CONDIZIONI DI OTIMALITA
$(P) \min \{f(x): x \in X\} \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad x \leq \mathbb{R}^{n}$
Teo (condizioni necessarie). Sia $\bar{x} \in X$ un punto di minimo locale di (P).
(i) Se f é differentiabile in \bar{x}, allora

$$
\begin{equation*}
\langle\nabla f(\bar{x}), d\rangle \geqslant 0 \quad \forall d \in T(x, \bar{x}) \tag{1}
\end{equation*}
$$

(ii) Se f é differenziable 2 volte in \bar{x}, allore

$$
\begin{equation*}
d \in F(X, \bar{x}),\langle\nabla f(\bar{x}), d\rangle=0 \Rightarrow\left\langle d, \nabla^{2} f(\bar{x}) d\right\rangle \geqslant 0 \tag{2}
\end{equation*}
$$

$\stackrel{\text { dim }}{=}$ Sia $\varepsilon>0$ t.c. $f(\bar{x}) \leq f(x)$ per ogni $x \in X \cap B(\bar{x}, \varepsilon)$.
(i) $d \in T(X, \bar{x}) \Rightarrow \exists t_{k} \nsubseteq, d_{k} \rightarrow d$ t.c. $\bar{x}+t_{k} d_{k} \in X$. Poiche' $\bar{x}+t_{k} d_{k} \rightarrow \bar{x}$, risulta $\bar{x}+t_{k} d_{k} \in B(\bar{x}, \varepsilon)$ per k suff.nte grande, $d_{\partial} w_{i}$

$$
0 \leq\left[f\left(\bar{x}+t_{k} d_{k}\right)-f(\bar{x})\right] / t_{k}=\left\langle\nabla f(\bar{x}), d_{k}\right\rangle+r\left(t_{k} d_{k}\right) / t_{k} \rightarrow\langle\nabla f(\bar{x}), d\rangle
$$

e quindi $\langle\nu f(\bar{x}), d\rangle \geqslant 0$
(ii) $d \in F(x, \bar{x}) \Rightarrow \exists \tau>0$ t.c. $\bar{x}+t d \in X$ per ogne $t \in[0, \tau]$. Yuend. per $0 \leq t \leq \min \{\tau, \varepsilon\}: \quad 0 \leq f\left(\bar{x}+t_{d}\right)-f(\bar{x})=t<\nabla f\left(\bar{x}, d>+1 / 2 t^{2}<d, \nabla^{2} f(\bar{x}) d>+r\left(t_{d}\right)\right.$
de ai

$$
=\frac{1}{2} t^{2}\langle d, \nabla \Delta f(x) d\rangle+r(t d)
$$

$$
0 \leqslant\left\langle d, \nabla^{2} f(\bar{x}) d\right\rangle+2 r(t d) / t \underset{t b_{0}}{\rightarrow}\left\langle d, \nabla^{2} f(\bar{x}) d\right\rangle
$$

Oss (A) $\bar{x} \in$ int X (in particolere i casi X aperto e $X=\mathbb{R}^{n}$):
(1) $\Delta \Rightarrow \nabla f(\bar{x})=0, \quad(2)+(1) \Rightarrow \nabla^{2} f(\bar{x})$ semidef. positiva
(B) (1) $\Delta=D-\nabla f(\bar{x}) \in(T(X, \bar{x}))^{0}$
(c) X convesio $\Rightarrow T(x, \bar{x})=d F(x, \bar{x})=d \operatorname{cono}(X-\bar{x}) d e$ wi
(1) $\Leftrightarrow\langle\nabla f(\bar{x}), x-\bar{x}\rangle \geqslant 0 \quad \forall x \in X \quad \Leftrightarrow-\nabla f(\bar{x}) \in N(x, \bar{x})$
(D) In (ii) non si puo' sostiture $F(X, \bar{x})$ con $T(X, \bar{x})$:

$$
n=2 \quad f(x)=-x_{1}^{2}+x_{1} x_{2}+x_{2} \quad X=\left\{x \in \mathbb{R}^{2} \mid x_{2} \geqslant x_{1}^{2}, x_{1} \geqslant 0\right\}
$$

