Proprietà dei Linguaggi regolari

Pumping Lemma.

Ogni linguaggio regolare soddisfa il pumping lemma. Se qualcuno vi presenta un falso linguaggio regolare, l'uso del pumping lemma mostrerà una contraddizione.

Proprietà di chiusura.

Come costruire automi da componenti usando delle operazioni, ad esempio dati L e M possiamo costruire un automa per $L \cap M$.

Proprietà di decisione.

Analisi computazionale di automi, cioè quanto costa controllare varie proprietà, come l'equivalenza di due automi.

Tecniche di minimizzazione.

Possiamo risparmiare costruendo automi più piccoli.

II Pumping Lemma, informalmente

- Supponiamo che $L_{01} = \{0^n 1^n : n \ge 1\}$ sia regolare.
- Allora deve essere accettato da un qualche DFA A, con, ad esempio, k stati.
- Supponiamo che A legga 0^k . Avrà le seguenti transizioni:

$$\begin{array}{ccc}
\epsilon & p_0 \\
0 & p_1 \\
00 & p_2 \\
\dots & \dots \\
0^k & p_k
\end{array}$$

$$\Rightarrow \exists i < j : p_i = p_i$$

• Chiamiamo *q* questo stato.

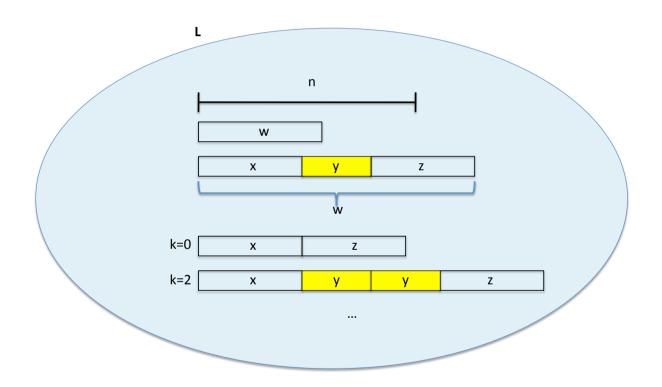
- Adesso possiamo ingannare A:
 - Se $\hat{\delta}(q, 1^i) \in F$ l'automa accetterà, sbagliando, $0^j 1^i$.
 - Se $\hat{\delta}(q, 1^i) \notin F$ l'automa rifiuterà, sbagliando, $0^i 1^i$.
- Quindi L_{01} non può essere regolare.

Teorema 4.1: Il Pumping Lemma per Linguaggi Regolari

Se L è un linguaggio regolare, per il Pumping Lemma, allora Allora $\exists n, \forall w \in L : |w| \geq n \Rightarrow w = xyz$ tale che:

- $|xy| \leq n$

Intuitivamente



Intuitivamente (2)

- Esiste una costante n dipendente dal linguaggio L tale che tutte le stringhe di lunghezza $\geq n$ possono essere scomposte in un dato modo
- È sempre possibile scegliere una stringa *non vuota y* da replicare, ovvero **cancellare** o **ripetere** *k* volte, pur rimanendo all'interno del linguaggio *L*

Ovvero un cammino più lungo di n deve contenere un ciclo ed è il ciclo a pompare.

Dimostrazione

- Supponiamo che L sia regolare.
- Allora L è riconosciuto da un DFA A con, ad esempio, n stati $Q = \{q_0, ..., q_{n-1}\}.$
- Prendiamo come costante il valore n, e consideriamo una generica stringa $w \in L$ più lunga di n. Avremo quindi $w = a_1 a_2 \dots a_m \in L$ con $m \ge n$.

Dimostrazione (2)

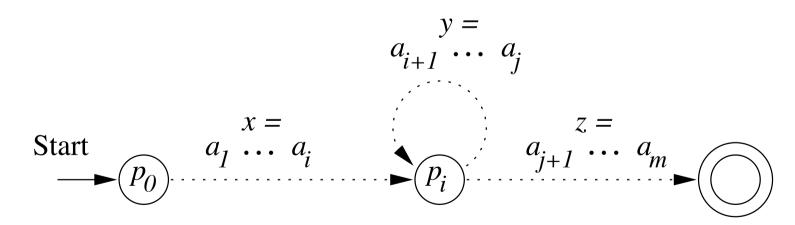
Chiamiamo p_i , per $i \in \{0, ..., m\}$, lo stato in cui si trova l'automa A dopo avere esaminato $a_1 a_2 ... a_i$ a partire dallo stato iniziale q_0 . Formalmente, utilizzando la funzione di transizione estesa:

