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Abstract. We introduce a Control Flow Analysis that statically ap-
proximates the dynamic behaviour of mobile processes, expressed in (a
variant of) the π-calculus. Our analysis of a system is able to describe
the essential behaviour of each sub-system, tracking where and between
whom communications may occur. Therefore, we can safely approximate
the behaviour of a system plugged in a larger and mainly unknown con-
text, without explicitly analysing it. Quite a lot of possible properties
fan out, among which some related to confidentiality and with security
policies.

1 Introduction

Systems of mobile processes are open systems: they are considered as
part of larger and mainly unknown contexts. Their analysis is particu-
larly challenging, because it should describe and predict the behaviour of
systems and of their sub-systems, regardless of the possible hostile envi-
ronment in which they run. Protecting data and resources is crucial in any
information management system for secrecy, for integrity and for avail-
ability. Enforcing protection requires to state which information flows are
allowed and which are not, i.e. to enforce an access control policy w.r.t.
principals and resources.

To abstractly represent and study systems, we use (a variant of) the
π-calculus [21], which is a model of concurrent communicating processes
based on name passing. Names may represent both data and channels that
processes exchange. In our framework resources are names (channels and
data), while principals are sub-processes. We further assume that read
and write are the only modes to use and access resources. We can then
exploit the precision of the technique briefly outlined below to statically
predict when processes respect a few security policies.
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The analysis we present here approximates the behaviour of a system
P and of its sub-systems, plugged in any environment E, without explic-
itly analysing E. In particular, we approximate the possible interactions
of P with E, that may occur on the channels they share. More precisely, E
can listen on these channels and can therefore acquire new names. More-
over E can send to P all the names it has acquired and exploit them as
channels. This is reminiscent of the Dolev and Yao model [15]. A richer
structure on data, e.g. that of the spi-calculus [1] does not affect deeply
our approach and these extensions can be dealt with as in [7].

We use here a specific static technique, Control Flow Analysis (CFA),
based on Flow Logic [22] and propose an analysis for the π-calculus that
refines the one in [8]. The main idea is to exploit in its definition the no-
tion of “logical” addresses of sub-processes, in the style of the enhanced
operational semantics [13, 9]. Through them, our CFA can safely approxi-
mate the behaviour of each sub-system, tracking where and between which
communications may occur. More in detail, the result of our analysis, or
estimate, is a triple (ρ, η, Φ). Actually, things are a bit more complex; we
shall come on this issue later on. The first component, ρ, gives informa-
tion about the set of channels to which names can be bound at run-time;
the second component, η, gives information about the set of channels that
can be communicated on given channels and about the addresses of par-
ticipants in the communication. Additionally, an estimate establishes a
super-set Φ of the knowledge of the environment. This last component is
therefore used to implicitly approximate the behaviour of E, by collecting
all the names the environment initially knows and those it can acquire
from P , as described above.

The analysis is carried out by taking into account the abstract syntax
tree T of a process, built by considering parallel composition | and non-
deterministic choice + as main operators. The path from the root of T –
the whole process – to a node corresponding to a sub-process P we call
address of P . Addresses implicitly annotate sub-processes. So, they also
offer a way of determining the principals involved in a system. Consider
the following three processes, where just for explanation, we make the
annotation explicit:

P1 = (a(y)︸︷︷︸
‖0

| ab︸︷︷︸
‖1

) P2 = (a(y)︸︷︷︸
±0

+ ab︸︷︷︸
±1

) P3 = (a(y).ab)

In our CFA, addresses are then used to selectively collect the information
of interest, e.g. the values a variable y may assume at run-time. Clearly,
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these values may vary, depending on the different sub-processes where y
occur. So, using addresses we obtain better estimates, without explicitly
resorting to contexts.

In our example, the operational semantics of the π-calculus tells us
that the variable y in P1 can be bound to b, while in P2 and in P3 it can-
not, unless E knows b and sends it along a. Our present analysis reflects
this situation, by statically considering possible only synchronizations be-
tween sub-processes in parallel. A communication is predicted only if the
receiving sub-process is in parallel with the sending sub-process; techni-
cally, if the two co-actions lie on different sides of the same |. Instead, the
analysis proposed in [8] (safely, but imprecisely) predicts that variable y
may be bound to b in all cases above, even if receiving and sending are
mutually exclusive as in P2, or reading must occur before sending b, as in
P3.

The addresses of the sub-processes within a replicated process require
a special handling. Indeed, at run time replication alters significantly the
structure of syntax trees, yet in a predictable way. Consider for exam-
ple the process !P , where P = (a(y).Q + ab.R); a communication be-
tween two copies of P is possible, resulting in the following transition:
!P τ−→ (Q | R) |!P . Our CFA must then take care of a possibly infinite
set of addresses. Roughly, in the example above, before the transition, the
address of a(y).Q is ±0 (prefixed by a special tag giving information on
the fact that it is inside a !), while after the transition there is a copy of
a(y).Q at address ‖1±0 (prefixed by the additional special tag); further
communications will increase the number of tags ‖1. We shall tackle this
problem and maintain our estimates finite in the following way. First, a
pre-estimate is computed, considering that !P originates two copies only
in parallel —which agrees with the operational semantics—, but with
addresses !!0 and !!1 that are the special tags mentioned above. This is
the triple (ρ, η, Φ) or pre-estimate we referred to above. In this way, our
analysis uses a finite number of addresses, only. The actual estimate, pos-
sibly involving an unbound number of addresses, is then obtained by a
suitable closure operation on a pre-estimate, actually only of its η com-
ponent. The major point here is that we show that no information is
lost if one considers pre-estimates in place of estimates, as long as one
is interested in predicting the flow of information between sub-process,
including an attacker. So, we can safely use pre-estimates when checking
security properties and leave estimates play a technical role, only.

We shall establish the semantic correctness of our analysis in the form
of a reduction theorem and we shall show that least pre-estimates always
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exist. There is also a constructive procedure for obtaining the least solution
(pre-estimates, actually), whose complexity we argue is polynomial.

We validate our proposal on a variety of security properties taken from
the literature, in particular those based on access policies, thus showing
it quite flexible and expressive. The general scheme consists in selecting a
specific dynamic security property and defining a static check on estimates
that implies the dynamic property, i.e. if a system passes a static security
check, then all its computations do enjoy the dynamic property. The
major point is that an estimate is generated once and for all, while the
properties are checked by performing different static tests on the single
computed estimate. Since our analysis approximates the behaviour of each
component of the system under consideration, we can statically predict:

– which kind of actions (read or write) are possible at certain addresses,
including those arising from replicated processes,

– which principals can perform them,
– on which channels these actions may take place,
– which objects flow on which channels and
– with which partner communications take place.

The paper is organized as follows. The next section briefly surveys our
version of the π-calculus. Section 3 introduces addresses of sub-processes,
based on the structure of abstract syntax trees. We develop in Section 4
a static analysis for tracking communications in our calculus: we show its
semantic correctness and demonstrate that pre-estimates always exist. We
also sketch how to obtain them. Finally, in Section 5 we apply our CFA
to establish properties related to secrecy. We conclude with Section 7.
Appendix contains the proofs of our main results.

2 The Process Calculus

In our approach, channels are interfaces and processes are interested in
filtering received values, e.g. in accepting a valid password or a PIN and
refusing invalid ones. For this reason, we slightly change the standard
π-calculus [21] obtaining an equally expressive variant of it.

The main difference with the standard calculus is the absence of an
explicit matching construct, replaced by a selection on the values received
in communications. Values are accepted only if they are included in the
selection set. In other words, inputs only succeed on values matching
one of the names in the set. The remaining part of the calculus is fairly
standard.
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Syntax For the following treatment, it is convenient to partition the set of
names in values and variables. Intuitively, the first set, V al, ranged over
by a, b, c, d . . ., contains all those names that may occur free or restricted
in processes. When a value a is used as a channel on which other values
flow, we sometimes shall call a a channel. The variables in V ar, ranged
over by x, y, w, z . . ., are those names occurring within input prefixes.

Furthermore, to simplify the definition of our control flow analysis in
Section 4, we discipline the α-renaming of bound values and variables. To
do it in a simple and “implicit” way, we assume that values and variables
are “stable”, i.e. that for each value a ∈ V al there is a canonical rep-
resentative bac for the set {a, a0, a1, · · ·} and similarly, for each variable
x ∈ V ar there is a canonical representative bxc for the set {x, x0, x1, · · ·}.
Then, we discipline α-conversion as follows: two values (resp. variables)
are α-convertible only when they have the same canonical value (resp.
variable). In this way, we statically maintain the identity of values and
variables that may be lost by freely applying α-conversions. Hereafter,
we shall simply write a (resp. x) for bac (resp. bxc). We also assume that
all the bound values and variables are kept distinct and that the bound
values never clash with the free ones.

Definition 1. Processes are defined according to the following syntax,
where Y ⊆ (V al ∪ V ar) is a finite set.
P 3 P,Q,R ::= processes
0 inaction
π.P prefix
(νa)P restriction
P + P nondeterministic choice
P |P parallel composition
!P replication

π ::= prefixes
τ silent prefix
x(y ∈ Y ) selective input
xy output

The prefix π is the first atomic action that the process π.P can per-
form. The silent prefix τ denotes an action which is invisible to an external
observer of the system. The output prefix does not bind the name a which
is sent along x.

The input prefix x(y ∈ Y ) binds the name y in the prefixed process P .
Intuitively, some name b will be received along the link named x activating
the process P (where b substitutes y) only if b ∈ Y . Variables can occur
in Y , some of which can be instantiated to names by firing the input
prefixes that bind them; we assume that y /∈ Y .

Summation denotes nondeterministic choice. The operator | describes
parallel composition of processes. The operator (νa) acts as a static binder
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Tau : τ.P
τ−→ P Out : ab.P

ab−→ P Sel Ein : a(y ∈ Y ).P
ab−→ P{b/y}, b ∈ Y

Sum0 :
P0

µ−→ Q0

P0 + P1
µ−→ Q0 + 0

Par0 :
P0

µ−→ Q0

P0|P1
µ−→ Q0|P1

, bn(µ) ∩ fn(P1) = ∅

Open :
P

ab−→ Q

(νb)P
a(b)−→ Q

, b 6= a Res :
P

µ−→ Q

(νa)P
µ−→ (νa)Q

, a 6∈ vals(µ)

Com0 :
P0

ab−→ Q0, P1
ab−→ Q1

P0|P1
τ−→ Q0|Q1

Close0 :
P0

a(b)−→ Q0, P1
ab−→ Q1

P0|P1
τ−→ (νb)(Q0|Q1)

Bang :
P |P µ−→ Q

!P
µ−→ Q|!P

Var :
P ′ ≡ P

µ−→ Q ≡ Q′

P ′ µ−→ Q′

Table 1. Early transition system for the π-calculus (symmetric rules are omitted).

for the name a in the process P that it prefixes. In other words, a is a
unique name in P which is different from all the external names. Finally,
!P behaves as many copies of P as needed, put in parallel.

Semantics Our operational semantics for the π-calculus is an early one
and is defined in SOS style; the labels for transitions are τ for silent action,
ab for input, ab for free output and a(b) for bound output. We use µ as
metavariable for the labels of transitions, distinct from the metavariable
π of prefixes. The sets of free values fn(.), of bound values bn(.) (and of
values vals(.) = fn(.) ∪ bn(.)), as well as those of free variables fv(.), of
bound variables bv(.) (and of variables vars(.) = fv(.) ∪ bv(.)) are defined
much in the standard way. E.g. fn(a(y ∈ Y ).P ) = {a} ∪ vals(Y ) ∪ fn(P ),
and fv(a(y ∈ Y ).P ) = (vars(Y ) ∪ fv(P )) \ {y}.

Our static approximations exploit the structure of processes, so we
need to preserve it as much as possible under this dynamic evolution. This
is the main reason why our semantics slightly differs from the standard
one.

In particular, our congruence has no rule for making the parallel and
nondeterministic operators associative and commutative or for consider-
ing inaction as a neutral element, i.e. monoidal laws are not valid here.
In this way, the abstract syntax tree of a process, or more precisely its
structure, cannot be altered by the application of a congruence rule. The
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structural congruence ≡ on processes is then the least congruence satis-
fying:

– P ≡ Q if P and Q are α-equivalent in the disciplined way discussed
above

– (ν a)(ν b)P ≡ (ν b)(ν a)P ;
(ν a)P ≡ P and (ν a)(P |Q) ≡ (ν a)P |Q, if a 6∈ fn(Q)

Tab. 1 displays the rules of the operational semantics of our calculus.
The symmetric rules for Sum0, Par0, Close0 and Com0 are omitted. As
written above, our rules slightly differ from the standard early ones, in
particular input and summation are treated differently. So we discuss
these cases in some detail below. Also, we use the variant of the standard
rules for replication of [27], in which two copies in parallel P |P of !P make
a move: either a sigle copy does or the two communicate each other.

