,I(a) 6= ⊥ is an explanation for a under R and I.

The construction is non-deterministic (in the choice of the rule and in the choice

amongst the first two cases), indeed there may be different ways to cause a metabolite.
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False positives and false negatives: a problem of approximation. We here briefly discuss on

the precision of our approach. As explained above, our approach is intended to offer an

over-approximation of the dynamic behaviour of metabolic pathways. The existence of an

explanation gives us indications about the possibility of the production of the metabolite,

according to the many relaxing assumptions adopted. This means that we can have

false positives, i.e. it is possible to predict in silico the production of metabolites that

cannot be produced in vivo. This presence is expected as a consequence of abstraction and

of over-approximation. However, the experimental results reported in the final part of the

section give accuracy rates, i.e. a measure of approximation, comparable with those

obtained by other well-known approaches in the literature.

On the contrary, up to the adequacy of the adopted biological model, we do not

expect false negatives, i.e. metabolites that can be produced in vivo but have no

explanation in silico, as stated by the following claim.

Claim If there is no explanation for the production of a certain metabolite a, then a cannot

be producible in vivo.

The intuition supporting our claim is based on the following reasoning: if

ad absurdum the metabolite a is actually producible in vivo, then there is a certain set of

biochemical reactions that can be applied starting from an initial set of metabolites.

Starting from the same reactions and applying to them the abstractions illustrated above

should lead us to the explanation we are looking for.

Note that experimental evidence of the possible production of a metabolite in vivo

but not in silico, should suggest the need of a revision of the adopted biological model.

The set of reactants that can be ”motivated”, in the sense above illustrated, by an

explanation starting from an initial pool of given reactants and a specific set of rules can

be automatically determined. Amongst the different and equivalent approaches that could

have been used, we follow a logic-deductive interpretation, along the line of the

explanatory approach adopted. For further details, see section Methods.
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Experiments

We have applied our approach to a biological model based upon the E. coli K-12 metabolic

genotype proposed in [29] and [30]. This group of genes represents a subset of the whole

genome of E. coli K-12 that includes genes encoding enzymes involved in energetic and

biosynthetic metabolism. Using our formalism, we have represented the metabolic network

composed by the enzymes encoded by the selected gene set and the metabolites involved in

the catalyzed reactions. We have obtained a list of about 600 causal rules. We have

performed some in silico “what-if” experiments and compared the obtained results with

the correspondent in vitro counterpart, excerpts of which are reported in the following.

The experiments have been carried out on a tool (see [31]), briefly presented in section

Methods.

Mutually essential genes. In this in silico experimental session we performed a gene

knock-out mimicking an homologous in vitro experiment presented in [3]. There, the

authors silenced two target genes of E. coli K-12 (sucAB and sucCD) that encode for two

enzymes involved in the Krebs cycle (α-ketoglutarate dehydrogenase and succinyl-CoA

synthase, respectively). They found those genes “mutually essential” for the production of

succinyl-CoA, i.e. sucAB and sucCD could be knocked-out individually, but not

simultaneously in order to achieve Succinyl-CoA production. Succinyl-CoA is a critically

important metabolite involved in several biochemical pathways leading, e.g., to energy

production and peptidoglycan biosynthesis (via Diaminopimelate).

In order to simulate this gene knock-out, we have removed the rules corresponding to

the reactions catalysed by α-ketoglutarate dehydrogenase and succinyl-CoA synthase.

Then we have set the starting experimental conditions, including in the initial state all the

metabolites that the cell is assumed to uptake from the external environment. Checking for

the presence of succinyl-CoA at the end of the computation, we found that this metabolite

was not produced (i.e. the correspondent fact was not deduced) only when both the target

genes (i.e. the rules corresponding to the action of the encoded enzymes) were

simultaneously turned off. This reflects what actually happens in vitro.

In silico gene knock-out. We have performed other in silico gene knock-outs and compared

our results with the information contained in the “Geno Base”
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(http://ecoli.aist-nara.ac.jp/), a database entirely dedicated to E. coli K-12. In this

database genes are classified according to various criteria, among which their essentiality,

i.e. their capability of causing cell death, when turned off. In our in silico knock-out

experiments we tried to test gene essentiality verifying whether or not our in silico

knock-out mutants exhibit features typically pertaining to living cells. We assumed that

these characteristics should reasonably include the production of ATP (essential for cellular

energetic metabolism), the production of reduced coenzymes NADPH and NADH and the

production of not dispensable structural components, such as the cell wall (murein

Biosynthesis). We have performed our in silico knock-out experiments over a sample of 132

genes of our set, each time removing the rules corresponding to the enzyme encoded by the

silenced gene and checking for the presence of the observed elements at the end of each

computation. We interpret the results as a prediction on the viability or not viability of

the knock-out mutant under analysis. In our experimental setting (see Table 1), we slightly

extend the notion of false positives and negatives introduced in the first part of the section

and we say that a True Positive occurs when a knock-out mutant results viable both in

silico and in the in vivo counterpart, while a True Negative occurs when a in silico

knock-out mutant is not viable both in silico and in vivo, a False Positive occurs when a

viable in silico knock-out mutant has an in vivo counterpart which is not, and a False

Negative occurs when an in silico knock-out mutants is not viable, while its in vivo

counterpart results viable. Note that this assignment has been arbitrarily chosen.