- $p_0 = \hat{\delta}(q_0, \epsilon) = q_0$
- $p_i = \hat{\delta}(q_0, a_1 a_2 \cdots a_i).$
- Dato che ci sono n stati distinti, gli n+1 stati p_i non possono essere tutti distinti: $\Rightarrow \exists i < j : p_i = p_i$

Dimostrazione (3)

Ora w = xyz, dove

- ① $x = a_1 a_2 \cdots a_i$ (x porta a p_i la prima volta)
- ② $y = a_{i+1}a_{i+2}\cdots a_j$ (y porta da p_i a p_i , dato che p_i e p_j coincidono)



Dimostrazione (4)

Notiamo che

- x può essere vuota (per i=0) e anche z può essere vuota (per j=n=m). Invece
- $y \neq \epsilon$: la stringa y non è vuota, dato che i < j
- $|xy| \le n$ dato che gli stati $p_0, ..., p_{j-1}$ sono tutti distinti (basta considerare il minimo indice che si ripete)

Data la forma dell'automa, è chiaro che, eseguendo $k \ge 0$ cicli in p_i , l'automa accetta ogni stringa xy^kz .

- per k = 0, l'automa passa dallo stato iniziale $q_0 = p_0$ a $p_i = p_j$ su input x. Allora passa da p_i allo stato accettante con input z. Quindi accetta xz.
- per k > 0, A va da q_0 a p_i su x, cicla su p_i per k volte su input y^k e passa allo stato accettante per z e accetta xy^kz

Quindi per $k \geq 0$, abbiamo che $xy^kz \in L(A)$

PL: una condizione necessaria per la regolarità

Il pumping lemma fornisce una condizione necessaria affinché un linguaggio sia regolare. Ovvero:

- L è regolare \Rightarrow L soddisfa il Pumping Lemma
- L non soddisfa il Pumping Lemma \Rightarrow L non è regolare

Il Pumping Lemma non dice che **solo** i linguaggi regolari possono godere della proprietà.

Dimostrare che un linguaggio non è regolare con il P.L.

L **non** soddisfa il Pumping Lemma \Rightarrow *L* **non** è regolare

Non soddisfare il Pumping Lemma significa invertire l'implicazione, utilizzando il fatto che $A \Rightarrow B$ equivale a $\overline{B} \Rightarrow \overline{A}$. Con un po' di manipolazione algebrica possiamo passare quindi dalla formula:

$$\mathsf{L} \ \mathsf{reg.} \Rightarrow \left((\exists n \ \forall w \in L | w | \geq n \Rightarrow \left(\exists x, y, z \ t.c. \left\{ \begin{array}{l} w = xyz \\ |xy| \leq n \ \land \ \forall k : xy^k z \in L \\ y \neq \epsilon \end{array} \right) \right)$$

alla formula

$$\left(\forall n \; \exists w \in L |w| \ge n \land \left(\forall x, y, z \; t.c. \left\{ \begin{array}{l} w = xyz \\ y \neq \epsilon \\ |xy| \le n \end{array} \right. \Rightarrow \; \exists k : xy^k z \notin L \right) \right) \Rightarrow \overline{L \; \text{reg.}}$$

- Sia $L_{01} = \{0^n 1^n\}$ il linguaggio delle stringhe formate da un certo numero di 0, seguiti dallo stesso numero di 1.
- Supponiamo che L_{01} sia regolare. Allora $w=0^n1^n\in L$ la stringa per n (infatti $|w|=2n\geq n$)
- Per il pumping lemma, w = xyz, $|xy| \le n$, $y \ne \epsilon$ e $xy^kz \in L_{01}$

$$w = \underbrace{000...}_{x} \underbrace{...000}_{y} \underbrace{0111...11}_{z} \begin{cases} x = 0^{i} \\ y = 0^{h} & h \ge 1 \land i + h \le n \\ z = 0^{j} 1^{n} & i + h + j = n \end{cases}$$

- Valgono (1) e (2), ma
- non vale (3): consideriamo $xy^0z = xz = 0^{i+j}1^n$ ha meno 0 che 1: xz non sta nel linguaggio.
- Ne segue che *L* **non** è regolare.

Esempio (cont.)