The placeholder of the input is instantiated in the axiom for selective
input (Sel Ein): a(y ∈ Y ).P ab−→ P{b/y}, only if b ∈ Y . For any b and y,
P{b/y} denotes the operation of substituting b for the free occurrences of
y in the process P . In particular, if P is on the form c(z ∈ {y} ∪ Y ).P ′,
then P{b/y} = c(z ∈ {b} ∪ Y ).P ′{b/y}. Here we are somehow more de-
manding than the standard semantics that allows everything to be read
from outside, with a so-called free input. Intuitively, our selective input
implements a filter on the messages that a process is willing to accept.
Note that our selective input suffices to encode the standard matching
construct [x = y]P of the π-calculus as (νa)(ax | a(y ∈ {x}).P ). Ad-
ditional work is needed to encode the selective input in the π-calculus;
roughly one has an input followed by a sequence of matchings covering
Y , taking care that the input can anyway occur even if a matching fails.

As for the Sum rules, the “structure” with respect to + of the pro-
cess is preserved leaving a 0 in the place of the process not chosen, i.e.
if P0

µ−→ Q0 then P0 + P1
µ−→ Q0 + 0 (and, symmetrically, if P1

µ−→ Q1

then P0 + P1
µ−→ 0 + Q1). Note that this change does not affect at all the

standard meaning of the nondeterministic operator.
Our peculiar rules for summation and the absence of monoidal laws for

summation and parallel composition preserve the structure of a process,
in a way made precise in the next section. Instead, as we have seen in
the Introduction, replication alters this structure, yet in a predictable
manner3. Process structure is particularly useful for our analysis and we
will see below how we are able to exploit it and to handle its changes.

3 Of course the structure of the target of the transition ab.(P0|P1)
ab−→ (P0|P1) is

somehow different from that of the source.
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R

P0+!P1 P2|(P3 + P4)

P0 !P1 P2 P3 + P4

P1 P3 P4

‖0‖1±0±1‖0‖1!!0!!1±0±1

Fig. 1. The tree of (sequential) processes of R = (P0+!P1)|(P2|(P3 + P4)).

3 On the Structure of Processes

To approximate the behaviour of sub-processes in a process, we need
a way to single them out. As already said, we do it by exploiting the
abstract syntax trees of processes, where arcs are ordered, so we use no
explicit centralized naming service. These trees are built using the binary
parallel composition |, the nondeterministic choice + and replication !
as main operators. Given a process R, the nodes of its tree (see e.g.
Fig. 1) correspond to the occurrences of |, + and ! in R, and its leaves are
the sequential components of R (roughly, those processes whose top-level
operator is a prefix).

We sketch now how to use these abstract syntax trees. We consider
first the operators | and +, and we recall that they are neither commuta-
tive nor associative nor they have a neutral element; the operator ! will
be discussed later on. Since we cannot swap the arguments of | and +,
it comes natural to assume that the left (resp. right) branches of an ab-
stract syntax tree denote the left (resp. right) component of a | or of a
+ operator, and so we label their arcs with tags ‖0 and ±0 (resp. ‖1 and
±1). Now, consider the path from the root of the abstract syntax tree to
one of its leaves. For example, in Fig. 1, consider the path labelled ‖1‖1±0

that leads from the root, i.e. the whole process R to the sub-process P3.
This label we call address of P3 within R = (P0+!P1)|(P2|(P3 + P4)). As
a matter of fact, each address uniquely identifies a sub-process within a
given process.

We consider now the ! operator. In our example we only have !P1 and
we do not make further explicit the internal structure of the body P1

itself. In order to deduce a transition for !P1, one has to “create” two
copies of P1 (see rule Bang in Tab. 1) and possibly unfold these copies
inductively. The format of the rule Bang thus suggests us to signal that
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the body of !P1 is reachable in two ways: one leading to the left copy of
P1|P1, the other to the right one. In analogy with | and +, we therefore
use two tags !!0, !!1 to label the same arc outgoing from the node !. In
Fig. 1, the path ‖0±1!!0 leads to P1, just as the equivalent path ‖0±1!!1.

Recapitulating, given a process R, any one of its sub-processes P is
identified by a string ϑ ∈ A = {‖i,±i, !!i | i = 0, 1}∗. The string ϑ is called
address of P and corresponds to the path from the root, i.e. the whole
process R, to P . By the sake of explanation, we give the addresses of all
the other sub-processes of the process leaves of the abstract syntax tree
in Fig. 1. The address of P0 is ‖0±0, the address of P2 is ‖1‖0 and the
address of P4 is ‖1‖1±1.

Conversely, given any process R, it is possible to localize its sub-
process P , if any, whose address is ϑ. This is done via the operator @ϑ,
defined below. In Fig. 1, e.g. R@‖1‖1±0 = P3 and R@‖1‖1 = P3 + P4,
but R@‖1‖1‖1 is undefined. In fact, @ is not a total operator, and, given
a process P , it will be convenient to collect in a set the addresses that
lead to sub-processes of P .

Since the two operators | and + often play a similar role from now
onwards, we shall use the following

Notation. the For i = 0, 1, let �i ∈ {‖i,±i} and let op� be | whenever
�i = ‖i and + whenever �i = ±i.

Definition 2. The localization operator @ϑ is defined on processes by
induction (ε is the empty address):

1. P@ε = P ;
2. ((νa)P )@ϑ = P@ϑ;
3. (P0 op� P1)@ �i ϑ = Pi@ϑ;
4. !P@!!iϑ = P@ϑ, for i ∈ {0, 1}.

The set Addr(P ) = {ϑ|∃Q.P@ϑ = Q} collects all the addresses of the
sub-processes of P .

From a semantic point of view, a communication can take place only
if the two complementary actions are compatible, i.e. if they lay on the
same side of a +, if any, and on different sides of the same parallel com-
position operator |. Furthermore, we have that all the actions inside the
replicated part of a process are considered compatible with the ones in
another copy of the same process and compatible with those in the rest
of the process. Therefore, two addresses ϑ and ϑ′ are compatible if they
share the same prefix, followed by any two addresses that however begin
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with different tags, recording the presence of a parallel or a replication
operator. Formally, we define the following symmetric relation.

Definition 3. Given two addresses ϑ, ϑ′ ∈ A, ϑ and ϑ′ are compatible,
written as comp(ϑ, ϑ′), if and only if:

ϑ = ϑ0‖iϑ1 and ϑ′ = ϑ0‖1−iϑ
′
1 for i ∈ {0, 1} or

ϑ = ϑ0!!iϑ1 and ϑ′ = ϑ0!!1−iϑ
′
1 for i ∈ {0, 1}

Clearly, for all ϑ, comp(ϑϑ0, ϑϑ1) if comp(ϑ0, ϑ1).
Back to our example in Fig. 1, P0 and P3, i.e. R@‖0±0 and R@‖1‖1±0

(here ϑ0 is ε) may communicate and so do two parallel sub-components
of P0, if any (for which ϑ0 is ‖0±0). On the contrary, P0 can communicate
with no copy of !P1: their addresses are ‖0±0 and ‖0±1, showing that only
one out of P0 and (a copy of) !P1 can be active. Instead, any two copies
of !P1 can communicate, provided that P1 may fire two complementary
prefixes; indeed, the address ‖0±1!!1 is compatible with ‖0±1!!0.

The notion of address compatibility is vindicated by the Property 1,
that needs an auxiliary definition first. Its purpose is to single out in a
process, performing a transition t, the sub-process (or the sub-processes)
that acts in t. This is done exploiting the localization operator and visiting
backwards the proof of t until an axiom is reached.

Definition 4. A transition P
µ−→ Q involves, i.e. has been deduced with,

the axiom P@ϑ
µ′−→ R iff

– ϑ = ε, µ = µ′, and P ≡ µ.R;
– P ≡ (νa)P ′ then for suitable Q′ the transition P ′ µ−→ Q′ involves

P@ϑ
µ′−→ R;

– ϑ = ±iϑi, P ≡ P0 + P1, and for suitable Qi the transition Pi
µ−→ Qi

involves Pi@ϑi
µ′−→ R;

– ϑ = ‖iϑi, P ≡ P0|P1, and for suitable Qi the transition Pi
µ′′−→ Qi

involves Pi@ϑi
µ−→ R, with µ′′ ∈ {µ, µ′}; R’;

µ−→ R.
– ϑ =!!iϑ, P ≡!S and for suitable Q′ the transition S|S µ−→ Q′ involves

S@ϑ
µ′−→ R.

Note that a single transition may involve one or two axioms. In the
second case, the transition is on the form P

τ−→ Q and the involved
axioms are P@ϑ0

µ0−→ R0 and P@ϑ1
µ1−→ R1. In particular, in the fourth

case, if ϑ0 = ‖iϑ
′
0 and ϑ1 = ‖iϑ

′
1 the label is then µ′′ = µ = τ , while
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if ϑ0 = ‖iϑ
′
0 and ϑ1 = ‖1−iϑ

′
1 then the label is µ′′ = µi, for i ∈ {0, 1}.

Actually, if the transition is due to the application of a Close, we have
that the axiom involved is on the form µi = ab and µ′′ = a(b).

Example 1. Consider the following process

Simp Sys = P | Q

P = ac.b(z ∈ {a, c}) + ae

Q = a(x ∈ {c}).Q′

We have that Addr(Simp Sys) = {‖0±0}∪{‖0±1}∪{‖1.Addr(Q′)}. The
following transition is possible,

Simp Sys
τ−→ (b(z ∈ {a, c}) + 0) | Q′{c/x},

in which Q receives on channel a the message c sent by P and c replaces
x in Q′. The transition involves Simp Sys@‖0±0 = ac.b(z ∈ {a, c}) ac−→
b(z ∈ {a, c}) because (ac.b(z ∈ {a, c})+ae)@±0

ac−→ b(z ∈ {a, c}) involves
the axiom (ac.b(z ∈ {a, c})+ae)@±0

ac−→ b(z ∈ {a, c}). Furthermore, it in-
volves Simp Sys@‖1 = a(x ∈ {c}).Q′ ac−→ Q′{c/x}. The communication
above involves two axioms, and indeed its label µ = τ is different from the
ones of the two axioms (ac and ac). Instead, if a single axiom is involved,
then µ = µ′. E.g., the transition Simp Sys

ac−→ (b(z ∈ {a, c}) + 0) | Q

involves ac.b(z ∈ {a, c}) ac−→ b(z ∈ {a, c}).

The following property links compatibility with the transitions that
originate a communication; its proof is by straightforward induction.

Property 1. If P
τ−→ P ′ involves both P@ϑ0

µ0−→ R0 and P@ϑ1
µ1−→ R1,

then comp(ϑ0, ϑ1).

Just as the definition of the axiom(s) involved in a transition t talks
about the source of t, the following definitions describe how t transforms
its source into its target. In absence of replication, the effects of a transi-
tion involving only the axiom P@ϑ

µ−→ R consists in substituting R for
the sub-process P@ϑ within P; additionally, whenever ϑ can be split in
ϑ0 ±i ϑ1, i.e. whenever a choice P@ϑ0 = P@ϑ0 ±0 +P@ϑ0±1 has been
resolved in favour of P@ϑ0±i, the discarded process P@ϑ0±1−i has to be
replaced by 0, due to our peculiar rules Sum. Firing a replicated process
!P affects considerably the target: a way of seeing it is to expand the
source !P into (P | P ) |!P and proceed as for the bang-free case.

We will formally describe the above transformations in two steps:
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– a function h first transforms the structure of the source in the struc-
ture of the target, (a) by substituting 0 for the discarded processes and
(b) by expanding the relevant replicated sub-processes !S in (S|S)|!S.

– a second function, called localized substitution, substitutes R0 forP@ϑ0

at the right addresses (and R1 for P@ϑ1) within the process, if the
transition involves P@ϑ0

µ0−→ R0 (P@ϑ1
µ1−→ R1) and leaves the rest

as it is.

Both functions depend on the address(es) ϑ (and on ϑ′) of the sub-
process(es) of P involved by the axiom(s), whose tags drive the trans-
formations. When a single axiom P@ϑ

µ−→ R is involved, function h is
on the form h(1, P, ϑ, ϑ), where the fourth argument is dummy (and put
equal to the third). If two axioms P@ϑ0

µ0−→ R0 and P@ϑ1
µ1−→ R1 are in-

volved, then we have h(2, P, ϑ, ϑ′). Furthermore the localized substitution
is applied twice.