To evaluate the performance of our method and compare it with similar approaches we use

a performance measure taken by [28], that measures the number of true predictions – both

positive (viability) and negative (non viability) – on the overall ones. Note that our

definitions of false positives and false negatives differ from those proposed in [28]. This

difference has been taken into account in calculating the accuracy A defined below.

Definition 4 Let TP , TN , FP , FN be the number of true positives, true negatives false

positives, and false negatives, respectively. We define accuracy A as

A = (TP + TN)/(TP + TN + FP + FN).
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Our experiments give the following results:
TP = 102
TN = 13
FP = 17
FN = 0

As reported in [28], the accuracy of the Synthetic Accessibility approach therein presented

ranges from 60% to 74%, while another approach for metabolic networks, i.e. the Flux

Balance Analysis [30], has an accuracy that ranges between 62% and 86%. We found 17

false positives, resulting in an accuracy of about 87% over this specific experiment. These

differences are probably strongly influenced by the way data sets are interpreted and by

which cases are included in the data sets. However, the obtained results make us confident

that our approach is reasonably accurate.

To give an intuitive idea of the experiments, we just report in Table 2, some examples

of true positive, true negative and false positive cases (reminding that we have no false

negatives). The symbols + or − stand for the presence or absence, respectively, of the

observed elements in the in silico results.

The presence of false positives (in silico, the mutant is predicted viable, but actually,

in vivo, it is not) is expected in our framework, as a consequence of the abstraction and of

the over-approximation we used in our model. This corresponds to the fact that something

that has influence on viability and that is potentially producible in silico, it is not actually

produced in real life. Finally, note that, in the experiments carried out, we have found no

false negatives. This makes us confident of the correctness of the adopted biological model.

Conclusions

In metabolic networks, metabolites are produced from a set of initial metabolites, through

a set of chemical reactions. These reactions produce intermediate metabolites that can be

both products or reactants. We have introduced a simple and skeletal notation to describe

these networks in terms of molecular entities and reaction rules that specify their

interactions and that implicitly code possible causal dependencies amongst reactions. This

notation permits us, on the one hand, to give to chemical reactions an abstract and

intuitive representation where quantitative aspects are abstracted away; on the other hand,
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this representation can be straightforwardly translated into an input for the tool we

developed, paving the way for in silico experiments and further tool development. To this

aim, we have exploited the analogy between reaction rules and logical implications, that

allows us to automatically deduce chains of causally related reactions by means of a

logical-based tool. Even though we do not consider the dynamic evolution of metabolic

networks, our model is sufficient to give information on which metabolites can be possibly

produced and how and, therefore, to give hints on the possible flows of reactions.

Moreover, our methodology makes it possible to reason about the model itself, by

allowing us to vary both the initial conditions and the rules. It is easy to program such

modifications and evaluating the impact of changes in the hypotheses is quite immediate,

because the tool quickly reacts to the queries (typically an answer about a reasonable large

network returns almost istantanelously). The what-if approach satisfies the need to

simulate and investigate the behaviour of not fully known metabolic networks under

different working hypotheses. In particular it allows us to perform perturbative

experiments, whose results are not trivial to predict. In fact, if the studied network is

complex enough, it results unfeasible to a priori estimate the effects produced by a local

perturbation on the overall network. Finally, we have applied our methodology to the

metabolic network of the E. coli K-12 metabolic genotype. The in silico experiments

presented reflect the in vitro ones. The results obtained up to now show our method not to

underperform analogous ones. Noticeably it is ground on a formalism that provides

efficient and straightforward implementations.

Our ultimate goal for further investigations is that of supporting a heuristic process

of searching causal explanations of metabolic phenomena, with in mind the “emphasis on

hypothesis-driven research in biology” advocated in [1].

Methods

To illustrate our methodology, we describe the computational framework that represents

the counterpart of the formalisation of metabolic causality, introduced in section Results

and Discussion. Finally, we relate the computational construction with the adopted

formalisation.
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The set of reactants that can be caused – according to our formalisation – by an

explanation starting from an initial set of reactants and a set of rules can be automatically

determined. Amongst the different and equivalent approaches that we could choose, we

eventually follow a logic-deductive interpretation, along the line of the explanatory

approach adopted. Technically, what follows consists of a fragment of Horn-based Logic

Programming (having only a finite set of ground predicates) equipped with bottom-up

semantics (see, e.g. [32]). However, for the sake of accessibility, the theory is recast in

terms of rules (i.e., clauses) and reactants (i.e., predicates). In the following, reactants are

directly represented, while causal rules of the model, a ◦ c→ b say, are straightforwardly

translated into Horn-rules, like a, c → b, according to the following definition.