$\bar{x}=(0,0)$ é minimo globale di (P) :

$$
\begin{aligned}
& x \in X \Rightarrow f(x) \geqslant x_{1} x_{2} \geqslant 0=f(\bar{x}) \\
& \nabla f(\bar{x})=\binom{0}{1} \quad \nabla^{2} f(\bar{x})=\left[\begin{array}{rr}
-2 & 1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

$$
F(X, \bar{x})=\left\{d \in \mathbb{R}_{+}^{2} \mid d_{2}>0\right\} \cup\{(0,0)\}
$$

$$
\{d \in F(x, \bar{x}) \mid\langle\nabla f(\bar{x}), d\rangle=0\}=\{(0,0)\}
$$

$$
T(x, \bar{x})=\mathbb{R}_{+}^{2}
$$

$\{d \in T(X, \bar{x}) \mid\langle\nabla f(\bar{x}), d\rangle=0\}=\left\{\left(d_{1}, 0\right) \mid d_{1} \geqslant 0\right\}$

$$
d=\left(d_{1}, 0\right) \text { con } d_{1} \neq 0 \Rightarrow \quad\left\langle d, \sigma^{2} f(\bar{x}) d\right\rangle=-2 d_{1}^{2}<0
$$

Nota: (2) non garentisce che $\nabla^{2} f(\bar{x})$ sia semidef-positiva (ulteriore esempion $\left.n=2, f(x)=x_{1}^{2}-x_{2}^{2}, \quad X=\left\{x \in \mathbb{R}^{2} \mid x_{1} \geqslant 2 x_{2} \geqslant 0\right\}\right)$.
Teo (condizene ufficiente) sia f differenzibile in \bar{x}. Allore
$\langle\nabla f(\bar{x}), d>\geq 0 \quad \forall d \in T(x, \bar{x}), d \neq 0 \Rightarrow \bar{x}$ punto dimmino locele di (P).
dim Per assurdo sia $\left\{x, 3 \leq X\right.$ t.c. $x_{k} \rightarrow \bar{x}$ e $f\left(x_{k}\right)<f(\bar{x})$.
Allor2 $x_{k}=\bar{x}+t_{k} d_{k}$ per $d_{k}=\left(X_{k}-\bar{x}\right) /\left\|x_{k}-\bar{x}\right\|$ e $t_{k}=\left\|x_{k}-\bar{x}\right\|$. Porche' $\left\|d_{k}\right\|=1$ si puo' upporre $d_{k} \rightarrow d$ per qualche $d \in \mathbb{R}^{n}$ con $\|d\|=1$. Risulta per costruzione che $d \in T(X, \bar{x})$ ed inoltre

$$
0\rangle\left[f\left(x_{k}\right)-f(\bar{x})\right] / t_{k}=\left\langle\nabla f(\bar{x}), d_{k}\right\rangle+r\left(t_{k} d_{k}\right) / t_{k} \longrightarrow\langle\nabla f(\bar{x}), d\rangle
$$

da wi $<\nabla f(\bar{x}), d>\leq 0$ incantreddidione con l'ipotes:
Oss Se $\bar{x} \in$ int X, la condizione sufficiente non puo essere mal verificata.
A differenta della condruone necessaria (1), la condizione (2) non divente ruffurente sostituendo \geqslant con $>$ e nernche richiedendo an apgronte che velge con $d \in T(X, \bar{x})$

Es: $n=2 \quad f(x)=x_{1}+x_{2}^{2}, \quad X=\left\{x \in \mathbb{R}^{2} \mid \quad x_{2}^{3} \geqslant x_{1}^{2}\right\}$ $\bar{x}=(0,0)$ soddisfe le condirioni necessarie:

$$
\begin{aligned}
& \nabla f(\bar{x})=\binom{1}{0}, \nabla^{2} f(\bar{x})=\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right] \\
& d \in T(x, \bar{x}) \Rightarrow\langle\nabla f(\bar{x}), d\rangle=0 \\
& \left.\left.d \in T(x, \bar{x}), d \neq 0\left(d_{2}\right\rangle 0\right) \Rightarrow\left\langle d, \nabla^{2} f(\bar{x}) d\right\rangle=2 d_{2}^{2}\right\rangle 0
\end{aligned}
$$