Definition 5. Let P a process, ϑ, ϑ′ ∈ Addr(P ), i ∈ {0, 1} and k ∈
{1, 2}. We define the function h : {0, 1} × P ×Addr ×Addr → P as

– h(1, P, ε, ε) = P ;
– h(k, (νa)P, ϑ, ϑ′) = (νa)h(k, P, ϑ, ϑ′);
– h(k, P0 op� P1, �iϑ, �iϑ

′) = P ′
0 op� P ′

1, where P ′
i = h(k, Pi, ϑ, ϑ′) and

P ′
1−i =

{
P1−i if �i = ‖i

0 if �i = ±i
;

– h(2, P0 | P1, ‖iϑ, ‖1−iϑ
′) = P ′

0 op� P ′
1, where P ′

i = h(k, Pi, ϑ, ϑ) and
P ′

1−i = h(k, P1−i, ϑ
′, ϑ′);

– h(k, !P, !!iϑ, !!jϑ′) = h(k, (P |P ), ‖iϑ, ‖jϑ
′) | !P .

To determine the place where a particular substitution takes place,
we exploit addresses, as shown in the next definition.

Definition 6. Let P and R be two processes and ϑ ∈ {‖i,±i | i = 0, 1}∗
be a bang-free address of P . Then, the localized substitution of R at ϑ
within P , written as P [ϑ 7→ R] is defined as:

– P [ε 7→ R] = R;
– ((νa)P )[ϑ 7→ R] = (νa)(P [ϑ 7→ R]);

– (P0op�P1)[�iϑ 7→ R] = P ′
0op�P

′
1, where

{
P ′

i = Pi[ϑ 7→ R]
P ′

1−i = P1−i

Note that P [ϑ′ϑ′′ 7→ R] = P@ϑ′[ϑ′′ 7→ R]. Moreover, note that, due to
the absence of occurrences of !!i in ϑ, P ′ = P [ϑ 7→ R] can alternatively be

defined as the process such that P ′@ϑ′ =
{

R ϑ′ = ϑ;
P@ϑ′ otherwise.
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There is a further auxiliary definition we need to apply the localized sub-
stitution in order to obtain the target of a transition. Again, the problem
consists in taking into account any possible expansion of processes repli-
cated, in order to localize correctly the images of all sub-processes in the
source, in the changed structure of the target. The auxiliary function w(.)
transforms each occurrence of !!i in the corresponding sequence ‖0‖i, thus
obtaining a bang-free address.

Definition 7. Given an address ϑ, we define the function w : Addr →
Addr such that

−w(ε) = ε; −w(�iϑ) = �iw(ϑ); −w(!!iϑ) = ‖0‖iw(ϑ).

Now, we have all the ingredients to determine the form of the target
of a transition, in terms of the axioms involved, as follows.

Lemma 1. If the transition P
α−→ Q involves

(a) only the axiom P@ϑ
α−→ Ri then Q = h(1, P, ϑi, ϑi)[w(ϑi) 7→ Ri],

with i ∈ {0, 1};
(b) both axioms P@ϑ0

µ0−→ R0 and P@ϑ1
µ1−→ R1 then

Q = h(2, P, ϑ0, ϑ1)[w(ϑ0) 7→ R0, w(ϑ1) 7→ R1].

Note that the two addresses ϑ0 and ϑ1 above are compatible and so are
w(ϑ0) and w(ϑ1); thus the two localized substitutions do not interfere.
Also, the structure of Q and the one of H = h(k, P, ϑ0, ϑ1) are the same:
the main difference consists in the sub-processes at address w(ϑi), that
in H coincide with P@ϑi and in Q with Ri.

Example 2. Consider the following system Sys.

Sys = !P | Q

P = ac.b(z ∈ {a, c}) + ae

Q = a(x ∈ {c}).Q′

Q′ = b〈x〉.0 | R

!P represents a source of infinitely many outputs on a of the message c.
In the following transition, Q receives the message c sent on channel a by
a copy of !P .

Sys
τ−→ Sys′ = ((b(z ∈ {a, c})+0)| ac.b(z ∈ {a, c}) + ae) | !P ) | (b〈c〉.0 |R)

The axioms involved are:

Sys@‖0!!0±0
ac−→ b(z ∈ {a, c}) and Sys@‖1

ac−→ Q′{c/x}.

13



Therefore the target process Sys′ is Sys′′[w(‖0!!0±0) 7→ P ′, w(‖1) 7→
Q′{c/x}], with Sys′′ = h(2, Sys, ‖0!!0±0, ‖1). By definition of h and of
w, we have that

– w(‖0!!0±0) = ‖0‖0‖0±0 and w(‖1) = ‖1;
– Sys′′ = h(1, !P, !!0±0, !!0±0) | h(1, Q, ε, ε);
– h(1, Q, ε, ε) = b〈x〉.0 | R;
– h(1, !P, !!0±0, !!0±0) = h(1, (P |P ), ‖0±0, ‖0±0) | !P =

h(1, P,±0,±0) | P | !P = ((ac.b(z ∈ {a, c}) + 0) | P )| !P .

By summarizing, Sys′′ = ((ac.b(z ∈ {a, c}) + 0) | P )| !P | (b〈x〉.0 | R)
and Sys′ = Sys′′[‖0‖0‖0±0 7→ P ′, ‖1 7→ Q′{c/x}]

It is easy to prove the following corollary, ensuring that a process P
can make a transition leading in Q if and only if H can.

Corollary 1. Given a process P , then P
µ−→ Q involves P@ϑ0

µ0−→ R0

(and P@ϑ1
µ1−→ R1) iff H = h(k, P, ϑ0, ϑ1)

µ−→ Q involves H@w(ϑ0)
µ0−→

R0 (and H@w(ϑ1)
µ1−→ R1).

Back to our example, the transition Sys =!(ac.b(z ∈ {a, c}) + ae)|Q τ−→
Sys′ = ((b(z ∈ {a, c})+0) | ac.b(z ∈ {a, c}) + ae) | !P ) | (b〈c〉.0 | R), that
involves the axioms (i) Sys@‖0!!0±0

ac−→ b(z ∈ {a, c}) and (ii) Sys@‖1
ac−→

Q′{c/x} is such that that Sys′@w(‖0!!1) = Sys′@‖0‖0‖1 = Sys@‖0!!i and
Sys′@w(‖1) = Sys′@‖1 = Sys@‖i.

4 Control Flow Analysis

We are interested in analyzing the behaviour of a process P plugged in
any environment E, without explicitly analysing E. More precisely, our
implicit analysis of the environment amounts to considering the most
powerful context sharing public names with P . (Technically, in process
algebras like π-calculus, a process Q cannot know the restricted names of
another process P , unless P did not send them to Q.)

4.1 Validation

The aim of the analysis is to provide a safe approximation to the dynamic
behaviour of processes in terms of which messages are exchanged and
between which. More precisely, the result of analysing a process P is a
triple (ρ,

_
η , Φ), called estimate or solution, that, roughy, establishes a

super-set of the set of (abstract) values to which the program objects

14



(ρ, η, Φ) |=ϑ 0 iff true

(ρ, η, Φ) |=ϑ τ.P iff (ρ, η, Φ) |=ϑ P

(ρ, η, Φ) |=ϑ xy.P iff (ρ, η, Φ) |=ϑ P ∧
∀a ∈ ρ(x) : ρ(y) ⊆ η1(ϑ)(a) = J ∧

(a ∈ Φ ∧ J 6= ∅) ⇒


η1(ϑ)(a) ⊆ Φ
η2(ϑ)(a) 3 ϑE

(ρ, η, Φ) |=ϑ x(y ∈ Y ).P iff (ρ, η, Φ) |=ϑ P ∧
∀a ∈ ρ(x),∀ϑ′ : comp(ϑ, ϑ′) :

J = (η1(ϑ
′)(a) ∩ ρ(Y )), J ′ = (Φ ∩ ρ(Y ))

(J 6= ∅) ⇒


η1(ϑ
′)(a) ∩ ρ(Y )) ⊆ ρ(y)

η2(ϑ
′)(a) 3 ϑ

(a ∈ Φ ∧ J ′ 6= ∅) ⇒


(Φ ∩ ρ(Y )) ⊆ ρ(y)
η2(ϑE)(a) 3 ϑ

(ρ, η, Φ) |=ϑ P0 + P1 iff (ρ, η, Φ) |=ϑ±0 P0 ∧ (ρ, η, Φ) |=ϑ±1 P1

(ρ, η, Φ) |=ϑ P0|P1 iff (ρ, η, Φ) |=ϑ‖0 P0 ∧ (ρ, η, Φ) |=ϑ‖1 P1

(ρ, η, Φ) |=ϑ (νa)P iff (ρ, η, Φ) |=ϑ P

(ρ, η, Φ) |=ϑ !P iff (ρ, η, Φ) |=ϑ!!0 P ∧ (ρ, η, Φ) |=ϑ!!1 P

Table 2. Control Flow Analysis for the π-calculus.

can be bound to and, in our framework, giving information on where and
between which the communications take place.

From a static point of view, this is not trivial a task. The analysis has
a particular process P as input and should predict something on all the
possible continuations of P , i.e. all the possible processes Q to which a
sequence of computations can lead. As we have shown in the previous sec-
tions, the structure of a process – in terms of its addresses – may change
each time a transition is fired. Mainly, the structure changes due to tran-
sitions of replicated sub-processes. Indeed, if the process under analysis
includes some replications, then its behaviour is potentially infinite. We
would like to have instead a finite analysis, able to safely approximate
this infinite behaviour, without paying so high a price. For this reason,
we first define a finite approximation, that we will call pre-estimate and
on that basis, we will define the real estimate or solution, as a result of
our analysis.
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More precisely, pre-estimates are computed considering that each repli-
cation !P originates exactly two copies of P in parallel. This means that
our analysis uses a finite number of addresses, only. The actual estimate,
possibly involving an unbound number of addresses, is then obtained by
a suitable closure operation on a pre-estimate. Luckily enough, for our
aim, generating and investigating pre-estimates will be sufficient. So our
proposal is feasible (and efficient).

We then begin with the description of pre-estimates and then we pro-
ceed with solutions. In details, the pre-estimate components are:

– ρ : V ar → ℘(V al) is the abstract environment that associates a set of
values with values; more precisely, ρ(x) must include the set of values
that x could assume at run-time. We shall allow to regard the abstract
environment as a function such that ∀a ∈ V al : ρ(a) = {a}. Also, we
will use ρ(Y ) as a shorthand for

⋃
{ρ(yi) | yi ∈ Y }.

– η = 〈η1, η2〉 is the abstract communication structure:
• η1 : A → (V al → ℘(V al)) associates values, actually channels,

with the values that can be sent over them at certain positions;
more precisely, η1(ϑ)(a) must include the set of values that can be
sent over the channel a by the sub-process P@ϑ.

• η2 : A → (V al → ℘(A)) associates channels with the addresses
of sub-processes that can receive and send values on them; more
precisely, η2(ϑ)(a) must include the set of addresses ϑ′ such that
P@ϑ′ can receive values on a, sent by P@ϑ. For instance, if ϑ ∈
η2(ϑ′)(a), then an internal action on channel a having P@ϑ′ as a
sender and P@ϑ as a receiver is possible. (Note that ϑ and ϑ′ are
compatible.) We also predict communications with the attacker
and designate ϑE to be the generic address of an unknown process
hosted in E, by definition compatible with all the addresses in P .

– Φ ⊆ V al represents the external environment (see also [5]). This com-
ponent establishes a super-set of the values the environment can send
and receive on the channels it knows. According to the Dolev and
Yao model [15, 2], (i) E initially knows a subset of the values of P ;
(ii) afterwards, E may increase its knowledge by communicating with
P and (iii) E can use all the known values to communicate with P ,
possibly affecting its behaviour.

Once defined the form of analysis pre-estimates, a Flow Logic for when
pre-estimates are acceptable consists in defining a number of clauses.
These clauses operate upon judgments of the form: (ρ, η, Φ) |=ϑ P . A
pre-estimate for a process P is then a triple (ρ, η, Φ) s.t. (ρ, η, Φ) |=ε P ,
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where fn(P ) ⊆ Φ and fv(P ) = ∅. Our Control Flow Analysis is defined by
the Flow Logic clauses in Tab. 2.

