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Abstract. A simple type confusion attack occurs in a security protocol,when a principal interprets data of one type as data of another. Theseattacks can be successfully prevented by \tagging" types of each �eldof a message. Complex type confusions occur instead when tags can beconfused with data and when �elds or sub-segments of �elds may beconfused with concatenations of �elds of other types. Capturing thesekinds of confusions is not easy in a process calculus setting, where it isgenerally assumed that messages are correctly interpreted. In this paper,we model in the process calculus LYSA only the misinterpretation due tothe confusion of a concatenation of �elds with a single �eld, by extendingthe notation of one-to-one variable binding to many-to-one binding. Wefurther present a formal way of detecting these possible misinterpreta-tions, based on a Control Flow Analysis for this version of the calculus.The analysis over-approximates all the possible behaviour of a protocol,including those e�ected by these type confusions. As an example, weconsidered the amended Needham-Schroeder symmetric protocol, wherewe succeed in detecting the type confusion that lead to a complex typeaw attacks it is subject to. Therefore, the analysis can capture potentialtype confusions of this kind on security protocols, besides other securityproperties such as con�dentiality, freshness and message authentication.

1 Introduction
In the last decades, formal analyses of cryptographic protocols have been widelystudied and many formal methods have been put forward. Usually, protocolspeci�cation is given at a very high level of abstraction and several implemen-tation aspects, such as the cryptographic ones, are abstracted away. Despite theabstract working hypotheses, many attacks have been found that are indepen-dent of these aspects. Sometimes, this abstract view is not completely adequate,though. At a high level, a message in a protocol consists of �elds: each representssome value, such as the name of a principal, a nonce or a key. This structure canbe easily modelled by a process calculus. Nevertheless, at a more concrete level,
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a message is nothing but a raw sequence of bits. In this view, the recipient of amessage has to decide the interpretation of the bit string, i.e. how to decomposethe string into substrings to be associated to the expected �elds (of the expectedlength) of the message. The message comes with no indication on its arity andon the types of its components. This source of ambiguity can be exploited by anintruder that can fool the recipient into accepting as valid a message di�erentfrom the expected one. A type confusion attack arises in this case.
A simple type confusion occurs when a �eld is confused with another [16]. Thecurrent preventing techniques [13] consists in systematically associating message�elds with tags representing their intended type. On message reception, honestparticipants check tags so that �elds with di�erent types cannot be mixed up. Asstated by Meadows [17], though, simple tags could not su�ce for more complextype confusion cases: \in which tags may be confused with data, and terms ofpieces of terms of one type may be confused with concatenations of terms ofseveral other types." Tags should also provide the length of tagged �elds.
Here, we are interested in semantically capturing attacks that occur when aconcatenation of �elds is confused with a single �eld [24]. Suppose, e.g. that themessage pair (A;N), where A is a principal identity and N is a fresh nonce, isinterpreted as a key K, from the receiver of the message. For simplicity, we callthem complex type confusion attacks. This level of granularity is di�cult to cap-ture with a standard process calculus. An alternative could be separating controlfrom data, as in [1], and using equational theories on data; this however makesmechanical analysis more expensive. In a standard process algebraic framework,there is no way to confuse a term (A;N) with a term K. The term is assumedto abstractly model a message, plugging in the model the hypothesis that themessage is correctly interpreted. In concrete implementation this confusion isinstead possible, provided that the two strings have the same length.
As a concrete example, consider the Amended Needham Schroeder symmetrickey protocol [9]. It aims at distributing a new session key K between two agents,Alice (A) and Bob (B), via a trusted server S. Initially each agent is assumed toshare a long term key, KA and KB resp., with the server. The protocol narrationis reported in Fig. 1 (a). In messages 1 and 2, A initiates the protocol with B.

1: A! B : A2: B ! A : fA;NBgKB3: A! S : A;B;NA; fA;NBgKB4: S ! A : fNA; B;K; fK;NB ; AgKBgKA5: A! B : fK;NB ; AgKB6: B ! A : fNgK7: A! B : fN � 1gK(a)

1: A! B : A2: B ! A : fA;NBgKB3: A! S : A;B;NA; fA;NBgKB10: M ! A : NA; B;K0
20: A!M : fNA; B;K0; N 0AgKA4: M(S)! A : fNA; B;K0; N 0AgKA5: A!M(B) : N 0A6: M(B)! A : fNgK07: A!M : fN � 1gK0(b)

Fig. 1. Amended Needham-Schroeder Symmetric Protocol: Protocol Narration (a) andType Flaw Attack (b)