$$
\bar{x}=(0,0) \text { non è un minimo locale di }(P): \quad x(t)=\left(t, \sqrt[3]{t^{2}}\right) \in X \quad \forall t \in \mathbb{R}
$$

$$
f(x(t))=t+\sqrt[3]{t^{4}}=g(t) \quad g(0)=0, \quad g^{\prime}(t)=1+4 / 3 \sqrt[3]{t} \rightarrow g^{\prime}(0)=1>0
$$

da wi $g(t)$ per $t<0$ xff.nte vicino a $t_{0}=0$, ouvero $f(x(t))<f(\bar{x})$
Es: $X=\mathbb{R}^{n}, \nabla P(\bar{x})=0, \nabla^{2} f(\bar{x})$ def. positive $\Rightarrow \bar{x}$ minimo locale [stretto J di (P).
CASO CONVESSO
$X \leq \mathbb{R}^{n}$ convesso, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convessa
La dimostrazone del (zzo (i) delle condizioninecessarie mostra anche $f^{\prime}(\bar{x} ; d) \geqslant 0 \quad \forall d \in T(x, \bar{x}), \quad d z$ wi $\inf _{d \in T(x, \bar{x})} \max _{s \in \partial f(\bar{x})}\langle s, d\rangle \geqslant 0$
Serivirebbe poter invertire inf e max per condudere $\exists s \in \partial f(\bar{x})+c,-s \in N(x, \bar{x})$.
Teo \bar{x} é un punto dimnimo di $(P) \Leftrightarrow \quad \Leftrightarrow \quad D \in \partial f(\bar{x})+N(x, \bar{x})$
$\stackrel{d i m}{=} \varangle=$ Siz $\operatorname{se} \partial f(\bar{x}) \cap-N(x, \bar{x})$:

$$
\begin{array}{rl}
x \in X=D & f(x) \geqslant f(\bar{x})+\langle s, x-\bar{x}> \\
s \in \vec{y} f(\bar{x}) & \geqslant f(\bar{x}) \\
-s \in N(x, \bar{x})
\end{array}
$$

$=D) \quad \bar{x}$ minimo di $(P) \Leftrightarrow\left(\frac{x \cap]-\alpha, f(\bar{x})[}{\gamma}\right) \cap \underset{\gamma}{\operatorname{epif}}=\varnothing$

Per il teo (separizuone) esistono $\left(5^{*}, y^{*}\right) \neq(0,0) \in \mathbb{R}^{n} \times \mathbb{R}, \gamma \in \mathbb{R}$ t.c.
[*] $\left\langle s^{*}, x\right\rangle+\mu^{*} r \leqslant \gamma \leqslant\left\langle s^{*}, y\right\rangle+\mu^{*} f(y) \quad \forall x \in X, y \in \mathbb{R}^{n}, r<f(\bar{x})$
Se fosse $\mu^{*}=0,\left\langle s^{*}, y\right\rangle \geqslant \gamma \quad \forall y \in \mathbb{R}^{n} \Rightarrow s^{*}=0 \quad$ controddiaune!
Se forse $\left.\mu^{*}<0<s^{*}, x\right\rangle+\mu^{*} r \rightarrow+\infty$ per $r \rightarrow-\infty$ in cantraddizione con [**]
Quindi $u^{*}>0$, e posto $\delta=-s^{*} / u^{*}$, considerendo $r \rightarrow f(\bar{x})$ si ottrene

$$
\langle-s, x\rangle+f(\bar{x}) \leqslant\langle-s, y\rangle+f(y) \quad \forall x \in X, y \in \mathbb{R}^{n}
$$

Scegliendo $x=\bar{x}$, si ha $f(y) \geqslant f(\bar{x})+\langle s, y-\bar{x}) \quad \forall y \in \mathbb{R}^{n}$ de wi $s \in \partial f(\bar{x})$
Scepliende $y=\bar{x}$, si ha $\langle S, x-\bar{x}\rangle \geqslant 0 \quad \forall x \in X$
da wi $-s \in N(X, \bar{x})$
Oss $\bar{x} \in \operatorname{int} X: \quad 0 \in \partial f(\bar{x})+N(x, \bar{x}) \leftrightarrow \quad 0 \in \partial f(\bar{x})$.
se inoltre f diff.in $\bar{x}: \quad 0 \in \partial f(\bar{x}) \leftrightarrow \nabla f(\bar{x})=0$.