To understand how processes are validated, consider the most crucial
rules, those for parallel composition, for output, for input and for repli-
cation. All the rules for a compound process require that the components
are validated, and so we feel free to omit these conjuncts below. Note
that in the clauses, addresses are only used and updated when the top-
level operator is a |, a +, or a !, i.e. in the parallel composition, in the
summation or replication rules.

Consider the parallel composition rule as an example. A pre-estimate
is valid for the sub-process (P0|P1) with address ϑ with respect to the
initial process P under analysis, if it is valid for each Pi (i = 0, 1)
with address ϑ‖i. Indeed, if (P0|P1) = P@ϑ then, by definition, Pi =
(P0|P1)@ϑ‖i. Furthermore, note that (ρ, η, Φ) |=ϑ π.(P0|P1) implies that
(ρ, η, Φ) |=ϑ (P0|P1) and therefore (ρ, η, Φ) |=ϑ‖0 P0 and (ρ, η, Φ) |=ϑ‖1 P1.
The same considerations are valid for P0 + P1.

Consider now the output case. To validate the process xy.P the rule
requires that
. . .∀a ∈ ρ(x) : for each value a that can be bound to x
ρ(y) ⊆ η1(ϑ)(a) the set of values η1(ϑ)(a) that can be sent at ϑ along each a,
= J must include the values to which y can evaluate, i.e. ρ(y).
∧ (a ∈ Φ if a belongs to the environment knowledge and
∧ J 6= ∅) there is a possible flow of values on a, i.e. η1(ϑ)(a) = J 6= ∅, then
⇒ (η1(ϑ)(a) ⊆ Φ E knows the values that flow on a, i.e. they are in Φ, and therefore,
∧ η2(ϑ)(a) 3 ϑE)) a communication is possible between the sub-process at ϑ and E

The more demanding rule is the rule for input. For validating the process
x(y ∈ Y ).P , we require that
. . .∀a ∈ ρ(x), for each value a that can be bound to x and
∀ϑ′ : comp(ϑ, ϑ′) : for each compatible address ϑ′,
J = (η1(ϑ

′)(a) ∩ ρ(Y ))
J ′ = (Φ ∩ ρ(Y )) some of the values that can be sent on a
(J 6= ∅)⇒


η1(ϑ

′)(a) ∩ ρ(Y )) ⊆ ρ(y)
η2(ϑ

′)(a) 3 ϑ

at ϑ′, i.e. η1(ϑ
′)(a), are included in the set of values,

to which y ∈ Y can evaluate, provided that they
belong also to ρ(Y ), i.e. J 6= ∅. In this case,
a communication is possible between
the sub-processes at ϑ′ and at ϑ

(a ∈ Φ ∧ J ′ 6= ∅) ⇒ Also, if a belongs to the environment knowledge, some of


(Φ ∩ ρ(Y )) ⊆ ρ(y)
η2(ϑE)(a) 3 ϑ

the values (in Φ) that can be sent on a by E, are
included in the set of values to which y ∈ Y
can evaluate, provided that they belong also to ρ(Y ),
i.e. J ′ 6= ∅, and a communication is possible
between the sub-process at ϑ′ and the one in E
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Note that whenever we test for emptiness, we address the reachabil-
ity issue; indeed the condition η1(ϑ)(a) = J = ∅ in the rule for output
amounts to saying that an output action in that position, on channel
a, is not reachable (e.g. the output action ax in the process (νb)b(x ∈
{c}).ax). Similarly for input conditions: if J = (η1(ϑ′)(b)∩ρ(Y )) = ∅ and
J ′ = Φ ∩ ρ(Y ) = ∅ then the input action on b is not reachable (e.g. the
action b(x ∈ {c}) in the example above).

Finally, the rule for replication asks for the validation of the replicated
process at the addresses ϑ!!0 and ϑ!!1. The form of this rule corresponds
to the idea that the infinite behaviour of !P can be approximated by the
finite one of a pair of its copies P , i.e. !P@!!0 and !P@!!1. They can:

– communicate each other (the two addresses are compatible);
– separately communicate to the external environment, with processes

in parallel with !P ; and
– make an internal communication, as any other process.

Example 3. To give the flavour of the analysis, we use our running exam-
ple.

Sys =!P | Q =!(ac.b(z ∈ {a, c})︸ ︷︷ ︸
‖0!!i±0

+ ae︸︷︷︸
‖0!!i±1

) | a(x ∈ {c})︸ ︷︷ ︸
‖1

.(b〈x〉.0︸ ︷︷ ︸
‖1‖0

| R︸︷︷︸
‖1‖1

)

The analysis should provide us with the following information:

– which are the values that can be bound to each variable. In terms of
the CFA, we need to know ρ(z) and ρ(x);

– the set of values that can be sent over the channels a and b, i.e.
η1(ϑ)(a) and η1(ϑ)(b) for ϑ ∈ {‖0!!i±0, ‖0!!i±1, ‖1, ‖1‖0};

– the set of addresses of sub-processes that can send and receive val-
ues on the channels, i.e. η2(ϑ)(a) and η2(ϑ)(b) for ϑ ranging over
{‖0!!i±0, ‖0!!i±1, ‖1, ‖1‖0};

– finally, the contribute Φ of the environment. Initially, the environment
knows all the free values {a, b, c, e} of the process Sys.

To establish (ρ, η, Φ) |=ε Sys it is necessary to establish (ρ, η, Φ) |=‖0 !P
= Sys@‖0 and (ρ, η, Φ) |=‖1 Q = Sys@‖1; to establish (ρ, η, Φ) |=‖0!!i P

for each i ∈ {0, 1}, it is necessary to establish (ρ, η, Φ) |=‖0!!i±0 ac.b(z ∈ {a, c})
and (ρ, η, Φ) |=‖0!!i±1 ae. We can compute a pre-estimate giving the fol-
lowing results:

– ρ(z) ⊇ {c,a} and ρ(x) ⊇ {c}
– η1(‖0!!i±0)(a) = {c}, η1(‖0!!i±1)(a) = {e}, η1(‖1)(a) = ∅, η1(‖0!!i±0)(b) = ∅ and

η1(‖1‖0)(b) ⊇ {c}

18



– η2(‖0!!i±0))(a) ⊇ {ϑE , ‖1}, η2(‖0!!i±1))(a) 6⊇ {‖1} and η2(‖1‖0)(b) ⊇ {ϑE , ‖0!!i±0}
– Φ ⊇ {a, b, c, e}

We write in boldface the value a in ρ(z) to stress the contribute of the
environment. In fact η1(‖1‖0)(b) ∩ {c, a} ⊇ {c} and Φ ∩ {c, a} = {c, a}.
As a matter of fact, if the process were in isolation (i.e. initially with no
free names, e.g. if it were on the form (νa)(νb)Sys), the only value that
could be bound to z would have been c, i.e. the value passed from the
only compatible action bx. Furthermore, ρ(x) includes {c}, that coincides
with (η1(‖0!!i±0)(a) ∩ {c}. Instead, ρ(x) does not include {e} because
η1(‖0!!i±1)(a) = {e} ∩ {c} = ∅.

It is easy to show that validating a process P , corresponds to val-
idating all its sub-processes P@ϑ′. There is a subtlety here. Actually,
validating a process P on the form π.P ′ amounts to validating all the
sub-processes of P ′ as well.

Lemma 2. For each process P , (ρ, η, Φ) |=ϑ P iff ∀ϑ′ ∈ Addr(P ) :
(ρ, η, Φ) |=ϑϑ′ P@ϑ′. Also, (ρ, η, Φ) |=ϑϑ′ P ′@ϑ′ if P = π.P ′.

4.2 Validation of Solutions

To take into account all the possible expansion of processes due to the ap-
plication of rule Bang, we introduce estimates on the form (ρ,

_
η , Φ), built

from (ρ, η, Φ). The only difference between them is that the component
_
η

handles an unbound number of addresses. Instead, the other components
ρ and Φ do not change at all with respect to the pre-estimate4.

Estimates only play a technical role. Indeed, for our purposes, given
a process P and its sub-processes, we need to know where and between
which sub-processes communications may occur. In particular, we are in-
terested in the inputs/outputs possible at a given address ϑ, such that
P@ϑ is on the form !S. As a matter of fact, all the processes arising
from replicating S exhibit the same static behaviour of P@ϑ, and there-
fore pre-estimates are enough. To consider all the possible unfoldings due
to replications (and therefore the unbound number of addresses of the
expanded process) we use a closure function that returns the set of ad-
dresses generated by expanding all the occurrence of !!i along the path ϑ.
Its definition is reminiscent of that of w(.).
4 Actually, ρ as well could be bound to addresses and made more precise. Neverthe-

less, this would add irrelevant information with respect to the aspects of process
behaviour that we are interested in. Additionally, such an extension will require a
much more complex treatment (see e.g. [16]).
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Definition 8. Given a process P , let
_
w (.) the function closure

_
w: A →

℘(A) such that
_
w (ϑ) 3 ϑ and:

–
_
w (ε) = ε;

–
_
w (�iϑ) = �i

_
w (ϑ);

–
_
w (!!0ϑ) =

_
w (!!1ϑ) = {‖0‖0, ‖0‖1}

_
w (ϑ) ∪ ‖1

_
w (!!0ϑ) ∪ ‖1

_
w (!!1ϑ).

Note that w(ϑ) ∈_
w (ϑ) and that, in particular, for i ∈ {0, 1}, _

w (!!i) ⊇
{‖n

1‖0‖j | j ∈ {0, 1} ∧ n ∈ IN}.
We define estimates as follows; note that now the functions in the

second component may have an infinite domain.

Definition 9. Given a process P and a pre-estimate (ρ, η, Φ) for it, the
corresponding solution is (ρ,

_
η , Φ), where

_
η is such that

– ∀a, b, ϑ : b ∈ η1(ϑ)(a) iff ∀ϑ′ ∈_
w (ϑ) : b ∈

_
η 1 (ϑ′)(a);

– ∀ϑ, ϑ′, a : ϑ′ ∈ η2(ϑ)(a) iff ∀ϑ0 ∈
_
w (ϑ′),∀ϑ1 ∈

_
w (ϑ) : ϑ0 ∈

_
η 2 (ϑ1)(a).

Consequently, each time a pre-estimate validates the process P at address
ϑ, then the corresponding estimate validates the same process at each
address ϑ′ ∈_

w (ϑ). In particular, from ϑ0!!0ϑ ∈ η2(ϑ0!!1ϑ′), we have that
∀l 6= m : ϑ0‖l

1‖0‖0ϑ ∈ η2(ϑ0‖m
1 ‖0‖1ϑ

′) and comp(ϑ0‖l
1‖0‖0ϑ, ϑ0‖m

1 ‖0‖1ϑ
′).

As mentioned above, pre-estimates are enough for approximating the
usage of a specific channel for input or output by a given sub-process. In
particular, if a certain communication is not predicted by a pre-estimate,
then also the estimate does not predict it. Indeed, the following follows
by construction.

Proposition 1. Given a process P , let (ρ, η, Φ) is a pre-estimate of P

and (ρ,
_
η , Φ) is the corresponding estimate. Then, for all a, b and for all

ϑ, ϑ′, we have:

– if b /∈ η1(ϑ)(a) then ∀ϑ′ ∈_
w (ϑ) : b /∈

_
η 1 (ϑ′)(a)

– if ϑ′ /∈ η2(ϑ)(a) then ∀ϑ0 ∈
_
w (ϑ′),∀ϑ1 ∈

_
w (ϑ) : ϑ0 /∈

_
η 2 (ϑ1).

The following lemma shows that our solution is able to validate any
possible process resulting from one or more expansions, due to replica-
tions; it will be help in proving the subject reduction theorem.

Lemma 3. If (ρ, η, Φ) |=ϑ P then ∀ϑ0, ϑ1 such that ∃H = h(k, P, ϑ0, ϑ1),

(a) (ρ, η, Φ) |=ϑ P implies (ρ,
_
η , Φ) |=ϑ P ;

(b) (ρ,
_
η , Φ) |=ϑ P iff (ρ,

_
η , Φ) |=ϑ H.

The above lemma and Corollary 1 furnish the basis to prove the Sub-
ject Reduction Theorem 1.
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4.3 Correctness

To establish the semantic correctness of our analysis we rely on the def-
inition of the early semantics in Tab. 1 as well as on that of estimate,
based on the analysis in Tab. 2.