In message 3 S generates a new session key K, that is distributed in messages 4and 5. Nonces created by A and B are used to check freshness of the new key.Finally, messages 6 and 7 are for mutual authentication of A and B: B generatesa new nonce N and exchanges it with A, encrypted with the new session key K.The protocol is vulnerable to a complex type aw attack, discovered by Long[14] and shown in Fig. 1 (b). It requires two instances of the protocol, running inparallel. In one, A plays the roles of initiator and in the other that of responder.In the �rst instance, A initiates the protocol with B. In the meantime, theattacker,M , initiates the second instance with A and sends the triple NA; B;K 0
to A (in step 10). The nonce NA is a copy from step 3 in the �rst instance and
K 0 is a faked key generated by the attacker. A will generate and send out theencryption of the received �elds, NA; B;K 0, and a nonce N 0A. The attackerM(S)impersonates S and replays this message to A in the �rst instance. A decryptsthis message, checks the nonce NA and the identity B, and accepts K 0 as thesession key, which is actually generated by the attacker. After the challenge andresponse steps (6 and 7), A will communicate with M using the faked key K 0.Our idea is to explore complex type confusion attacks, by getting closer tothe implementation, without crossing the comfortable borders of process calculi.To this aim, we formally model the possible misinterpretations between termsand concatenations of terms. More precisely, we extend the notation of one-to-one variable binding to many-to-one binding in the process calculus LYSA [5],that we use to model security protocols. The Control Flow Analysis soundlyover-approximates the behaviour of protocols, by collecting the set of messagesthat can be sent over the network, and by recording which values variables maybe bound to. Moreover, at each binding occurrence of a variable, the analysischecks whether there is any many-to-one binding possible and records it as abinding violation. The approach is able to detect complex type confusions possi-bly leading to attacks in cryptographic protocols. Other security properties canbe addressed in the same framework, by just changing the values of interest ofthe Control Flow Analysis, while its core does not change.The paper is organized as follows. In Section 2, we present the syntax andsemantics of the LYSA calculus. In Section 3, we introduce the Control FlowAnalysis and we describe the Dolev-Yao attacker used in our setting. Moreover,we conduct an experiment to analyse the amended Needham-Schoreder symmet-ric key protocol. Section 4 concludes the paper.

2 The LYSA Calculus
The LySa calculus [5] is a process calculus, designed especially for modellingcryptographic protocols in the tradition of the �- [20] and Spi- [2] calculi. Itdi�ers from these essentially in two aspects: (1) the absence of channels: allprocesses have only access to a single global communication channel, the network;(2) the inclusion of pattern matching into the language constructs where valuescan become bound to values, i.e. into input and into decryption (while usuallythere is a separate construct).



Syntax In LYSA, the basic building blocks are values, V 2 V al, which corre-spond to closed terms, i.e. terms without free variables. Values are used to rep-resent keys, nonces, encrypted messages, etc. Syntactically, they are describedby expressions E 2 Expr (or terms) that may either be variables, names, orencryptions. Variables and names come from two disjoint sets V ar, ranged overby x, and Name, ranged over by n, respectively. Finally, expressions may be en-cryptions of a k-tuple of other expressions, in which case, E0 is the key used toperform the encryption. LYSA expressions are, in turn, used to construct LYSAprocesses P 2 Proc as shown below. Here, we assume perfect cryptography.
E ::= n j x j fE1; : : : ; EkgE0
P ::= hE1; : : : ; Eki:P j (E1; : : : ; Ej ;xj+1; : : : ; xk)l:Pdecrypt E as fE1; : : : ; Ej ;xj+1; : : : ; xkglE0 in P j(� n)P j P1jP2 j !P j 0

The set of free variables, resp. free names, of a term or a process is de�ned inthe standard way. As usual we omit the trailing 0 of processes. The label l froma denumerable set Lab (l 2 Lab) in the input and in the decryption constructsuniquely identi�es each input and decryption point, resp., and is mechanicallyattached.In addition to the classical constructs for composing processes, LYSA containsan input and a decryption construct with pattern matching. Patterns are inthe form (E1; � � � ; Ej ;xj+1; � � � ; xk) and are matched against k-tuples of values
hE01; � � � ; E0ki. The intuition is that the matching succeeds when the �rst 1 �
i � j values E0i pairwise correspond to the values Ei, and the e�ect is to bindthe remaining k � j values to the variables xj+1; � � � ; xk. Syntactically, this isindicated by a semi-colon that separates the components where matching isperformed from those where only binding takes place. For example, let P =
decrypt fygK as fx; glK in P 0 and Q = decrypt fygK as f;xglK in Q0. Whilethe decryption in P succeeds only if x matches y, the one in Q always does,binding x to y.
Extended LYSA As seen above, in LYSA, values are passed around amongprocesses through pattern matching and variable binding. This is the way tomodel how principals acquire knowledge from the network, by reading messages(or performing decryptions), provided they have certain format forms. A re-quirement for pattern matching is that patterns and expressions are of the samelength: processes only receive (or decrypt) messages, whose length is exactly asexpected and each variable is binding to one single value, later on as one-to-onebinding. We shall relax this constraint, because it implicitly prevents us frommodelling complex type confusions, i.e. the possibility to accept a concatenationof �elds as a single one. Consider the complex type aw attack on the amendedNeedham-Schroder protocol, shown in the Introduction. The principal A, in therole of responder, is fooled by accepting NA; B;K 0 as the identity of the initia-tor and generates the encryption fNA; B;K 0; N 0AgKA , which will be replayed bythe attacker later on in the �rst instance. In LYSA, A's input can be roughly



expressed as (;xb), as she is expecting a single �eld representing the identity ofthe initiator of the protocol. Because of the length requirement, though, xb canonly be binding to a single value and not to a concatenation of values, such asthe (NA; B;K 0) object of the output of the attacker.To model complex type confusions, we need to allow a pattern matching tosucceed also in the cases in which the length of lists is di�erent. The extensionof the notation of pattern matching and variable binding will be referred as
many-to-one binding. Patterns are then allowed to be matched against expres-sions with at least the same number of elements. A single variable can then bebound also to a concatenation of values. Since there may be more values thanvariables, we partition the values into groups (or lists) such that there are thesame number of value groups and variables. Now, each group of values is boundto the corresponding variable. In this new setting, the pattern in A's input (;xb)can instead successfully match the expression in the faked output of the attacker
hNA; B;K 0i and result in the binding of xb to the value (NA; B;K 0).We need some auxiliary de�nitions �rst. The domain of single values is builtfrom the following grammar and represents closed expressions (i.e. without freevariables), where each value is a singleton, i.e. it is not a list of values. In otherwords, no many-to-one binding has a�ected the expression. These are the valuesused in the original LYSA semantics.