Anche non considerando l'ipotesi $|xy| \le n$, potevamo anche scegliere

- $y = 0^h 1^j$ ($x = 0^{n-h}$, $z = 1^{n-j}$): è chiaro che ripetendo la stringa k volte, gli 0 e gli 1 vengono mescolati; quindi la stringa ottenuta non sta nel linguaggio 1
- $y = 1^h$ è formata solo da 1: basta considerare xz ha meno 0 che 1 e non sta nel linguaggio

- Sia L_{eq} il linguaggio delle stringhe con ugual numero di zeri e di uni.
- Supponiamo che L_{eq} sia regolare. Allora $w=0^n1^n\in L_{eq}$.
- Per il pumping lemma, w = xyz, $|xy| \le n$, $y \ne \epsilon$ e $xy^kz \in L_{eq}$

$$w = \underbrace{000 \cdots 0}_{x} \underbrace{0111 \cdots 11}_{z}$$

- ullet In particolare, $xz \in L_{eq}$, ma xz ha meno zeri di uni.
- In alternativa possiamo utilizzare la chiusura dei linguaggi regolari rispetto all'intersezione (vedi dopo) e procedere così:
 - Supponiamo che L_{eq} sia regolare
 - **0*****1*** sappiamo che è regolare
 - allora $L_{eq} \cap \mathbf{0}^* \mathbf{1}^* = L_{01}$ è regolare, ma questo non lo è (lo abbiamo dimostrato).
 - Quindi anche L_{eq} non è regolare.

Supponiamo che $L_{pr} = \{1^p : p \text{ è primo}\}$ sia regolare.

Sia *n* dato dal pumping lemma.

Scegliamo un numero primo $p \ge n + 2$ e $w = 1^p$.

$$w = 111 \cdots 11111 \cdots 11_{z}$$

Supponiamo che $L_{pr} = \{1^p : p \text{ è primo}\}$ sia regolare.

Sia *n* dato dal pumping lemma.

Scegliamo un numero primo $p \ge n + 2$ e $w = 1^p$.

$$w = \underbrace{111 \cdots 11}_{x} \underbrace{1111 \cdots 11}_{y|=m \ \land \ |xz|=p-m}$$

Ora $xy^{p-m}z$ dovrebbe appartenere a L_{pr}

Supponiamo che $L_{pr} = \{1^p : p \text{ è primo}\}$ sia regolare.

Sia *n* dato dal pumping lemma.

Scegliamo un numero primo $p \ge n + 2$ e $w = 1^p$.

$$w = \underbrace{111 \cdots 11}_{x} \underbrace{1111 \cdots 11}_{y|y|=m \ \land \ |xz|=p-m}$$

Ora $xy^{p-m}z$ dovrebbe appartenere a L_{pr} $|xy^{p-m}z|=|xz|+(p-m)|y|=p-m+(p-m)m=(1+m)(p-m)$ che non è primo a meno che uno dei fattori non sia 1.

- $y \neq \epsilon \Rightarrow 1 + m > 1$
- $m = |y| \le |xy| \le n$, $p \ge n + 2$

$$\Rightarrow p-m \ge n+2-n=2$$
.

Dimostrare che un linguaggio non è regolare come gioco a due

Nel pumping lemma ci sono quattro quantificatori distinti.

- Il giocatore 1 sceglie il linguaggio L
- Il giocatore 2 (l'avversario) sceglie n senza dirlo a 1 (la strategia di 1 deve valere per qualsiasi n [$\forall n$])
- Il giocatore 1 sceglie w tale che $|w| \geq n$ $[\exists w]$
- Il giocatore 2 sceglie come scomporre w rispettando i vincoli (1) e (2) $[\forall x, y, z]$
- Il giocatore 1 "vince" scegliendo k tale che $xy^kz \notin L$ $[\exists k]$

Se il linguaggio è regolare "vince" l'avversario

- $L = \emptyset$: il giocatore non può scegliere w dall'insieme vuoto
- $L = \{00, 11\}$: se l'avversario sceglie n > 2, il giocatore non può scegliere w. Analogo ragionamento vale per tutti gli insiemi finiti.
- $L = (\mathbf{00} + \mathbf{11})^*$: scelto n, qualsiasi w scelto dal giocatore è composto da coppie 00 o 11. L'avversario può scegliere una qualsiasi di queste coppie per y. Ma allora per qualsiasi i, xy^iz continua a rimanere dentro L.
- $L = \mathbf{10}^*\mathbf{1}^*\mathbf{0}$ scelto n > 2, qualsiasi w scelto dal giocatore è del tipo 10^i1^j0 , con $|w| \ge 1$. Ognuna di queste stringhe w può essere pompata, prendendo x = 1, y come secondo simbolo della stringa e z come quel che rimane ($|xy| \le n$ e $|y| \ne 0$), e rimanere dentro L.