Chapter 3

Optimality conditions for unconstrained optimization

Given any $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, optimality conditions for the unconstrained minimization problem
$(P) \quad \min \left\{f(x): x \in \mathbb{R}^{n}\right\}$
can be achieved exploiting Taylor's formulas whenever f is differentiable or twice continuously differentiable. The corresponding optimality conditions for unconstrained maximization can be obtained replacing f by $-f$.

3.1 Optimality conditions

Theorem 3.1. Suppose $\bar{x} \in \mathbb{R}^{n}$ is a local minimum point of (P).
(i) If f is differentiable at \bar{x}, then $\nabla f(\bar{x})=0$;
(ii) If f is twice continuously differentiable at \bar{x}, then $\nabla^{2} f(\bar{x})$ is positive semidefinite.

Proof. Local optimality guarantees the existence of $\varepsilon>0$ such that $f(\bar{x}) \leq f(x)$ for all $x \in B(\bar{x}, \varepsilon)$. Let $d \in \mathbb{R}^{n}$ be any direction and $\left.t \in\right] 0, \varepsilon\left[:\|d\|_{2}=1\right.$ guarantees $\bar{x}+t d \in B(\bar{x}, \varepsilon)$ and therefore $f(\bar{x}) \leq f(\bar{x}+t d)$.
(i) Taylor's formula implies

$$
0 \leq f(\bar{x}+t d)-f(\bar{x})=t \nabla f(\bar{x})^{T} d+r_{(f, \bar{x})}(t d)
$$

and therefore

$$
\nabla f(\bar{x})^{T} d+r_{(f, \bar{x})}(t d) / t \geq 0
$$

Since $t=\|t d\|_{2}$, the limit of left-hand side as $t \rightarrow 0^{+}$provides $\nabla f(\bar{x})^{T} d \geq 0$. Considering $-d$ the same reasoning provides also $\nabla f(\bar{x})^{T} d \leq 0$. Thus, $\nabla f(\bar{x})^{T} d=0$
holds for any $d \in \mathbb{R}^{n}$. Taking $d=-\nabla f(\bar{x})$, the equality reads $\|\nabla f(\bar{x})\|_{2}^{2}=0$ and hence $\nabla f(\bar{x})=0$ follows.
(ii) The second-order Taylor's formula (see Theorem 1.7) implies

$$
0 \leq f(\bar{x}+t d)-f(\bar{x})=t \nabla f(\bar{x})^{T} d+\frac{1}{2} t^{2} d^{T} \nabla^{2} f(\bar{x}) d+r_{(f, \bar{x})}(t d) .
$$

Since (i) guarantees $\nabla f(\bar{x})=0$, then

$$
d^{T} \nabla^{2} f(\bar{x}) d+r_{(f, \bar{x})}(t d) / 2 t^{2} \geq 0
$$

holds too. Since $t^{2}=\|t d\|_{2}^{2}$, the limit of the left-hand side as $t \rightarrow 0$ provides the inequality $d^{T} \nabla^{2} f(\bar{x}) d \geq 0$. Since d is an arbitrary direction, $\nabla^{2} f(\bar{x})$ is positive semidefinite.

If $\bar{x} \in \operatorname{int} D$ minimizes f over some $D \subseteq \mathbb{R}^{n}$, then the necessary conditions of Theorem 3.1 hold also in this case: the above proof still works just considering any $\varepsilon>0$ which in addition satisfies $B(\bar{x}, \varepsilon) \subseteq D$.

Definition 3.1. $\bar{x} \in \mathbb{R}^{n}$ is called a stationary point of f if $\nabla f(\bar{x})=0$.
Looking for stationary points of f amounts to solving the system of n equations

$$
\left\{\begin{array}{c}
\frac{\partial f}{\partial x_{1}}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\vdots \\
\frac{\partial f}{\partial x_{n}}\left(x_{1}, \ldots, x_{n}\right)=0
\end{array}\right.
$$

in the n unknowns $\left(x_{1}, \ldots, x_{n}\right)$. This is generally a nonlinear system, but if the quadratic function $f(x)=\frac{1}{2} x^{T} Q x+b^{T} x+c$ is considered then it is actually the linear system $Q x=-b$ (since $\nabla f(x)=Q x+b$). If f is strictly convex, then $\nabla^{2} f(x) \equiv Q$ is positive definite and therefore invertible: $\bar{x}=-Q^{-1} b$ is the unique stationary point and it is the unique minimum point (see Theorems 3.2 and 3.3 below). On the contrary, if f is not convex, due to Theorem 3.1(ii) no stationary point is a local minimum since Q is not positive semidefinite.