val 3 v ::= n j fv1; : : : ; vkgv0 .General values are closed expressions, where each value V can be a list of values(V1; ::; Vn). These values are used to represent expressions closed after at leastone many-to-one-binding and are the values our semantics handles.
V al 3 V ::= v j (V1; ::; Vn) j fV1; ::; VngV0To perform meaningful matching operations between lists of general values, we�rst atten them, thus obtaining attened values that can be either single values

v or encryptions of general values.
Flat 3 T := v j fV1; ::; VngV0Flattening is obtained by using the following Flatten function Fl : V al! Flat

� Fl(v) = v;
� Fl((V1; ::; Vn)) = Fl(V1); :::; F l(Vn); � Fl(fV1; ::; VngV0) = fV1; ::; VngV0 .
Example 1. Fl(((n1; n2); (fm1; (m2;m3)gm0))) = n1; n2; fm1; (m2;m3)gm0
The idea is that encryptions cannot be directly attened when belonging to alist of general values. Their contents are instead attened when received andanalysed in the decryption phase.To perform many-to-one bindings, we resort to a partition operatorQk that,given a list of attened values (T1; : : : ; Tn), returns all the possible partitionscomposed by k non-empty groups (or lists) of attened values. For simplicity,
we use eT to represent a list of attened values (T1; : : : ; Tj)Y
k
(T1; : : : ; Tn) = f(fT1; :::;fTk)j 8i : eTi 6= ; ^ Fl((fT1; :::;fTk)) = (T1; : : : ; Tn)g if n � k

Note that the function is only de�ned if n � k, in which case it returns a setof lists satisfying the condition. Now binding k variables x1; :::; xk to n at-



tened values amounts to partitioning the values into k (the number of variables)
non-empty lists of attened values, (fT1; :::;fTk) 2 Qk(T1; : : : ; Tn), and binding
variables xi to the corresponding list eTi.
Example 2. Consider the successful matching of (m;x1; x2) against (m;n1; n2; n3).Since Q2(n1; n2; n3) = f((n1); (n2; n3)); ((n1; n2); (n3))g, it results in two possi-
ble e�ects (recall that for each i, eTi must be non-empty), i.e.
{ binding variable x1 to (n1) and binding variable x2 to (n2; n3), or{ binding variable x1 to (n1; n2) and binding variable x2 to (n3).

Finally, we de�ne the relation =F as the least equivalence over V al and (byoverloading the symbol) and over Flat that includes:{ v =F v0 i� v = v0;{ (V1; :::; Vk) =F (V 01 ; :::; V 0n) i� Fl(V1; :::; Vk) = Fl(V 01 ; :::; V 0n);{ fV1; :::; VkgV0 =F fV 01 ; :::; V 0ngV 00 i� Fl(V1; :::; Vk) = Fl(V 01 ; :::; V 0n) andFl(V0) = Fl(V 00);
Semantics LYSA has a reduction semantics, based on a standard structuralequivalence. The reduction relation !R is the least relation on closed processesthat satis�es the rules in Tab. 1. It uses a standard notion of structural congru-ence �.At run time, the complex type confusions are checked by a reference mon-itor, which aborts when there is a possibility that a concatenation of values isbound to a single variable. We consider two variants of the reduction relation
!R, graphically identi�ed by a di�erent instantiation of the relation R, whichdecorates the transition relation. The �rst variant takes advantage of checks ontype confusions, while the other one discards them: essentially, the �rst semanticschecks for the presence of complex type confusions. More precisely, the referencemonitor performs its checks at each binding occurrence, i.e. when the pattern
V1; : : : ; Vk is matched against V 01 ; : : : ; V 0k;xj ; :::; xt. Both the lists of values areattened and result in s values T1; : : : ; Ts, len values T 01; : : : ; T 0len, resp. The ref-erence monitor checks whether the length of the list len+(t� j) of the attenedvalues of the pattern, corresponds to the length s of the list of the general valuesto match against it. If (len+ t�j) = s then there is a one-to-one correspondencebetween variables and attened values. Otherwise, then there exists at least avariable xi, which may bind to a list of more than one value. Formally:
{ the reference monitor semantics, P !RM P 0, takes R = RM(s; len + t � j)true when s = len+ t� j, where s and len+ t� j are de�ned as above;{ the standard semantics, P ! P 0 takes R to be universally true.