Per ogni stringa, l'avversario trova come decomporre per "vincere".

PL: non è una condizione sufficiente per la regolarità

Il pumping lemma fornisce **soltanto** una condizione necessaria affinché un linguaggio sia regolare. Ovvero:

- L è regolare $\Rightarrow L$ soddisfa il Pumping Lemma
- L non soddisfa il Pumping Lemma \Rightarrow L non è regolare
- L soddisfa il Pumping Lemma $\Rightarrow L$ è regolare

Esistono linguaggi non regolari che soddisfano il Pumping Lemma:

$$\{ww^Rv|w,v\in\{0,1\}^+\}$$

Per dimostrare la non regolarità dobbiamo usare altri sistemi.

Proprietà di chiusura dei linguaggi regolari

Siano L e M due linguaggi regolari. Allora i seguenti linguaggi sono regolari:

- Unione: $L \cup M$
- Intersezione: $L \cap M$
- Complemento: \overline{N}
- Differenza: L\ M
- Inversione: $L^R = \{w^R : w \in L\}$
- Chiusura: L*.
- Concatenazione: L.M

Teorema 4.4. Per ogni coppia di linguaggi regolari L e M, $L \cup M$ è regolare.

Teorema 4.4. Per ogni coppia di linguaggi regolari L e M, $L \cup M$ è regolare.

Dimostrazione. Sia L = L(E) e M = L(F). Allora $L(E + F) = L \cup M$ per definizione.

Teorema 4.4. Per ogni coppia di linguaggi regolari L e M, $L \cup M$ è regolare.

Dimostrazione. Sia L = L(E) e M = L(F). Allora $L(E + F) = L \cup M$ per definizione.

Teorema 4.5. Se L è un linguaggio regolare su Σ , allora che $\overline{L} = \Sigma^* \setminus L$ è regolare.

Teorema 4.4. Per ogni coppia di linguaggi regolari L e M, $L \cup M$ è regolare.

Dimostrazione. Sia L = L(E) e M = L(F). Allora $L(E + F) = L \cup M$ per definizione.

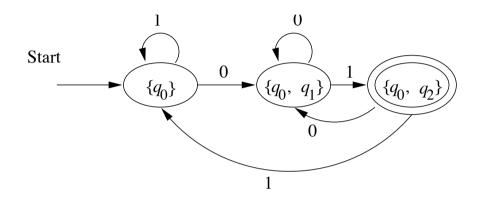
Teorema 4.5. Se L è un linguaggio regolare su Σ , allora che $\overline{L} = \Sigma^* \setminus L$ è regolare.

Dimostrazione. Sia L riconosciuto da un DFA

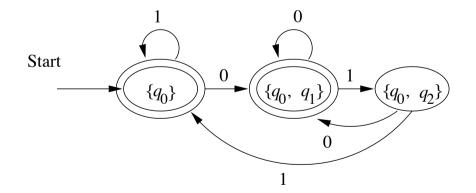
$$A = (Q, \Sigma, \delta, q_0, F).$$

Sia
$$B = (Q, \Sigma, \delta, q_0, Q \setminus F)$$
. Allora $L(B) = \overline{L}$.

Sia *L* riconosciuto dal DFA qui sotto:



Allora \overline{L} è riconosciuto da:



Domanda: Quali sono le espressioni regolari per L e L?

C. Bodei

990

Chiusura rispetto all'intersezione

Teorema 4.8. Se L e M sono regolari, allora anche $L \cap M$ è regolare.

Chiusura rispetto all'intersezione

Teorema 4.8. Se L e M sono regolari, allora anche $L \cap M$ è regolare.

Dimostrazione 1. Per la legge di De Morgan, $L \cap M = \overline{L} \cup \overline{M}$. Sappiamo già che i linguaggi regolari sono chiusi sotto il complemento e l'unione.

Chiusura rispetto all'intersezione: un'altra dimostrazione

Se L e M sono regolari, allora anche $L \cap M$ è regolare.