Theorem 1 (Subject reduction). Given a process P , if (ρ,
_
η , Φ) |=ϑ P ,

then

(a) if P ≡ Q, then (ρ,
_
η , Φ) |=ϑ P iff (ρ,

_
η , Φ) |=ϑ Q;

(b) if P
µ−→ Q then we have:

(1) if µ = τ then (ρ,
_
η , Φ) |=ϑ Q;

(2) if µ = ab or µ = a(b), then (ρ,
_
η , Φ) |=ϑ Q and the transition

involves P@ϑ0
µ−→ R0, then b ∈

_
η 1 (ϑϑ0)(a); additionally, b ∈

Φ ∧ ϑE ∈
_
η 2 (ϑϑ0)(a), provided that a ∈ Φ;

(3) if µ = ab, the transition involves P@ϑ1 = a(y ∈ Y ).P1
µ−→ R1

and the condition (∗) holds, then b ∈ ρ(Y ) and (ρ,
_
η , Φ) |=ϑ Q,

where (∗) is (∃ϑ0 : b ∈
_
η 1 (ϑϑ0)(a) and ϑϑ1 ∈

_
η 2 (ϑϑ0)(a)) or (if

a ∈ Φ then b ∈ Φ and ϑϑ1 ∈
_
η 2 (ϑE)(a)).

4.4 Existence

So far we gave a procedure for validating whether or not a proposed pre-
estimate (ρ, η, Φ) is in fact acceptable. Remarkably, there always exists a
least choice of (ρ, η, Φ) that is acceptable in the manner of Tab. 2.

It is quite standard to partially order the set of proposed estimates.
Recall that a Moore family I is a set that contains uJ for all J ⊆ I
(where u is the greatest lower bound operator), defined pointwise. One
important property of a Moore family is that it always contains a least
element.

The following theorem then guarantees that there is always a least pre-
estimate to the specification in Tab. 2. Its proof is by induction and it is
quite similar to the corresponding one in [8], so we omit it. The subject
reduction result above applies to all the pre-estimates of the analysis, and
hence in particular to the least.

Theorem 2. ∀P : {(ρ, η, Φ) |(ρ, η, Φ) |=ε P} is a Moore family.
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4.5 Construction

There is also a constructive procedure for obtaining the least pre-solution.
Actually, this construction is very similar to the one in [8], so we dispense
here with the details. We argue that the complexity of obtaining a pre-
estimate can be kept low-polynomial, following the technique presented
in [25]. The main steps of our procedure are the following.

First, we attach to each prefix of the given process the address at
which it occurs. E.g., consider the process of our running example:

Sys =!(ac.b(z ∈ {a, c})︸ ︷︷ ︸
‖0!!i±0

+ ae︸︷︷︸
‖0!!i±1

) | a(x ∈ {c})︸ ︷︷ ︸
‖1

.(b〈x〉.0︸ ︷︷ ︸
‖1‖0

| R︸︷︷︸
‖1‖1

)

We pass from Sys@‖0!!i±1 to [‖0!!0±0]ac.[‖0!!0±0]b(z ∈ {a, c}). This ini-
tialization step is linear with the number of prefixes of the process, that
usually are much more than the number of operators | and +. So, we
assume that there are O(N) addresses, where N depends linearly on the
symbols in P .

A second pre-processing step is determining the compatibility between
the addresses of the process at hand. Here, one has to slightly extend the
notion of address to take care also of the following case µ.(P | Q) | R,
the addresses of which include, besides ‖0 and ‖1 also ‖0‖0 and ‖0‖1.
More precisely, the addresses of µ.P include also those of P . Note that
the addresses can be collected while performing the first step above: so
one may naively fill in a compatibility table in O(N3) time and making
checking compatibility cheap.

The actual generation of the pre-estimate is based on the observation
that validating a solution (ρ, η, Φ) |=ϑ P amounts to checking a number
of individual constraints. Much in the style of [8] we then define a func-
tion GC [[T ]], where T is obtained from P in the first step above. This
function explicitly extracts the set of constraints to be checked by induc-
ing on the syntax of T itself. The algorithm in [8] works in O(N5) time; a
further improvement [25] reduced the exponent to 3. The basic difference
of our construction with the algorithm of [8] concerns the treatment of
inputs and outputs, as these have now attached addresses, and the con-
straint generator uses them according to the analysis in Tab. 2. There,
the messages that flow on a given channel a were collected all together,
regardless of the position where a occurs. Our present analysis is more
detailed, and thus our construction generates more constraints. However,
the overall complexity is still polynomial, (actually, our tuples (ρ, η, Φ)
contain O(N2) items, O(N) for each element of P times O(N) for each
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address, while the solutions of [8] have only O(N) items, so the exponent
of the polynomial is increased by 3).

5 CFA & Security Properties

Our analysis statically approximates the behaviour of a process P under
consideration, in particular it tracks where and between which commu-
nications may occur. This is essentially done through its component η2.
Actually, exploiting the soundness of our analysis, we can prove, among
others, the following three basic facts. Suitable combinations of them en-
able us to define and check many security properties. In particular, those
centered on access control, which prescribe which processes can commu-
nicate each other and in which direction.

– [no output for P@ϑ′ on a] The process P@ϑ′ cannot use the channel
a to send data to the environment, when ϑE /∈ η2(ϑ′)(a).

– [no input for P@ϑ on a] The process P@ϑ cannot use the channel
a to receive data from the environment, when ϑ /∈ η2(ϑE)(a).

– [no communication between P@ϑ and P@ϑ′ on a] The pro-
cess P@ϑ′ cannot communicate with P@ϑ on channel a, when ϑ /∈
η2(ϑ′)(a), i.e. no exchange of information occurs on a, from site ϑ′ to
site ϑ within the system.

Formally, we have the following.

Theorem 3. Let P be a process with pre-estimate (ρ, η, Φ) and let a be
a channel.

1. [no output for P@ϑ′ on a] If a ∈ fn(P ) and ϑE /∈ η2(ϑ′)(a), then
whenever P −→∗ P ′ µ−→ P ′′, with µ ∈ {ab, a(b)}, and the last transi-
tion involves P ′@ϑ0, then ϑ′ 6= ϑ0.

2. [no input for P@ϑ on a] If a ∈ fn(P ) and ϑ /∈ η2(ϑE)(a), then
whenever P −→∗ P ′ ab−→ P ′′, and the last transition involves P ′@ϑ1

then ϑ 6= ϑ1.
3. [no communication between P@ϑ and P@ϑ′ on a] If ϑ /∈ η2(ϑ′)(a),

(with ϑ, ϑ′ 6= ϑE), then, whenever P −→∗ P ′ τ−→ P ′′ and the last
transition involves P ′@ϑ0 = ab.P0 and P ′@ϑ1 = a(y ∈ Y ).P1, then
ϑ′ 6= ϑ0 or ϑ 6= ϑ1.

The check of absence of a specific output can be made more precise,
by exploiting the sub-component η1 of a pre-estimate that permits to es-
tablish suitable tests for when a sub-process P@ϑ′ cannot send a selected
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value b to the environment. If b is considered a sensible data, its secrecy
with respect to a channel and a position is indeed guaranteed. Analo-
gously, one can check that a inputted value b comes only from inside
the system, i.e. that it is never received form the attacker. The following
corollary immediately follows from Theorem 3.

Corollary 2. Let P be a process with pre-estimate (ρ, η, Φ) and let a be
a channel.

1. [P@ϑ′ cannot output b] If b /∈ η1(ϑ′)(a), and whenever P −→∗

P ′ µ−→ P ′′, with µ ∈ {ab, a(b)}, and the last transition involves P ′@ϑ0

then ϑ′ 6= ϑ0.
2. [P@ϑ cannot input b on y] If b /∈ ρ(y) with y ∈ bv(P@ϑ) and

whenever P −→∗ P ′ ab−→ P ′′ and the last transition involves P ′@ϑ0

then ϑ 6= ϑ0.

5.1 Secrecy

We can exploit the above corollary to statically check secrecy. First we
give the dynamic notion of secrecy: a process preserves the secrecy of
a value b, when it never sends it on a free channel. Then, no attacker
harboured in the environment can read b. We start with defining the
dynamic notion. We then state a theorem showing that the component Φ
of a pre-estimate suffices for ensuring statically the dynamic property.

Definition 10. Let P be a process and let a be a channel. P preserves the
secrecy of the value b (i.e. does not disclose b to the external environment),
if whenever P −→∗ P ′ µ−→ P ′′, then µ /∈ {ab, a(b)}.

Theorem 4. Let P be a process with pre-estimate (ρ, η, Φ). If b /∈ Φ, then
P preserves the secrecy of the value b.

We now show that this property is preserved by any context satisfying
a mild constraint: the context contains only values known to everyone,
including the attacker. Actually this is not a limitation. Indeed, if a secret
has to be sent on a public channel, it has to be protected otherwise,
typically by encrypting it and making the resulting message public again.
We have no encryption here: we refer the reader to [6] for a CFA taking
care of that.

Theorem 5. Let P be a process with pre-estimate (ρ, η, Φ) and C[−] be
a one hole context with vals(C[−]) ⊆ Φ. If P preserves the secrecy of the
value b then C[P ] still preserves the secrecy of the value b.
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5.2 Security policies

A security policy is used to state which information flows are to be allowed
and which are to be prevented. Therefore, it establishes which privileges
are accorded to which principals, in terms of which actions they can or
cannot perform. This section discusses how policies can be character-
ized abstractly, and how the approach described so far helps in detecting
whether a process violates or not a given policy. The check of absence
of communications between a pair of sub-processes provides us with the
basis for statically verifying whether a process follows a specific security
policy. Indeed, our analysis approximates the usage of channels, essen-
tially through its components η1 and η2, which track where the read/write
operations may occur.

In what follows, we shall consider some different dynamic security
properties, showing that they all are captured by simple checks on pre-
estimates. So, it suffices computing a pre-estimate R for a process P
once and for all and then check the properties of interest on R. Our
presentation below use the following paradigm, whose steps consist of

1. a(n abstract) policy Σ, as a set of capabilities that specify which are
the authorized accesses to data;

2. the notion of when a process dynamically respects Σ;
3. a static test on an estimate R of P for when R agrees with Σ;
4. a theorem stating that if R agrees with Σ, then P respects Σ;
5. one or more instantiations of Σ mirroring some security properties

discussed in the literature.

Definition 11. Given a process P , two compatible addresses ϑ, ϑ′, and
a channel a, a localized policy is a relation Σ such that (ϑ, ϑ′) ∈ Σ(a),
whenever comp(ϑ, ϑ′)
• P@ϑ′ has the capability to send on the channel a to P@ϑ; and
• P@ϑ has the capability to receive on the channel a from P@ϑ′.

For the sake of simplicity, hereafter, we consider pairs of addresses
(ϑ, ϑ′) with ϑ, ϑ′ 6= ϑE . By extension, we can also consider the capabil-
ity to write (read, resp.) on the channel a having the environment as a
receiver (sender, resp.).

Our next step makes it precise when a process respects the given
policy.

Definition 12. A given process P respects the security policy Σ, if ∀a:
(ϑ, ϑ′) /∈ Σ(a) implies that, whenever P −→∗ P ′ τ−→ P ′′ and the last
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transition involves P ′@ϑ0 = ab.P̃ ′ and P ′@ϑ1 = a(y ∈ Y ).P̃ , then ϑ′ 6= ϑ0

or ϑ 6= ϑ1.

The following definition specifies our static test.

Definition 13. A pre-estimate (ρ, η, Φ) of a process P agrees with Σ, if
(ϑ, ϑ′) /∈ Σ(a) implies ϑ /∈ η2(ϑ′)(a).

A pre-estimate that agrees with a policy correctly predicts the usage
of channels. The result follows immediately, from Theorem 3.

Corollary 3. A process P with pre-estimate (ρ, η, Φ) respects Σ, if (ρ, η, Φ)
agrees with Σ.

We now instantiate the abstract policy Σ to some policies, based on
security levels. This requires to define a hierarchy of levels for processes.
In the following, we assume to have a set of security levels SL (ranged
over by l) made into a lattice 〈SL,≤〉 by the partial order relation ≤.
Then, we assign a security level to addresses via the function F , in such
a way that F (ϑ) = l means that the process P@ϑ has clearance level l.

No Read-Up/No Write-Down As a first example of these policies, con-
sider the following variant of the no read-up/no write-down property by
Bell and LaPadula [3] (see also [17]). Processes receive clearance levels of
security and a process with a high level cannot write any value to a pro-
cess at low level, while the converse is allowed; symmetrically a process
at low level cannot read data from one at a high level. In other words, the
dynamic property requires that there is no communication between the
low-level process P@ϑ and the high-level process P@ϑ′. More precisely,
it requires that P@ϑ′ does not perform an output, i.e. a write down to
P@ϑ (see the simple example below). The corresponding static test is
straightforward: ϑ /∈ η2(ϑ′).