The rule (Com) in the Tab. 1 states when an output hV1; : : : ; Vki:P is matchedby an input (V 01 ; : : : ; V 0j ;xj+1; : : : ; xt)l:P 0. It requires that: (i) the �rst j generalvalues of the input pattern V 01 ; : : : ; V 0j are attened into len attened values
T 01; : : : ; T 0len; (ii) the general values V1; : : : ; Vk in the output tuple are attenedinto s attened values T1; : : : ; Ts; (iii) if s � (len+t�j) and the �rst len values of
T1; : : : ; Ts pairwise match with T 01; : : : ; T 0len then the matching succeeds; (iv) in



(Com) ^leni=1Ti =F T 0i ^ R(s; len+ t� j)
hV1; : : : ; Vki:P j (V 01 ; : : : ; V 0j ;xj+1; : : : ; xt)l:P 0 !R P j P 0[eTj+1=xj+1; : : : ; eTt=xt]where (A) holds
(Dec) V0 =F V 00 ^ ^leni=1 Ti =F T 0i ^ R(s; len+ t� j)
decrypt fV1; : : : ; VkgV0 as fV 01 ; : : : ; V 0j ;xj+1; : : : ; xtglV 00 in P !R P [eTj+1=xj+1; : : : ; eTt=xt]where (A) holds
(New)P !R P 0
(� n)P !R (� n)P 0

(Par)P1 !R P 01P1 j P2 !R P 01 j P2
(Congr)P � P 0 ^ P 0 !R P 00 ^ P 00 � P 000

P !R P 000

A =
8<
:
Fl((V1; : : : ; Vk)) = T1; : : : ; Tlen; Tlen+1; : : : ; TsFl(V 01 ; : : : ; V 0j )) = T 01; : : : ; T 0len( eTj+1; : : : ; eTt) 2 Qt�j(Tlen+1; : : : ; Ts)

9=
;

Table 1. Operational Semantics; P !R P 0, parameterised on R.

this case, the remaining values Tlen+1; : : : ; Ts are partitioned into a sequence of
non-empty lists eTi, whose number is equal to the one of the variables (i.e. t� j),computed by the operator Qt�j . Furthermore, the reference monitor checks forthe possibility of many-to-one binding, i.e. checks whether s � (len+t�j). If thisis the case, it aborts the execution. Note that, if instead s = (len+ t� j), then
Fl(V1; : : : ; Vk) = V1; : : : ; Vk, Fl(V 01 ; : : : ; V 0j ) = V 01 ; : : : ; V 0j , k = s, and j = len.The rule (Dec) performs pattern matching and variable binding in the sameway as in (Com), with the following additional requirement: the keys for en-cryption and decryption have to be equal, i.e. V0 =F V 00 . Similarly, the referencemonitor aborts the execution if many-to-one binding occurs.The rules (New), (Par) and (Congr) are standard, where the (Congr) rulealso makes use of structural equivalence �.As for the dynamic property of the process, we say that a process is complex
type coherent, when there is no complex type confusions, i.e. there is no many-to-one binding in any of its executions. Consequently, the reference monitor willnever stop any execution step.
De�nition 1 (Complex Type Coherence). A process P is complex typecoherent if for all the executions P !� P 0 ! P 00 whenever P 0 ! P 00 is derived
using either axiom
- (Com) on hV1; : : : ; Vki:Q j (V 01 ; : : : ; V 0j ;xj+1; : : : ; xt)l:Q0 or
- (Dec) on decrypt fV1; : : : ; VkgV0 as fV 01 ; : : : ; V 0j ;xj+1; : : : ; xtglV 00 in Q
it is always the case that s = len + t � j, where Fl(Vp; : : : ; Vk) = Tp; :::; Ts and
Fl(V 0p ; : : : ; V 0j ) = Tp; :::; Tlen with p = 1 (p = 0) in the case of (Com), (Dec),
respectively.



3 The Control Flow Analysis
Our analysis aims at safely over-approximating how a protocol behaves and whenthe reference monitor may abort the computation.

The Control Flow Analysis describes a protocol behaviour by collecting allthe communications that a process may participate in. In particular, the analysisrecords which value tuples may ow over the network (see the analysis component
� below) and which value variables may be bound to (component �). This givesinformation on bindings due to pattern matching. Moreover, at each bindingoccurrence, the Control Flow Analysis checks whether there is any many-to-onebinding possible, and records it as a binding violation (component  ). Formally,the approximation, or estimate, is a triple (�; �;  ) (respectively, a pair (�; �)when analysing an expression E) that satis�es the judgements de�ned by theaxioms and rules in Tab. 2.
Analysis of Expressions For each expression E, our analysis will determinea superset of the possible values it may evaluate to. For this, the analysis keepstrack of the potential values of variables, by recording them into the global
abstract environment:
� � : X ! P(V al) that maps the variables to the sets of general values that theymay be bound to, i.e. if a 2 �(x) then x may take the value a.

The judgement for expressions takes the form � j= E : # where # � V al� is anacceptable estimate (i.e. a sound over-approximation) of the set of general valuelists that E may evaluate to in the environment �. The judgement is de�ned bythe axioms and rules in the upper part of Tab. 2. Basically, the rules demandthat # contains all the value lists associated with the components of a term,e.g. a name n evaluates to the set #, provided that n belongs to #; similarly fora variable x, provided that # includes the set of value lists �(x) to which x isassociated with.
The rule (Enc) (i) checks the validity of estimates �i for each expression

Ei; (ii) requires that all the values T1; :::; Ts obtained by attening the k-tuples
V1; :::; Vk, such that Vi 2 �i, are collected into values of the form (fT1; � � � ; TsglV0),(iii) requires these values to belong to #.
Analysis of Processes In the analysis of processes, we focus on which tuplesof values can ow on the network:
� � � P(V al�), the abstract network environment, includes all the tuples forminga message that may ow on the network, e.g. if the tuple ha; bi belongs to � thenit can be sent on the network.

The judgement for processes has the form: (�; �) j= P :  , where  is thepossibly empty set of \error messages" of the form l, indicating a binding viola-tion at the point labelled l. We prove in Theorem 2 below that when  = ; wemay do without the reference monitor. The judgement is de�ned by the axiomsand rules in the lower part of Tab. 2 (where A ) B means that B is analysedonly when A is evaluated to be true) and are explained below.