Dimostrazione 2. Sia *L* il linguaggio di

$$A_L = (Q_L, \Sigma, \delta_L, q_L, F_L)$$

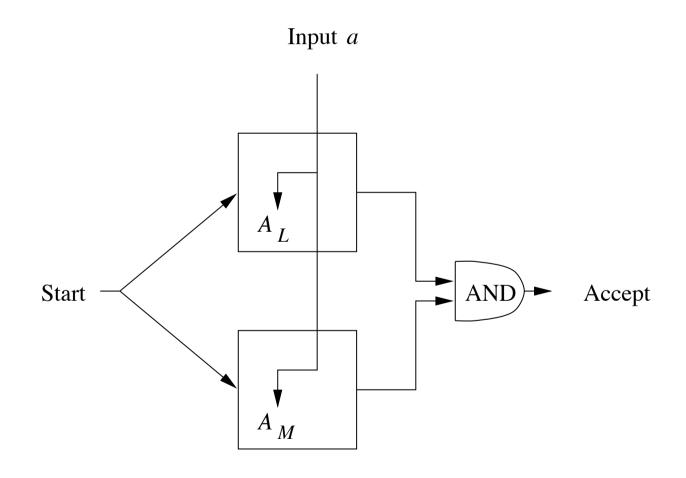
e M il linguaggio di

$$A_M = (Q_M, \Sigma, \delta_M, q_M, F_M)$$

Supponiamo senza perdita di generalità che entrambi gli automi siano deterministici.

Costruiremo un automa che simula A_L e A_M in parallelo, e accetta se e solo se sia A_L che A_M accettano.

Se A_L va dallo stato p allo stato s leggendo a, e A_M va dallo stato q allo stato t leggendo a, allora $A_{L\cap M}$ andrà dallo stato (p,q) allo stato (s,t) leggendo a.



Formalmente

$$A_{L\cap M} = (Q_L \times Q_M, \Sigma, \delta_{L\cap M}, (q_L, q_M), F_L \times F_M),$$

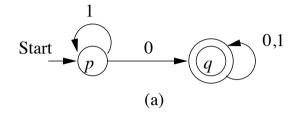
dove

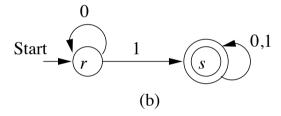
$$\delta_{L\cap M}((p,q),a)=(\delta_L(p,a),\delta_M(q,a))$$

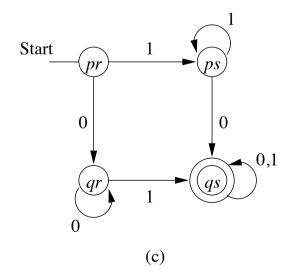
Si può mostrare per induzione su |w| che

$$\hat{\delta}_{L\cap M}((q_L,q_M),w)=\left(\hat{\delta}_L(q_L,w),\hat{\delta}_M(q_M,w)\right)$$

$$(c) = (a) \times (b)$$







Chiusura rispetto alla differenza

Teorema 4.10 Se L e M sono linguaggi regolari, allora anche $L \setminus M$ è regolare.

Chiusura rispetto alla differenza

Teorema 4.10 Se L e M sono linguaggi regolari, allora anche $L \setminus M$ è regolare.

Dimostrazione. Osserviamo che $L \setminus M = L \cap \overline{M}$. Sappiamo già che i linguaggi regolari sono chiusi sotto il complemento e l'intersezione.

Chiusura rispetto al "reverse"

Teorema 4.11 Se L è un linguaggio regolare, allora anche L^R è regolare.

Chiusura rispetto al "reverse"

Teorema 4.11 Se L è un linguaggio regolare, allora anche L^R è regolare.

Dimostrazione 1: Sia L riconosciuto da un FA A. Modifichiamo A per renderlo un FA per L^R :

- Giriamo tutti gli archi.
- Rendiamo il vecchio stato iniziale l'unico stato finale.
- 3 Creiamo un nuovo stato iniziale p_0 , con $\delta(p_0, \epsilon) = F$ (i vecchi stati finali).

Chiusura rispetto al "reverse": un'altra dimostrazione

Se L è un linguaggio regolare, allora anche L^R è regolare. **Dimostrazione 2:** Sia L descritto da un'espressione regolare E. Costruiremo un'espressione regolare E^R , tale che $L(E^R) = (L(E))^R$.