Definition 14. A localized policy Σ is a no read-up/no write-down pol-
icy, if ∀(ϑ, ϑ′) ∈ Σ(a) iff F (ϑ) ≥ F (ϑ′).

Corollary 4. Given F , a process P is no read-up/no write-down, if
agrees with a no read-up/no write-down policy Σ.

No Read-Down/No Write-Up Consider now the dual policy for integrity,
based on the Biba model [4]. It requires that a sub-process P@ϑ with a
low clearance level cannot write any value to a sub-process P@ϑ′ at a
higher level, while the converse is allowed. Again the point is that there
should not be any communication between P@ϑ and P@ϑ′ in the wrong
sense. The static test also turns out to be easy: ϑ′ /∈ η2(ϑ).
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Definition 15. A localized policy Σ is a no read-down/no write-up pol-
icy, if ∀(ϑ, ϑ′) ∈ Σ(a) iff F (ϑ) ≤ F (ϑ′).

Corollary 5. Given F , a process P is no read-down/no write-up, if
agrees with the no read-down/no write-up policy Σ.

Polarity Some simpler policies focus on polarity (see also [26, 19]). These
policies prescribe for each channel if a particular process can use it either
for input or only for output or in both ways. Checking that a process
obeys a given polarity policy is again straightforward, e.g. P@ϑ uses a
only for output, if for all compatible ϑ′, (ϑ, ϑ′) /∈ Σ(a). This property is
guaranteed by the following simple check: ϑ /∈ η1(ϑ′)(a).

First, we define the actual dynamic policy as an instance of that in
Def. 11; then we state a corollary of Corollary 3.

Definition 16. A localized policy Σ for a process P is a polarity policy
if, on each channel a, it assigns to P the following capabilities:

1. read-only if and only if: ∀ϑ′ ∈ Addr(P ) : (ϑ, ϑ′) /∈ Σ(a) and (ϑ, ϑE) /∈
Σ(a)

2. write-only if and only if: ∀ϑ′ ∈ Addr(P ) : (ϑ, ϑ′) /∈ Σ(a) and (ϑE , ϑ) /∈
Σ(a)

3. no-read&no-write if and only if: ∀ϑ′ ∈ Addr(P ) : (ϑ, ϑ′), (ϑ′, ϑ) 6∈
Σ(a) and (ϑ, ϑE) /∈ Σ(a) and (ϑE , ϑ) /∈ Σ(a).

4. read&write if anyone of the above cases is verified.

Note that if a value is used neither in input, nor in output, then it is
a passive object, i.e. it is not used as a channel.

Checking polarities is now straightforward: it suffices to control if an
estimate agrees with the policy given.

Corollary 6. A process P with estimate (ρ, η, Φ), respects a polarity pol-
icy Σ, if (ρ, η, Φ) agrees with Σ.

Finally, we observe that often principals can be collected in groups
and policies generalized to groups. To this aim we do not need to change
neither our analysis, nor our syntax: we just establish a class of groups
as a partition on addresses. Then a policy is given by relating which
groups can write/read to which. The properties discussed above scale up
immediately also to groups.
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6 An example

Assume that within an organization, Alice (A), a top manager, creates
a file trend containing an analysis of the organization trend, i.e. a collec-
tion of important and sensitive data. This data should not be disclosed
to anybody besides Alice. Consider now Bob (B), one of Alice’s subordi-
nates, who wants to acquire some information about the file to exploit it
within a competitor organization. Bob modifies a web consultant appli-
cation generally used by Alice, to include one hidden operation: a write
operation on the channel hidden (he uses it as a Trojan horse). Then
he gives this application to Alice. The application receives through the
channel line the information on the trend of the organization and if it is
negative, i.e. if it is bad, then sends Alice some suggestion. Otherwise, it
sends an acknowledgement of the communication, through channel ack.
When Alice will execute the application, also the hidden write operation
can be performed. As a result, Bob will acquire the desired information,
through the channel hidden and he can use it to decide, e.g. to sell his
actions, through the channel sell. Recall that in the π-calculus, the re-
striction operator acts as a static binder, i.e. the restricted value is private
of the process prefixed by the restriction: for instance, the restricted value
good is not known outside A, until it is explicitly sent, as in the example
with the action line〈good〉. Below, we present a specification, in which A′

and B′ represent two suitable continuations of the processes A and B.

System = (ν line)( A|{z}
‖0‖0

| WebConsultant)| {z }
‖0‖1

) | B|{z}
‖1

A = (ν good)(ν bad)(line〈good〉.ack(x1 ∈ {ok}).A′ |
line〈bad〉.line(x2 ∈ {suggestion}).A′′)

WebConsultant = (line(ztrend ∈ {good}).ack〈ok〉) |
(line(ytrend ∈ {bad}).line〈suggestion〉.hidden〈SideEffect〉)

B = hidden(w ∈ {SideEffect}).sell〈actions〉.B′

Assign now a high security level H to A (‖0‖0) and to her sub-
components (‖0‖0‖i), as well as to the WebConsultant application (‖0‖1)
and to its sub-components (‖0‖1‖i); assign instead low security level L to
B (‖1). The following is the relevant part of an acceptable estimate.

– η1(‖0‖0‖0)(line), ρ(ztrend) 3 good and ‖0‖1‖0 ∈ η2(‖0‖0‖0)(line);
– η1(‖0‖0‖1)(line), ρ(ytrend) 3 bad and ‖0‖1‖1 ∈ η2(‖0‖0‖1)(line);
– η1(‖0‖1‖0)(ack), ρ(x1) 3 ok and ‖0‖0‖0 ∈ η2(‖0‖1‖0)(ack);
– η1(‖0‖1‖1)(line), ρ(x2) 3 suggestion and ‖0‖0‖1 ∈ η2(‖0‖1‖1)(line);
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– η1(‖0‖1‖1)(hidden), ρ(w) 3 SideEffect and ‖1 ∈ η2(‖0‖1‖1)(hidden);
– η1(‖1)(sell) 3 actions and ϑE ∈ η2(‖1)(sell).

It is immediate to check that our system violates the no read-up/no
write-down policy. In fact, the estimate is such that ‖1 ∈ η2(‖0‖1‖1)(hidden),
with ‖1 ∈ L and ‖0‖1‖1 ∈ H. This corresponds to the fact that the high-
level sub-process System@‖0‖1‖1 performs a write down to the low sub-
process System@‖1 (that, in turn, performs a read up), that corresponds
to a undesired flow of information from high to low. The same system
respects instead the dual property: the integrity of data of high-level pro-
cesses is indeed preserved.

7 Concluding Remarks

We defined a Control Flow Analysis that over-approximates statically
the values that can be exchanged along channels during the evolution of
a system of mobile processes. We built on the proposal of [8] and exploit
to a further extent the syntactic structure of systems. In this way, we
traced which component of the system is which?, and so we could care-
fully approximate the “local” behaviour of each component in terms of
the values it can send and receive on a particular channel. Technically,
this is done by giving a static interpretation to the main operators of the
calculus, which is closer to their dynamic interpretation. This results in
a better estimate of the behaviour of the system under consideration, as
well as of its components, in terms of the communications predicted. For
instance, we discard here some of those considered possible in [8], which
actually were not (false positives). Also, we improved the accuracy of the
analysis of replicated processes, still maintaining finite our approxima-
tions. Much in the style of [5, 7, 6], our Control Flow Analysis analyses a
process, plugged in any environment E, possibly hosting a Dolev-Yao at-
tacker, without explicitly analysing E. The estimates are invariant under
computation steps, and there always exists a least estimate for a given
system; also we sketched a procedure for computing it in polynomial time.

We exploited the accuracy of our estimates in predicting communica-
tions to statically establish when a given system respects specific security
properties. Those considered here mainly cover access control and confi-
dentiality, but many other properties can easily be verified. An important
point is that all these checks are made on the same estimate. It is then
sufficient to compute an estimate once and for all and then inspect it. As
a matter of fact, all the checks we proposed result from simple combina-
tions of two basic controls: whether a value is sent or is received along
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a channel by a specific component of the system. This gives evidence
that our approach offers a uniform, flexible and expressive framework for
analysing security properties.

The expressivity and generality sketched above make our approach
complementary to the more classical Type Systems, where quite often
specific type systems are defined ad hoc for a particular security property
or policy. There is a great number of papers on the subject, among which
the seminal ones [2, 17, 26]; below we only consider the most closely re-
lated to our present work. General type systems have been proposed to
be instantiated for analysing more properties at the same time, as we do.
A first example is [19], where the same type system is used to study the
input/output behaviour of channels, the upper and lower bounds to the
number of active channels, and also confluence. In [17], the authors intro-
duce a security π-calculus, where processes are given security levels. The
corresponding type system guarantees that processes of security level σ
cannot access resources with a security level higher than σ. In [18], Hen-
nessy and Riley presents a Type System for resource protection in the
Dπ-calculus, a distributed variant of π-calculus: channels are associated
with read and write capabilities and the static check controls that pro-
cesses have the appropriate capabilities. The most related work to ours is
[16], where the author present an abstract interpretation based analysis
for the π-calculus, and uses it to check confidentiality issues in open sys-
tems. Feret’s non-uniform analysis distinguishes several instances of the
same replicated process, therefore gaining precision with respect to our
work.

Also tightly related with our present is [23], because we followed the
same approach based on Flow Logic. In this paper, the authors define a
control flow analysis for Mobile Ambients, improving [24], and use it to
establish properties of mandatory access control.

As a matter of fact, Mobile Ambients [11] and related calculi have
been often used to study and establish different security properties. Since
[12], several type systems have been proposed, among which the one of
[10], used to check access policies.

We conclude this concise list of related work by citing two further
papers on types and access control: the first [14] uses a variant of Linda
with multiple tuple spaces, and the second [20] deals with typed applets.

Acknowledgement. We thank Flemming Nielson and Hanne Riis Niel-
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A Proofs of Section 3

Lemma 1 If the transition P
α−→ Q involves

(a) only the axiom P@ϑ
α−→ Ri then Q = h(1, P, ϑi, ϑi)[w(ϑi) 7→ Ri],

with i ∈ {0, 1};
(b) both axioms P@ϑ0

µ0−→ R0 and P@ϑ1
µ1−→ R1 then

Q = h(2, P, ϑ0, ϑ1)[w(ϑ0) 7→ R0, w(ϑ1) 7→ R1].

Proof. The proof is by induction on the structure of the derivation, by
cases on the last rule used, and by further sub-cases depending on whether
a single axiom or two are involved.

Tau, Out, Sel Ein. In this case, the axiom is P@ε
µ−→ Ri, by Def. 2,

P@ε = P , therefore the transition coincides with the axiom and Q =
Ri = h(1, P, ε, ε)[w(ε) 7→ Ri].

Sumi. The process P is on the form P0+P1 for suitable P0, P1 and ϑ = ±iϑi.
The transition then involves the axiom Pi@ϑi = (P0 +P1)@±i ϑi

µ−→
Ri and its premise involves Pi

α−→ P ′
i .

(a) If the transition involves a single axiom, then µ = α and by in-
duction hypothesis, we have that P ′

i = h(1, Pi, ϑi, ϑi)[w(ϑi) 7→ Ri].
(b) If the transition involves two axioms, then µ = µi and let the other

axiom involved be Pi@ϑ′i = (P0 + P1)@ ±i ϑ′i
µ′i−→ R′

i). In this case,
by induction hypothesis we have that P ′

i = h(2, Pi, ϑi, ϑ
′
i)[w(ϑi) 7→

Ri][w(ϑ′i) 7→ R′
i].

In both cases, the conclusion of the rule leads P to a process Q =

Q0 + Q1, for suitable Qi such that
{

Q1−i = 0
Qi = P ′

i
and therefore, by

Def. 5, in (a) we have that Q = h(1, Pi,±iϑi,±iϑi)[w(±iϑi) 7→ Ri],
while in (b) Q = h(2, Pi,±iϑi,±iϑ

′
i)[w(±iϑi) 7→ Ri, w(±iϑ

′
i) 7→ R′

i].
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Pari. The process P is on the form P0|P1 for suitable P0, P1 and ϑ = ‖iϑi.
The transition then involves the axiom (P0 | P1)@‖iϑi = Pi@ϑi

µ0−→
R0 and its premise involves Pi

α−→ P ′
i .