CFA Rules Explanation The rule for output (Out), computes all the messagesthat can be obtained by attening all the general values to which sub-expressionsmay be evaluated. The use of the atten function makes sure that each messageis plain-structured, i.e. redundant parentheses are dropped.

(Name) (n) 2 #� j= n : # (Var) �(x) � #� j= x : #

(Enc)
^ki=0 � j= Ei : #i ^8V0; : : : ; Vk : ^ki=0 Vi 2 #i ^ Fl(V1; :::; Vk) = T1; :::; Ts )(fT1; :::; TsgV0) 2 #� j= fE1; : : : ; EkgE0 : #

(Out)
^ki=1 � j= Ei : #i ^8V1; : : : ; Vk : ^ki=1Vi 2 #i ^ Fl(V1; :::; Vk) = T1; :::; Ts )hT1; :::; Tsi 2 � ^ (�; �) j= P :  

(�; �) j= hE1; : : : ; Eki:P :  

(In)

^ji=1 � j= Ei : #1 ^8V 01; : : : ; V 0j : ^ji=1V 0i 2 #i ^ Fl(V 01 ; :::; V 0j ) = T 01; :::; T 0len )8hT1; :::; Tsi 2 � : T1; :::; Tlen =F T 01; :::; T 0len )8( eTj+1; : : : ; eTt) 2Qt�j(Tlen+1; : : : ; Tk))(^ti=j+1 eTi 2 �(xi) ^ (s > len+ t� j)) l 2  ^ (�; �) j= P :  )
(�; �) j= (E1; : : : ; Ej ;xj+1; : : : ; xt)l:P :  where s � len+ t� j

(Dec)

� j= E : # ^ ^ji=0 � j= Ei : #i ^8V 00; : : : ; V 0j : ^ji=0V 0i 2 #i ^ Fl(V 01 ; :::; V 0j ) = T 01; :::; T 0len )8fT1; : : : ; TsgV0 2 # : T1; :::; Tlen =F T 01; :::; T 0len )8( eT 0j+1; : : : ; eT 0t ) 2Qt�j(Tlen+1; : : : ; Tk))(^ti=j+1 eT 0i 2 �(xi) ^ (s > len+ t� j)) l 2  ^ (�; �) j= P :  )
(�; �) j= decrypt E as fE1; : : : ; Ej ;xj+1; : : : ; xtglE0 in P :  where s � len+ t� j

(New) (�; �) j= P :  (�; �) j= (� n)P :  (Par) (�; �) j= P1 :  ^ (�; �) j= P2 :  (�; �) j= P1jP2 :  
(Rep) (�; �) j= P :  (�; �) j=!P :  (Nil) (�; �) j= 0 :  

Table 2. Analysis of terms; � j= E : #, and processes: (�; �) j= P :  

More precisely, it (i) checks the validity of estimates �i for each expression
Ei; (ii) requires that all the values obtained by attening the k-tuples V1; :::; Vk,such that Vi 2 �i, can ow on the network, i.e. that they are in the component �;(iii) requires that the estimate (�; �;  ) is valid also for the continuation process
P . Suppose e.g. to analyse hA;NAi:0. In this case, we have that � j= A : f(A)g,
� j= NA : f(NA)g, Fl((A); (NA)) = A;NA and hA;NAi 2 �. Suppose instead to



have hA; xAi:P and �(xA) = f(NA); (N 0A)g. In this case we have Fl((A); (NA)) =A;NA, Fl((A); (N 0A)) = A;N 0A, hA;NAi 2 � and also hA;N 0Ai 2 �.The rule for input (In) basically looks up in � for matched tuples and performsvariable binding before analysing the continuation process. This is done in thefollowing steps: the rule (i) evaluates the �rst j expressions, whose results aregeneral values, V 0i . These are attened into a list of values T 01; :::; T 0len in order toperform the pattern matching. Then, the rule (ii) checks whether the �rst lenvalues of any message hT1; :::; Tsi in � (i.e. any message predicted to ow on thenetwork) matches the values from previous step, i.e. T 01; :::; T 0len. Also, the rule(iii) partitions the remaining Tlen+1; :::; Ts values of the tuple hT1; :::; Tsi in all
the possible ways to obtain t� j lists of attened values eTi and requires each listis bound to the corresponding variable eTi 2 �(xi). The rule (iv) checks whetherthe attened pattern and the attened value are of the same length. If this is notthe case, the �nal step should be in putting l in the error component  . Finally,the rule (v) analyses the continuation process. Suppose to analyse the process(A; xA;x; xB):0, where hA;NA; B;NBi 2 � and (NA) 2 �(xA). Concretising therule (Inp) gives j = 2; t = 2 and the followings,

� j= A : #1 ^ � j= xA : #2 yielding #1 3 (A) and #2 3 (NA)8V 01 ; V 02 : V 01 2 #1 ^ V 02 2 #2 ^ taking V 01 = (A) and V 02 = (NA) ^Fl(V 01 ; V 02 ) = T 01; :::; T 0len len = 2 and T 01; :::; T 0len = A;NA8hT1; : : : ; Tsi 2 � : if hA;NA; B;NBi 2 � and s = 4i.e. T1 = A; T2 = NA; T3 = B; T4 = NBT1; : : : ; Tlen =F T 01; : : : ; T 0len ) T1; T2 =F T 01; T 02 = A;NA8(fT3;fT4) 2Q2(T3; T4)) Q2(T3; T4) =Q2(B;NB) = f((B); (NB))g(fT3 2 �(x) ^fT4 2 �(xA)^ gives (B) 2 �(x) ^ (NB) 2 �(xB)(s > len+ t� j)) l 2  ^ and 4 = 4 does not require l 62  (�; �) j= 0 :  ) true
(�; �) j= (A; xA;x; xB)l:0 :  