Chiusura rispetto al "reverse": un'altra dimostrazione

Se L è un linguaggio regolare, allora anche L^R è regolare.

Dimostrazione 2: Sia *L* descritto da un'espressione regolare *E*.

Costruiremo un'espressione regolare E^R , tale che

$$L(E^R) = (L(E))^R.$$

Procediamo per induzione strutturale su E.

Base: Se $E \in \epsilon$, \emptyset , o **a**, allora $E^R = E$.

Induzione:

①
$$E = F + G$$
. Allora $E^R = F^R + G^R$

$$E = F.G.$$
 Allora $E^R = G^R.F^R$

3
$$E = F^*$$
. Allora $E^R = (F^R)^*$

Proprietà di decisione

- Onvertire tra diverse rappresentazioni dei linguaggi regolari.
- \bullet È $w \in L$?
- Oue descrizioni definiscono lo stesso linguaggio?

Da NFA a DFA

- Supponiamo che un ϵ -NFA abbia n stati.
- Per calcolare ECLOSE(p) seguiamo al più n^2 archi. Lo facciamo per n stati, quindi in totale sono n^3 passi.
- II DFA ha 2^n stati, per ogni stato S e ogni $a \in \Sigma$ calcoliamo $\delta_D(S,a)$ in n^3 passi, consultando l'informazione sulle ϵ -chiusure e la tabella delle transizioni. In totale abbiamo $O(n^32^n)$ passi.
- Se calcoliamo δ solo per gli stati raggiungibili, dobbiamo calcolare $\delta_D(S,a)$ solo s volte, dove s è il numero di stati raggiungibili. In totale: $O(n^3s)$ passi.

Da DFA a NFA

Dobbiamo solo mettere le parentesi graffe attorno agli stati.

Totale: O(n) passi.

Da FA a espressione regolare

Dobbiamo calcolare n^3 cose di grandezza fino a 4^n . Totale: $O(n^34^n)$.

L'FA può essere un NFA. Se prima vogliamo convertire l'NFA in un DFA, il tempo totale sarà doppiamente esponenziale.

Da espressioni regolari a FA

Possiamo costruire un albero per l'espressione in *n* passi.

Possiamo costruire l'automa in *n* passi.

Eliminare le ϵ -transizioni ha bisogno di $O(n^3)$ passi.

Se si vuole un DFA, potremmo aver bisogno di un numero esponenziale di passi.

Controllare se un linguaggio è vuoto

- $L(A) \neq \emptyset$ per FA A se e solo se uno stato finale è raggiungibile dallo stato iniziale in in A. Totale: $O(n^2)$ passi.
- Oppure, possiamo guardare un'espressione regolare E e vedere se $L(E) = \emptyset$, considerando tutti i casi:
 - E = F + G. Allora L(E) è vuoto se e solo se sia L(F) che L(G) sono vuoti.
 - E = F.G. Allora L(E) è vuoto se e solo se o L(F) o L(G) sono vuoti.
 - $E = F^*$. Allora L(E) non è mai vuoto, perché $\epsilon \in L(E)$.
 - $E = \epsilon$. Allora L(E) non è vuoto.
 - E = a. Allora L(E) non è vuoto.
 - $E = \emptyset$. Allora L(E) è vuoto.

Controllare l'appartenenza ad un linguaggio

- Per controllare se $w \in L(A)$ per DFA A, simuliamo A su w. Se |w| = n, questo prende O(n) passi.
- Se A è un NFA e ha s stati, simulare A su w prende $O(ns^2)$ passi.
- Se A è un ϵ -NFA e ha s stati, simulare A su w prende $O(ns^3)$ passi.
- Se L = L(E), per l'espressione regolare E di lunghezza s, prima convertiamo E in un ϵ -NFA con 2s stati. Poi simuliamo w su questo automa, in $O(ns^3)$ passi.

Pumping Lemma per la non regolarità: qualche esercizio

Dimostrare che i seguenti linguaggi non sono regolari.

- L'insieme delle stringhe di parentesi bilanciate.
- $L = \{0^n 1^m | n \le m\}$
- $L = \{0^n 1^m 2^n | n, m \text{ interi}\}$
- $L = \{0^{n^2} | n \text{ intero}\}$
- $L = \{ww | w \in \{0, 1\}^*\}$
- $L = \{ww^R | w \in \{0, 1\}^*\}$
- $L = \{0^i 1^j | mcd(i, j) = 1\}$