(a) If the transition involves a single axiom, then µ = α and, by
induction hypothesis, we have that P ′

i = h(1, Pi, ϑi, ϑi)[w(ϑi) 7→ Ri].
(b) If the transition involves two axioms, then µ = µi and let the other

axiom involved be (P0 | P1)@‖iϑ
′
i = Pi@ϑ′i

µ′i−→ R1 involved and, then
by induction hypothesis, we have that P ′

i = h(2, Pi, ϑi, ϑ
′
i)[w(ϑi) 7→

Ri, w(ϑ′i) 7→ R′
i].

In both cases, the conclusion of the rule leads P to a process Q =

Q0|Q1, for suitable Qi such that
{

Q1−i = P1−i

Qi = P ′
i

and therefore, by

Def. 5, in (a) we have that Q = h(1, P, ‖iϑi, ‖iϑi)[w(‖iϑi) 7→ Ri],
while in in (b) Q = h(2, Pi, ‖iϑi, ‖iϑ

′
i)[w(‖iϑi) 7→ Ri, w(‖iϑ

′
i) 7→ R′

i].

Com. The process P is on the form P0|P1, for suitable P0, P1, and the
transition involves both (P0 | P1)@‖iϑi = Pi@ϑi

µ0−→ Ri and (P0 |
P1)@‖1−iϑ1−i = P1−i@ϑ1−i

µ1−→ R1−i. The premises of the transi-
tion are Pi

µ0−→ P ′
i and P1−i

µ1−→ P ′
1−i, for suitable P ′

i and P ′
1−i,

and involve Pi@ϑi
µ0−→ Ri and P1−i@ϑ1−i

µ1−→ R1−i. The conclusion
of the rule Com leads P to a process Q = Q0|Q1, for suitable Qi

s.t.
{

Q1−i = P ′
1−i

Qi = P ′
i

and by induction hypothesis, P ′
i = h(1, P, ϑi, ϑi)

[w(ϑi) 7→ Ri] and P ′
1−i = h(1, P, ϑ1−i, ϑi)[w(ϑ1−i) 7→ R1−i]. By Def. 5,

Q = h(2, P, ‖iϑi, ‖1−iϑ1−i)[w(‖iϑi) 7→ Ri, w(‖1−iϑ1−i) 7→ R1−i].

Close. Analogous to the previous case.

Bang. The process is on the form !S for suitable S, and ϑ!!iϑi. The transition
involves the axiom P@!!iϑi

µ−→ Ri, i.e. S@ϑi
µ−→ Ri and so does its

premise S|S µ−→ (Q0|Q1) that involves the axiom (S|S)@‖iϑi
µ−→ Ri.

(a) If the transition involves a single axiom, then µ = α, and Qi, by

inductive hypothesis, is such that
{

Q1−i = S
Qi = h(1, S, ϑi, ϑi)[w(ϑi) 7→ Ri]

(b) If the transition involves two axioms, then µ = µi and let the

other axiom involved be P@!!jϑ′i = Pj@ϑ′j
µ′j−→ R′

j , with j ∈ {0, 1}.
Two further cases arise.

(i) If j = i (the penultimate rule is a Par) then, by inductive hypoth-

esis,
{

Q1−i = S
Qi = h(2, S, ϑi, ϑ

′
j)[w(ϑi) 7→ Ri, w(ϑ′j) 7→ Rj ]
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(ii) If j 6= i (the penultimate rule is a Com) then, by inductive hy-

pothesis,
{

Q1−i = h(1, S, ϑj , ϑj)[w(ϑ′j) 7→ Rj ]
Qi = h(1, S, ϑi, ϑi)[w(ϑi) 7→ Ri]

In both cases, the conclusion of the rule leads P to a process Q =
(Q0|Q1)|!S and therefore, by Def. 5,
Q = h(P, !!iϑi, !!jϑ′j)[w(!!iϑi) 7→ Ri, w(!!jϑ′j) 7→ Rj ].

B Proofs of Section 4

Lemma 2 For each process P , (ρ, η, Φ) |=ϑ P iff ∀ϑ′ ∈ Addr(P ) :
(ρ, η, Φ) |=ϑϑ′ P@ϑ′. Also, (ρ, η, Φ) |=ϑϑ′ P ′@ϑ′ if P = π.P ′.

Proof. By induction on the form of P .

– if P ≡ 0: trivial;
– if P ≡ (νa)P ′ then (ρ, η, Φ) |=ϑ (νa)P ′ iff (ρ, η, Φ) |=ϑ P ′;
– if P ≡ (P0op�P1) then, by definition, (ρ, η, Φ) |=ϑ (P0op�P1) if and

only if (ρ, η, Φ) |=ϑ�0 P0 ∧ (ρ, η, Φ) |=ϑ�1 P1 and Addr(P0op�P1) =
�0.Addr(P0) ∪ �1.Addr(P1);

– If P@ϑ′ ≡!S then, by definition, (ρ, η, Φ) |=ϑ !S iff (ρ, η, Φ) |=ϑ!!0 S
and (ρ, η, Φ) |=ϑ!!1 S SAddr(!S) =!!0.Addr(S)∪!!1.Addr(S).

Furthermore, if P = π.P ′, then by the rules for prefixes (ρ, η, Φ) |=ϑ π.P ′

if and only if (ρ, η, Φ) |=ϑ P ′;

Lemma 3 If (ρ, η, Φ) |=ϑ P then ∀ϑ0, ϑ1 such that ∃H = h(k, P, ϑ0, ϑ1),

(a) (ρ, η, Φ) |=ϑ P implies (ρ,
_
η , Φ) |=ϑ P ;

(b) (ρ,
_
η , Φ) |=ϑ P iff (ρ,

_
η , Φ) |=ϑ H.

Proof. Item (a) holds by construction of (ρ,
_
η , Φ), since ϑ ∈_

w (ϑ).
We now prove (b), by inducing on the structure of P and by sub-cases on
the form of ϑ0, ϑ1.

– If P = 0: trivial.
– If P = µ.P then ϑ0 = ϑ1 = ε and H = h(1, P, ε, ε) = P ;
– If P = (νa)P ′ then h(k, (νa)P ′, ϑ0, ϑ1) = (νa)h(k, P ′, ϑ0, ϑ1) and, by

induction hypothesis on P ′, the thesis holds.
– If P = P0 op� P1, ϑ0 = �iϑ

′
0 and ϑ1 = �iϑ

′
1 then we have that

(ρ,
_
η , Φ) |=ϑ P iff (ρ,

_
η , Φ) |=ϑ�i Pi ∧ (ρ,

_
η , Φ) |=ϑ�1−i P1−i. Now,

H = h(k, P0 op� P1, �iϑ0, �iϑ1) = P ′
0 op� P ′

1, where P ′
i = h(k, Pi, ϑ

′
0, ϑ

′
1)

and P ′
1−i =

{
P1−i if �i = ‖i

0 if �i = ±i
. We have that (ρ,

_
η , Φ) |=ϑ H if and
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only if (ρ,
_
η , Φ) |=ϑ�i P ′

i and (ρ,
_
η , Φ) |=ϑ�1−i P ′

1−i. The first holds
by induction hypothesis on Pi and the other holds either because
(ρ,

_
η , Φ) |=ϑ�1−i P1−i or because (ρ,

_
η , Φ) |=ϑ�1−i 0.

– If P = P0 | P1, ϑ0 = ‖iϑ
′
0 and ϑ1 = ‖1−iϑ

′
1 then we have that

(ρ,
_
η , Φ) |=ϑ P iff (ρ,

_
η , Φ) |=ϑ‖i Pi ∧ (ρ,

_
η , Φ) |=ϑ‖1−i P1−i. Now,

H = h(2, P0 | P1, ‖iϑ, ‖1−iϑ
′) = P ′

0 op� P ′
1, where P ′

i = h(k, Pi, ϑ, ϑ)
and P ′

1−i = h(k, P1−i, ϑ
′, ϑ′). Now, (ρ,

_
η , Φ) |=ϑ H holds because both

(ρ,
_
η , Φ) |=ϑ‖i P ′

i and (ρ,
_
η , Φ) |=ϑ‖1−i P ′

1−i hold by induction hy-
pothesis on Pi and P1−i.

– If P =!S and ϑ0 =!!iϑ′0 and ϑ1 =!!jϑ′1, we prove the stronger result
(ρ,

_
η , Φ) |=ϑ (S|S)|!S, because H = h(k, P, !!iϑ′0, !!jϑ

′
1) differs from

(S|S)|!S only because it may have some inaction 0 in place of other
processes within a +-context. Now, we have to show that the fol-
lowing items hold: (a) (ρ,

_
η , Φ) |=ϑ‖0‖0 S, (b) (ρ,

_
η , Φ) |=ϑ‖0‖1 S and

(c) (ρ,
_
η , Φ) |=ϑ‖1 !S. By hypothesis, (ρ, η, Φ) |=ϑ !S and therefore

(ρ,
_
η , Φ) |=ϑ!!0 S and (ρ,

_
η , Φ) |=ϑ!!1 S. By definition of estimates,

items (a), (b), (c) follow immediately, because ‖0‖0, ‖0‖1,‖1!!0, ‖1!!1 ∈
_
w

(!!i).

Theorem 1 [Subject reduction] Given a process P , if (ρ,
_
η , Φ) |=ϑ P ,

then

(a) if P ≡ Q, then (ρ,
_
η , Φ) |=ϑ P iff (ρ,

_
η , Φ) |=ϑ Q;

(b) if P
µ−→ Q then we have:

(1) if µ = τ then (ρ,
_
η , Φ) |=ϑ Q;

(2) if µ = ab or µ = a(b), then (ρ,
_
η , Φ) |=ϑ Q and the transition

involves P@ϑ0
µ−→ R0, then b ∈

_
η 1 (ϑϑ0)(a); additionally, b ∈

Φ ∧ ϑE ∈
_
η 2 (ϑϑ0)(a), provided that a ∈ Φ;

(3) if µ = ab, the transition involves P@ϑ1 = a(y ∈ Y ).P1
µ−→ R1

and the condition (∗) holds, then b ∈ ρ(Y ) and (ρ,
_
η , Φ) |=ϑ Q,

where (∗) is (∃ϑ0 : b ∈
_
η 1 (ϑϑ0)(a) and ϑϑ1 ∈

_
η 2 (ϑϑ0)(a)) or (if

a ∈ Φ then b ∈ Φ and ϑϑ1 ∈
_
η 2 (ϑE)(a)).

Proof. The proof for (a) is straightforward, while the proof for (b) is by
induction on the construction of P

µ−→ Q and with sub-cases depend-
ing on whether case (1), (2), or (3) applies. Throughout assume that
(ρ,

_
η , Φ) |=ϑ P and P

µ−→ Q has been deduced with axioms P@ϑ0
µ0−→

R0 (and P@ϑ1
µ1−→ R1). Let H = h(1, P, ϑi, ϑi) and Q = H[w(ϑi) 7→ Ri]
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if the transition has been deduced with only the axiom P@ϑi
µi−→ Ri

and let H = h(2, P, ϑ0, ϑ1) and Q = H[w(ϑ0) 7→ R0, w(ϑ1) 7→ R1] if the
transition has been deduced with both axioms.

(1) We have to show that (ρ,
_
η , Φ) |=ϑ Q. In the case of Tau this is

immediate; and clearly the axioms Out and Sel Ein do not apply.
Due to (a) and the induction hypothesis (1), the property is preserved
by the rules Var and Res; and clearly the rule Open does not apply.
Now, we consider only one of the pairs of the remaining, symmetric
rules, and we omit the analogous proofs for the others. In the case of
Sum0, let P = P0+P1, such that for suitable Q0, P0

τ−→ Q0 (therefore
Q = Q0 +0). Since (ρ,

_
η , Φ) |=ϑ±1 0 is always true and, by induction

hypothesis, (ρ,
_
η , Φ) |=ϑ±0 Q0 we can establish (ρ,

_
η , Φ) |=ϑ Q0 + 0.

In the case of rule Par0, let P = P0|P1, s.t. for suitable Q0, P0
µ−→ Q0

(therefore Q = Q0|P1). From (ρ,
_
η , Φ) |=ϑ P0|P1 we have that, for i =

0, 1, (ρ,
_
η , Φ) |=‖iϑ Pi. Then the induction hypothesis ensures that

(ρ,
_
η , Φ) |=ϑ‖0 Q0 thereby establishing the desired (ρ,

_
η , Φ) |=ϑ Q0|P1.