In particular, ((B); (NB)) 2Q2(B;NB) implies that (B) 2 �(x) and (NB) 2�(xB). Suppose to have also that hA;NA; B;NB ;Ki 2 �. In this case, ((B); (NB ;K)) 2Q2(B;NB ;K) and therefore (B) 2 �(x) and (NB ;K) 2 �(xB) and also ((B;NB);K) 2Q2(B;NB ;K) and therefore (B;NB) 2 �(x) and (K) 2 �(xB). More precisely:
� j= A : #1 ^ � j= xA : #2 yielding #1 3 (A) and #2 3 (NA)8V 01 ; V 02 : V 01 2 #1 ^ V 02 2 #2 ^ taking V 01 = (A) and V 02 = (NA) ^Fl(V 01 ; V 02 ) = T 01; :::; T 0len len = 2 and T 01; :::; T 0len = A;NA8hT1; : : : ; Tsi 2 � : if hA;NA; B;NB ;Ki 2 � and s = 5i.e. T1 = A; T2 = NA; T3 = B; T4 = NB ; T5 = KT1; : : : ; Tlen =F T 01; : : : ; T 0len ) T1; T2 =F T 01; T 02 = A;NA8(fT3;fT4) 2Q2(T3; T4; T5)) Q2(T3; T4; T5) =Q2(B;NB ;K) =f((B); (NB ;K)); ((B;NB); (K))g(fT3 2 �(x) ^fT4 2 �(xA) gives (B); (B;NB) 2 �(x) and (K); (NB ;K) 2 �(xB)(s > len+ t� j)) l 2  ^ 5 > 2 + 4� 2 requires l 2  (�; �) j= 0 :  true

(�; �) j= (A; xA;x; xB)l:0 :  



The rule for decryption (Dec) is similar to (In): the values to be matched arethose obtained by evaluating the expression E; while the matching ones are theterms inside decryption. If the check succeeds then variables are bound and thecontinuation process P is analysed. Moreover, the rule checks the possibility ofmany-to-one binding: the component  must contain the label l corresponding tothe decryption. Suppose e.g. to have decrypt E as fE1; : : : ; E2;x3; : : : ; x4glE0 in P ,with E = fA;NA; B;NBgK , E0 = K;E1 = A, E2 = xA and �(xA) = f(NA)g.Then we have that � j= A : f(A)g, � j= xA : f(NA)g and Fl((A); (NA)) = A;NA.Then ((B); (NB)) 2 Q2(B;NB) implies that (B) 2 �(x3) and (NB) 2 �(x4).Suppose to have instead E = fA;NA; B;NB ;K0gK , then ((B); (NB ;K0)) 2Q2(B;NB ;K0) and therefore (B) 2 �(x3) and (NB ;K0) 2 �(x4) and also((B;NB); (K0)) 2 Q2(B;NB ;K0) and therefore (B;NB) 2 �(x3) and (K0) 2�(x4). Furthermore l 2  .The rule (Nil) does not restrict the estimate, while the rules (New), (Par)and (Rep) ensure that the estimate also holds for the immediate sub-processes.
Semantics Properties Our analysis is correct with respect to the operationalsemantics of LYSA. The detailed proofs are omitted due to space limitations andcan be found in [4].We have the following results. The �rst states that estimates are resistant tosubstitution of closed terms for variables, and it holds for both extended termsand processes. The second one says that estimates respect �.
Lemma 1. 1. (a) � j= E : # ^ (T1; : : : ; Tk) 2 �(x) imply � j= E[T1; : : : ; Tk=x] : #(b) (�; �) j= P :  ^ (T1; : : : ; Tk) 2 �(x) imply (�; �) j= P [T1; : : : ; Tk=x] :  2. If P � Q and (�; �) j= P then (�; �) j= Q
Our analysis is semantically correct regardless of the way the semantics is param-eterised, furthermore the reference monitor semantics cannot stop the executionof P when  is empty. The proof is by induction on the inference of P ! Q.
Theorem 1. (Subject reduction) If P ! Q and (�; �) j= P :  then(�; �) j= Q :  . Additionally, if  = ; then P !RM Q.

The next theorem shows that our analysis correctly predicts when we cansafely do without the reference monitor. We shall say that the reference monitorRM cannot abort a process P when there exist no Q;Q0 such that P !� Q! Q0
and P !�RM Q9RM. (As usual, * stands for the transitive and reexive closureof the relation in question, and we omit the string of labels in this case; while
Q9RM stands for 6 9Q0 : Q!RM Q0.) We then have:
Theorem 2. (Static check for reference monitor)