Definition 2 Let A a finite set of reactants such that a1, . . . , an, a ∈ A, then

a1, . . . , an → a

with n ≥ 0 is a rule.

Notice that we can have rules with empty premises. These rules are used for

representing the elements present in the initial state I.

The set of consequences of a given set of rules (respectively, the semantics of a logic

program) can be defined according to a step-wise bottom-up process. The application of a

rule to a set of reactants causes a new reactant when all the premises of the rule can be

verified in the set. Starting from the set of the initially available reactants, the set of all

the reactants that can be caused can be obtained by repeatedly adding the reactants that

can be immediately caused by the application of all the rules.

Definition 3 Let R be a set of rules and A a set of reactants, then the immediate

consequence operator TR(A) : 2A → 2A is defined as

TR(A)
4
= {a | a1, . . . , an → a ∈ R and a1, . . . , an ∈ A} ∪ A.

Moreover, T n
R(A)

4
= TR(T n−1

R (A)) and T 0
R(A)

4
= A.

The convergence of the outlined process is guaranteed by the following result, which is

based on the observation that, trivially, 〈2A,⊆〉 is a (finite) complete partial order (c.p.o.)
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and T ( ) is continuous over it (keeping the original A guarantees monotonicity). Moreover,

being the set of reactants finite – i.e. the number of all the reactants occurring in rules R

and in the initial state I – the bottom-up construction is also guaranteed to converge in a

finite number of steps (then the fix point is indicated as T n
R(A) instead of as T∞R (A)).

Proposition 2 Let R be a set of rules, A a set of reactants, and m the number of all the

reactants in the model under consideration. Then, n ≤ m exists such that

TR(T n
R(A)) = T n

R(A).

Example 2 Let us consider a network with reactants I = {→ b} initially available and

consisting of the following simple rules R:

a, b → c (12)

b → a (13)

a → b (14)

c → d (15)

Applying TR({b}) we have
TR({b}) = {a, b}
T 2

R({b}) = {c, a, b}
T 3

R({b}) = {d, c, b, a}
T 4

R({b}) = T 3
R({b})

Coherence of computational and metabolic causality. As standard, one would like to relate

the computational construction provided with the original model, i.e. our adopted

formalisation of biochemical reactions, introduced in section Results and Discussion. Let us

start to observe that keeping track of the rule used when applying TR( ) would allow us to

reconstruct explanations (which indeed recall SLD-trees of the top-down semantics of Logic

Programming). Considering again the example above, the reactant c is caused in T 3
R({b})

by the application of rule (12), that in turn depends on rule (13), for the production of a

that does not belong to the initial set I = {→ b}. Consequently, one would have the

explanation c[a[b], b] for c. However, it is important to have considered convergence over

reactants rather than over explanations. It is easy to observe that at the fourth step we
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would have the explanation a[b[a[b]]] due to the cycle between a and b. This amounts to

say that - in the presence of cycles - explanations can growth indefinitely, i.e. convergence

occurs at infinity. Hence, we have restricted ourselves to compute the reactants that can be

produced, which is a finite process. However, the following correspondence between

computational results and the potentially infinite model of explanations can be drawn.

Theorem 1 Let R be a set of rules, a a reactant, I a set of reactants and n̄ the minimum

natural number such that T (T n̄
R(I)) = T n̄

R(I). Then the following holds

a ∈ T n̄
R(I)⇔ ∃EI,R(a) 6= ⊥

proof (Outline).

(⇒) By induction on the number of steps needed to firstly cause a in the bottom-up

process (the rule that has motivated the inclusion of a can also be used as the top-most

rule in the definition of an explanation for a. All the reactants in the premises of the rule

must have been caused in less steps, and then, by inductive hypothesis, explanations for

them exist, and these can be used to construct the explanation for a).

(⇐) By induction on structural complexity of EI,R(a). (By inductive hypothesis, all the

reactants in the premises of the top-most rule in the explanation belong to T n̄
R(I), then

either a is in T n̄
R(I) or T n̄

R(I) is not a fix point, since the rule is clearly applicable and would

cause a).

To address the problem of causality in metabolic networks, as seen above, we

developed a software tool based on an implementation of a standard bottom-up semantics,

running on top of SICTUS Prolog Interpreter (see [31]).
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Tables
Table 1 - True and false positives and negatives according to our definition,
depending on the viability of knock-out mutants in silico and in vivo.

CASE IN SILICO IN V IV O
True Positive viable viable
True Negative not viable not viable
False Positive viable not viable
False Negative not viable viable

Table 2 - Gene knock-out experimental results.

Gene ATP NADPH NADH cellwall outcome
acpS − − − − true negative
lpxA + + + − true negative
glk + + + + true positive
aceA + + + + true positive
prsA + + + + false positive
pfk + + + + false positive
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