In the case of rule Bang, Lemma 3 guarantees that (ρ,
_
η , Φ) |=ϑ P

implies (ρ,
_
η , Φ) |=ϑ H = h(k, P, ϑ0, ϑ1). Now the top-level operator

of H is a “|”, and the induction hypothesis (1) suffices.
In the case of Close, let P = P0|P1 and, for suitable Q0 and Q1,
let Q = Q0|Q1. Suppose that the transition involves both P0@ϑ0

ab−→
R0 and P1@ϑ1

ab−→ R1, with P0@ϑ0 = ab.R0 and P1@ϑ1 = a(y ∈
Y ).R1. The induction hypothesis (2) ensures that (ρ,

_
η , Φ) |=ϑ‖0 Q0

and that b ∈
_
η 1 (ϑ‖0ϑ0)(a) and the induction hypothesis (3) en-

sures that (ρ,
_
η , Φ) |=ϑ‖1 Q1 and b ∈ ρ(Y ), if (*) holds. Now, b ∈

_
η 1

(ϑ‖0ϑ0)(a) as said above, by Def. 3, comp(ϑ‖0ϑ0, ϑ‖1ϑ1) thus ϑ‖1ϑ1 ∈
_
η 2

(ϑ‖0ϑ0). From (ρ,
_
η , Φ) |=ϑ‖0 Q0 and (ρ,

_
η , Φ) |=ϑ‖1 Q1, we obtain

the desired (ρ,
_
η , Φ) |=ϑ (νb)(Q0|Q1).

The case of rule Com is similar; note however that the first conjunct
of condition (∗) may not hold and the output ab can be read by the at-
tacker as reported by ϑE ∈

_
η 2 (ϑ‖0ϑ0)(a). Additionally, in this case, if

b ∈ Φ, the induction hypothesis (2) ensures that ϑE ∈
_
η 2 (ϑ‖0ϑ0)(a),

provided that a ∈ Φ, in which case ϑ‖1ϑ1 ∈
_
η 2 (ϑE)(a).

(2) [Case µ = ab] We have to show that (ρ,
_
η , Φ) |=ϑ Q∧b ∈

_
η 1 (ϑϑ0)(a).

The axioms Tau and Sel Ein do not apply. Due to (a) and the in-
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duction hypothesis (2) the property is preserved by the rules Var
and Res. The rules Open, Close and Com do not apply. The only
interesting case is that of Out. Let the transition involve P@ϑ0 =
ab.R0

ab−→ R0, then, by Lemma 1, Q = H[w(ϑ0) 7→ R0], with H =
h(1, P, ϑ0, ϑ0) and, by Lemma 3, (ρ,

_
η , Φ) |=ϑ H. By definition of Q,

we know that H@w(ϑ0) = P@ϑ0 and Q@w(ϑ0) = R0. In particular,
from (ρ,

_
η , Φ) |=ϑ H, we can deduce that (ρ,

_
η , Φ) |=ϑw(ϑ0) H@w(ϑ0)

= ab.R0, and, by the clause for output in Tab. 2, (ρ,
_
η , Φ) |=ϑw(ϑ0) R0

= Q@w(ϑ0). If ϑ0 = ϑ′0ϑ
′′
0, by Lemma 2, (ρ,

_
η , Φ) |=ϑw(ϑ′0ϑ′′0 ) Q@w(ϑ′0ϑ

′′
0)

if and only if (ρ,
_
η , Φ) |=ϑw(ϑ′0) Q@w(ϑ′0). For all other addresses ϑ′′,

we have that Q@ϑ′′ = H@ϑ′′, and therefore (ρ,
_
η , Φ) |=ϑϑ′′ Q@ϑ′′ if

and only if
(ρ,

_
η , Φ) |=ϑϑ′′ H@ϑ′′. Consequently, by Lemma 2, (ρ,

_
η , Φ) |=ϑ Q.

The rules Par, Sum and Bang are as before.

[Case µ = a(b)] We have to show that (ρ,
_
η , Φ) |=ϑ Q and b ∈

_
η 1

(ϑϑ0)(a). The axioms Tau, Out and Sel Ein do not apply. Due to (a)
and the induction hypothesis (2) the property is preserved by the rules
Var and Res. The rules Close and Com do not apply. The only inter-
esting case is that of Open. Let P@ϑ0 ≡ ab.R0 and Q@ϑ0 = R0. The
induction hypothesis (2) and a 6= b ensure that (ρ,

_
η , Φ) |=ϑϑ0 (νb)R0

and that b ∈
_
η 2 (ϑϑ0)(a). Thus (ρ,

_
η , Φ) |=ϑϑ0 R0 and following the

same argument of the case above on Q = h(1, P, ϑ0, ϑ1)[w(ϑ1) 7→ R0]),
we establish the desired result (ρ,

_
η , Φ) |=ϑ Q. Additionally, if a ∈ Φ,

then b ∈ Φ and ϑE ∈
_
η (ϑϑ0)(a). The rules Par, Sum and Bang are

as before.

(3) Neither the axioms Tau, Out, nor the rules Open, Close and Com
are applicable. Due to (a) and induction hypothesis (3) the property
is preserved by the rules Var and Res. The only interesting case is
that of Sel Ein. Let the transition involve P@ϑ1 = a(y ∈ Y ).P1

ab−→
R1 = P1{b/y}. By induction hypothesis, (∃ϑ0 : b ∈

_
η 1 (ϑϑ0)(a) and

ϑϑ1 ∈
_
η 2 (ϑϑ0)(a)) or (if a ∈ Φ then b ∈ Φ and ϑϑ1 ∈

_
η 2 (ϑE)(a)). We

have to prove that b ∈ ρ(Y ) and that (ρ,
_
η , Φ) |=ϑ Q.

By Lemma 1, Q = H[w(ϑ1) 7→ R1] and, by Lemma 3, (ρ,
_
η , Φ) |=ϑ H.

By definition of Q, we know that H@w(ϑ1) = P@ϑ1 and Q@w(ϑ1) =
R1. In particular, from (ρ,

_
η , Φ) |=ϑ H, we can deduce that
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(ρ,
_
η , Φ) |=ϑw(ϑ1) H@w(ϑ1) = a(y ∈ Y ).P1, and, by the clause for

input in Tab. 2, (ρ,
_
η , Φ) |=ϑw(ϑ0) P1. Since the transition is fired,

b ∈ Y , b ∈ ρ(b) ∈ ρ(Y ).
Also, by hypothesis, either b ∈

_
η 1 (ϑϑ0)(a) or b ∈ Φ. Therefore, b ∈

_
η 1

(ϑϑ0)(a)∩ρ(Y ) or b ∈ Φ∩ρ(Y ), by the rule for input in Tab. 2 (lines 4
and 6) we also have that b ∈ ρ(y) and thus (ρ,

_
η , Φ) |=ϑϑ1 P1{b/y} = R1

= Q@w(ϑ1). Now, by Lemma 2, let ϑ1 = ϑ′1ϑ
′′
1, (ρ,

_
η , Φ) |=ϑw(ϑ′1ϑ′′1 ) Q@w(ϑ′1ϑ

′′
1)

iff (ρ,
_
η , Φ) |=ϑw(ϑ′1) Q@w(ϑ′1). For all other addresses ϑ′′, Q@ϑ′′ =

S@ϑ′′, therefore: (ρ,
_
η , Φ) |=ϑϑ′′ Q@ϑ′′ iff (ρ,

_
η , Φ) |=ϑϑ′′) S@ϑ′′. Con-

sequently, by Lemma 2, (ρ,
_
η , Φ) |=ϑ Q. The rules Par, Sum and

Bang are as before.

C Proofs of Section 5

Theorem 3 Let P be a process with pre-estimate (ρ, η, Φ) and let a be a
channel.

1. [no output for P@ϑ′ on a] If a ∈ fn(P ) and ϑE /∈ η2(ϑ′)(a), then
whenever P −→∗ P ′ µ−→ P ′′, with µ ∈ {ab, a(b)}, and the last transi-
tion involves P ′@ϑ0, then ϑ′ 6= ϑ0.

2. [no input for P@ϑ on a] If a ∈ fn(P ) and ϑ /∈ η2(ϑE)(a), then
whenever P −→∗ P ′ ab−→ P ′′, and the last transition involves P ′@ϑ1

then ϑ 6= ϑ1.
3. [no communication between P@ϑ and P@ϑ′ on a] If ϑ /∈ η2(ϑ′)(a),

(with comp(ϑ, ϑ′)), and ϑ, ϑ′ 6= ϑE), then, whenever P −→∗ P ′ τ−→
P ′′ and the last transition involves P ′@ϑ0 = ab.P0 and P ′@ϑ1 = a(y ∈
Y ).P1, then ϑ′ 6= ϑ0 or ϑ 6= ϑ1.

Proof. By Proposition 1, we know that ϑ ∈ η2(ϑ′)(a) implies that ∀ϑ0 ∈
_
w

(ϑ′),∀ϑ1 ∈
_
w (ϑ) : ϑ0 /∈

_
η 2 (ϑ1). Moreover, by Theorem 1 and by Lemma 3,

we know that a solution (ρ,
_
η , Φ) is valid for P and for its continuations

and so in the pre-estimate. Thus, it is enough to prove our claim in the
case P = P ′.

1. Let P@ϑ0 be ab.P0 for some b. Assume, per absurdum, that ϑ′ =
ϑ0. Since the transition involves P@ϑ0, i.e. P@ϑ′, Lemma 2 and the
hypothesis ensure that (ρ, η, Φ) |=ε P implies (ρ, η, Φ) |=ϑ′ ab.P0 and
therefore (ρ, η, Φ) |=ϑ′ P0 and b ∈ η1(ϑ′)(a) and since a ∈ Φ, then
ϑE ∈ η2(ϑ′)(a). This is against the hypothesis.
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2. Let P@ϑ1 be a(y ∈ Y ).P1. Assume, per absurdum, that ϑ = ϑ1. Since
the transition involves P@ϑ1, i.e. P@ϑ, Lemma 2 and the hypothe-
sis ensure that (ρ, η, Φ) |=ε P implies (ρ, η, Φ) |=ϑ a(y ∈ Y ).P1 and
therefore (ρ, η, Φ) |=ϑ P1 and since a ∈ Φ and b ∈ Φ ∩ ρ(Y ) (in fact,
b ∈ fn(P ) and b ∈ Y ), then b ∈ ρ(y) and ϑ ∈ η2(ϑE)(a). This is
against the hypothesis.

3. Assume, per absurdum, that ϑ′ = ϑ0 and ϑ = ϑ1. Since the transition
involves P@ϑ0, i.e. P@ϑ′, Lemma 2 and the hypothesis ensure that
(ρ, η, Φ) |=ε P implies (ρ, η, Φ) |=ϑ′ ab.P0 and therefore (ρ, η, Φ) |=ϑ′ P0

and, in particular, b ∈ η1(ϑ′)(a). Since the transition involves P@ϑ1,
i.e. P@ϑ, Lemma 2 and the hypothesis ensure that (ρ, η, Φ) |=ε P
implies (ρ, η, Φ) |=ϑ a(y ∈ Y ).P1. Since ϑ, ϑ′ are compatible and b ∈
ρ(Y ) ∩ η1(ϑ′)(a) then b ∈ ρ(y) and ϑ ∈ η2(ϑ′)(a). This is against the
hypothesis. Note that b ∈ Y implies b ∈ ρ(Y ).

Theorem 4 Let P be a process with pre-estimate (ρ, η, Φ). If b /∈ Φ, then
P preserves the secrecy of the value b.

Proof. We exploit Theorem 1 and use P = P ′. Suppose, per absur-
dum, that ∃a : µ = ab (the other case is analogous) and that P@ϑ0 =
ab.P̃ ′. Since the transition involves P@ϑ0, Lemma 2 and the hypothe-
sis ensure that (ρ, η, Φ) |=ε P implies (ρ, η, Φ) |=ϑ ab.P̃ ′ and therefore
(ρ, η, Φ) |=ϑ P̃ ′ and b ∈ η1(ϑ′)(a). Since a ∈ fn(P ), otherwise the transi-
tion would not have been possible, then a ∈ Φ and therefore b ∈ Φ. This
is against the hypothesis.

Theorem 6. 5 Let P be a process with pre-estimate (ρ, η, Φ) and C[−] be
a one hole context with vals(C[−]) ⊆ Φ. If P preserves the secrecy of the
value b /∈ fn(P ) then C[P ] still preserves the secrecy of the value b.

Proof. Suppose, per absurdum, that C[P ]
µ−→ C[P ′], with µ = ab (the

case µ = a(b) is analogous). Since b /∈ Φ as P preserves the secrecy of

b, then, by Theorem 4, b /∈ vals(C[−]). Therefore, C[P ]
a(b)−→ C[P ′] only if

P
µ−→ P ′: contradiction.
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