If (�; �) j= P :  and  = ; then RM cannot abort P .
Modelling the Attackers In a protocol execution, several principals exchangemessages over an open network, which is therefore vulnerable to a maliciousattacker. We assume it is an active Dolev-Yao attacker [10]: it can eavesdrop,and replay, encrypt, decrypt, generate messages providing that the necessary



information is within his knowledge, that it increases while interacting withthe network. This attacker can be modelled in LYSA as a process running inparallel with the protocol process. Formally, we shall have Psys j P�, where Psysrepresents the protocol process and P� is some arbitrary attacker. To get anaccount of the in�nitely many attackers, the overall idea is to �nd a formula F(for a similar treatment see [5]) that characterizes P�: this means that whenevera triple (�; �;  ) satis�es it, then (�; �) j= P� :  and this holds for all attackers,in particular for the hardest one [21]. Intuitively, the formula F has to mimichow P� is analysed. The attacker process is parameterised on some attributes of
Psys, e.g. the length of all the encryptions that occurred and all the messagessent over the network. In the formula, the names and variables the attacker usesare apart from the ones used by Psys. We can then postulate a new distinguishedname n� (variable z�) in which the names (variables, resp.) of the attacker arecoalesced; therefore n� may represent any name generated by the attacker, while
�(z�) represents the attacker knowledge. It is possible to prove that if an estimateof a process P with  = ; satis�es the attacker formula than RM does not abortthe execution of P j Q, regardless of the choice of the attacker Q. Further detailsare in [4, 5].
Implementation Following [5], the implementation can be obtained along thelines that �rst transform the analysis into a logically equivalent formulation writ-ten in Alternation free Least Fixed Point logic (ALFP) [22], and then followedby using the Succinct Solver [22], which computes the least interpretation of thepredicate symbols in a given ALFP formula.
3.1 Validation of the Amended Needham-Schroeder Protocol
Here, we will show that the analysis applied to the Amended Needham-Schroederprotocol, successfully captures the complex type confusion leading to the attack,presented in the Introduction.In LYSA, each instance of the protocol is modelled as three processes, A,
B and S, running in parallel within the scope of the shared keys. To allow thecomplex type confusion to arise, we put two instances together, and add indicesto names and variables used in each instance in order to tell them apart, namely

PNS = (� KA)(� KB)(A1 j A2 j B1 j B2 j S)To save space, processes without indices are shown in Tab. 3. For clarity, eachmessage begins with the pair of principals involved in the exchange. In LYSAwe do not have other data constructors than encryption, but the predecessoroperation can be modelled by an encryption with the key PRED that is alsoknown to the attacker. For the sake of readability, we directly use N � 1. Wecan apply our analysis and check that (�; �) j= PNS :  , where �; � and  havethe non-empty entries (only the interesting ones) listed in Tab. 3.The message exchanges of the regular run (the �rst instance) performed by
A and B are correctly reected by the analysis. In step 1, B receives the tuplesent by A and binds variable y1a to the value (A), as predicted by (A) 2 �(y1a).In step 2, B generates a nonce N1B , encrypts it together to the value of y1a and



Initiator A := � 1 � = hA;B;Ai:= � 2 � = (B;A;xenc)l1 := � 3 � = (� NA)hA;S;A;B;NA; xenci:= � 4 � = (S;A;xz)l2 :
decrypt xz as fNA; B;xk; xygl3KA in= � 5 � = hA;B; xyi:= � 6 � = (B;A;xno)l4 :
decrypt xn0 as f;xngl5xk in= � 7 � = hA;B; fxn � 1gxk i:0

Responder B := � 1 � = (A;B; ya)l6 := � 2 � = (� NB) hB;A; fya; NBgKB i:

= � 5 � = (A;B; yenc)l7 :
decrypt yenc as fNB ; A; ykgl8KB in= � 6 � = (� N0)hB;A; fN0gyk i:= � 7 � = (A;B; yn0)l9 :
decrypt yn0 as fN0 � 1gl10yk in 0

Server S := � 3 � = (A;S;A;B; zna; zenc)l11 :
decrypt zenc as fA; znbgl12KB in= � 4 � = (� K)hS;A; fzna; B;K; fznb; A;KgKBgKAi:0(A) 2 �(y1a)(fA;N1BgKB ) 2 �(x1enc)(N2A) 2 �(x1y)hA;B;N1A; fA;N1BgKB i 2 �

(B) 2 �(z�)(N1A) 2 �(z�)hA;B;N1A; B; n�i 2 �(N1A; B; n�) 2 �(y2a)

(n�) 2 �(x1k)hA;B;N1A; B; n�; N2Ai 2 �(N1A; B; n�; N2A) 2 �(x1z)l6 2  Table 3. Amended Needham-Schroeder protocol: speci�cation (above); some analysisresults (below).

sends it out to the network. A reads this message, binds the variable x1enc to thevalue (fA;N1BgKB ), as reected by (fA;N1BgKB ) 2 �(x1enc); then, in step 3, itgenerates N1A and sends it to S as a plain-text, together with x1enc as predictedby hA;S;N1A; fA;N1BgKB i 2 �, and so on.
Moreover, the non-empty error component  shows that a many-to-one bind-ing may happen in the decryption with label l6 and therefore suggests a possiblecomplex type confusion leading to a complex type aw attack.
By studying the contents of the analysis components � and �, we can rebuildthe attack sequence. Since hA;S;N1A; fA;N1BgKB i 2 �, then (N1A) 2 �(z�). Thiscorresponds to the fact that the attacker, able to intercept messages on thenet, can learn N1A. The entry hA;B;N1A; B; n�i 2 � reects that the attackeris able to constructs and sends to A a new message (N1A; B; n�) to initiate thesecond instance, where (n�) is within its knowledge. The entry (N1A; B; n�) in�(y2a) corresponds to the fact A receives this message, by binding y2a to the value(N1A; B; n�). This is a many-to-one binding, detected by the analysis, as reportedby the error component: l6 2  . Afterwards, A encrypts what she has receivedwith a new nonceN2A and sends it out, as indicated by hA;B;N1A; B; n�; N2Ai 2 �.The attacker replays this to A, who takes it as the message from S in the step4 of the �rst instance ((N1A; B; n�; N2A) 2 �(x1z)). The entry (n�) 2 �(x1k) reectsthat in decrypting message 4, A binds x1k to the concatenation of values (n�) tobe used as the session key. After completing the challenge and response in step6 and 7, A then believes she is talking to B using the session key K, but indeed



she is talking to the attacker using (n�) as the new key. This exactly correspondsto the complex type aw attack shown before.
The protocol can be modi�ed such that each principal use di�erent keys fordi�erent roles, i.e. all the principals taking the initiator's role Ai share a masterkey KiA with the server and all the principals taking the responder's role Bjshare KjB with the server. In this case, the analysis holds for  = ; and therebyit guarantees the absence of complex type confusions attacks.
Here, only two sessions are taken into account. However, as in [5], the pro-tocol can be modelled in a way that multiple principals are participating in theprotocol at the same time and therefore mimic the scenario that several sessionsare running together. Due to space limitation, further details are skipped here.

4 Conclusion
We say that a complex type confusion attack happens when a concatenation of�elds in a message is interpreted as a single �eld. This kind of attack is not easyto deal with in a process algebraic setting, because message speci�cations aregiven at a high level: the focus is on their contents and not on their structure. Inthis paper, we extended the notation of variable binding in the process calculusLYSA from one-to-one to many-to-one binding, thus making it easier to modelthe scenario where a list of �elds is confused with a single �eld. The semanticsof the extended LYSA makes use of a reference monitor to capture the possiblemany-to-one bindings at run time. We mechanise the search for complex typeconfusions by de�ning a Control Flow Analysis for the extended LYSA calculus.It checks at each input and decryption place whether a many-to-one bindingmay happen. The analysis ensures that, if no such binding is possible, then theprocess is not subject to complex type aw attacks at run time. As far as theattacker is concerned, we adopted the standard notion from Dolev-Yao threatmodel [10], and we enriched it to deal with the new kind of variable binding.

We applied our Control Flow Analysis to the Amended Needham-SchroederProtocol (as shown in Section 3), to Otway-Rees [23], Yahalom [8] (not reported,because of lack of space). It has con�rmed that we can successfully detect thecomplex type confusions leading to type aw attacks on those protocols. Thisdetection is done in a purely mechanical and static way. The analysis also con-�rms the complex type aw attacks on a version of the Neuman-Stubblebineprotocol, found in [27].
The technique presented here is for detecting complex type aw attacks only.

Simple type aw attacks, i.e. two single �elds of di�erent types are confusedwith each other, not considered here, have been addressed instead in [6], undera framework similar to the present one. Besides the type tags, several kinds ofannotations for LYSA has been developed for validating various security proper-ties, e.g. con�dentiality [12], freshness [11] and message authentication [5]. Theycan be easily combined with the annotations introduced here, thus giving morecomprehensive results.



Usual formal frameworks for the veri�cation of security protocols need tobe suitably extended for modelling complex type aw confusions. Extensionsinclude the possibility to decompose and rebuild message components, that weobtain by playing with single, general and attened values. In [7], for instance,the author uses a concatenation operator to glue together di�erent componentsin messages. The approach is based on linear logic and it is capable of �nding thecomplex type aw attack on the Otway-Rees protocol. Meadows [17, 18] approachis more general and can address also even more complex type confusions, e.g.those due to the confusion between pieces of �elds of one type with pieces ofanother. The author, using the GDOI protocol as running example, develops amodel of types that assumes di�ering capacities for checking types by principals.Moreover, Meadows presents a procedure to determine whether the types oftwo messages can be confused, then also evaluating the probability of possiblemisinterpretations. In [15], using the AVISPA [3] model checking tool, type awattacks of the GDOI protocol are captured. Furthermore, by using the Object-Z schema calculus [28, 14] the authors verify the attacks at a lower level and�nd which are the low-level assumptions that lead to the attacks and whichare the requirements that prevent them. Type confusions are captured also in[19], by using an e�cient Prolog based constraint solver. The above settings,especially the ones in [17, 18, 15], are more general than our, e.g. they capturemore involved kinds of type confusions in a complex setting, like the one of theGDOI protocol. Our work represents a �rst step in modelling lower level featuresof protocol speci�cations in a process algebraic setting, like the ones that leadto type confusions. The idea is to only perform the re�nement of the high-levelspeci�cations necessary to capture the low-level feature of interest. Our controlow analysis procedure always guarantees termination, even though it only o�ersan approximation of protocols behaviour and of their dynamic properties. Due tothe nature of the over-approximation, false positives may happen, as some of themany-to-one bindings are not necessary leading to a complex type aw attack.By taking the bit length of each �eld into account, i.e. using them as thresholdslike in [25, 26], may greatly reduce the number of false positives. For example,assuming that a nonce, N , is always represented by 8 bits, an agent's name, A,by 8 bits, and a key, K, by 12 bits, the concatenation of A and N will be neverconfused with K and therefore it can be ruled out. In this paper we focussedon a particular kind of confusions, leaving other kind of type confusions forfuture work. We could use one-to-many bindings to deal with the case in whichpieces of �elds are confused with each other. We also would like to move to themulti-protocol setting, where the assumptions adopted in each protocol could bedi�erent, but messages could be easily confused, typically, because of the re-useof keys.
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