Example 3.1. Take $n=2$ and $f\left(x_{1}, x_{2}\right)=\left(x_{2}-x_{1}^{2}\right)\left(x_{2}-4 x_{1}^{2}\right)$:

$$
\nabla f(x)=\binom{16 x_{1}^{3}-10 x_{1} x_{2}}{2 x_{2}-5 x_{1}^{2}}, \quad \nabla^{2} f(x)=\left[\begin{array}{cc}
48 x_{1}^{2}-10 x_{2} & -10 x_{1} \\
-10 x_{1} & 2
\end{array}\right]
$$

Then, $\nabla f(x)=0$ if and only if $x=(0,0)$ and moreover

$$
\nabla^{2} f(0,0)=\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]
$$

is positive semidefinite (but not definite). Anyway, $(0,0)$ is not a local minimum point of (P). In fact,

$$
f\left(x_{1}, 2 x_{1}^{2}\right)=-2 x_{1}^{2}<0
$$

for any $x_{1} \neq 0$. Therefore, f is negative along the parabola $\left\{x \in \mathbb{R}^{2}: x_{2}=2 x_{1}^{2}\right\}$. Notice that f is not even a local maximum point of $(P): \nabla^{2} f(0,0)$ is not negative semidefinite and in fact f is positive along all the parabolas $\left\{x \in \mathbb{R}^{2}: x_{2}=\alpha x_{1}^{2}\right\}$ with $\alpha>4$.

Theorem 3.2. Let f be twice continuously differentiable at $\bar{x} \in \mathbb{R}^{n}$. If \bar{x} is a stationary point of f such that $\nabla^{2} f(\bar{x})$ is positive definite, then it is a strict local minimum point of (P) and moreover there exist $\delta, \gamma>0$ such that

$$
\forall x \in B(\bar{x}, \delta): f(x) \geq f(\bar{x})+\gamma\|x-\bar{x}\|_{2}^{2} .
$$

Proof. It is enough to prove the above inequality as it guarantees strict local optimality too. Taking any $x \in \mathbb{R}^{n}$, the second-order Taylor's formula (see Theorem 1.7) implies

$$
\begin{aligned}
f(x)-f(\bar{x}) & =\nabla f(\bar{x})^{T}(x-\bar{x})+\frac{1}{2}(x-\bar{x})^{T} \nabla^{2} f(\bar{x})(x-\bar{x})+r_{(f, \bar{x})}(x-\bar{x}) \\
& =\frac{1}{2}(x-\bar{x})^{T} \nabla^{2} f(\bar{x})(x-\bar{x})+r_{(f, \bar{x})}(x-\bar{x}) \\
& \geq \frac{1}{2} \lambda_{\text {min }}\|x-\bar{x}\|_{2}^{2}+r_{(f, \bar{x})}(x-\bar{x})
\end{aligned}
$$

and therefore

$$
[f(x)-f(\bar{x})] /\|x-\bar{x}\|_{2}^{2} \geq \lambda_{\text {min }} / 2+r_{(f, \bar{x})}(x-\bar{x}) /\|x-\bar{x}\|_{2}^{2}
$$

where $\lambda_{\text {min }}>0$ is the minimum eigenvalue of $\nabla^{2} f(\bar{x}) .{ }^{1}$ Choose any positive threshold $\varepsilon<\lambda_{\text {min }} / 2$. Since the limit of the right-hand side as $x \rightarrow \bar{x}$ is $\lambda_{\text {min }} / 2$, there exists $\delta>0$ such that

$$
\forall x \in B(\bar{x}, \delta):[f(x)-f(\bar{x})] /\|x-\bar{x}\|_{2}^{2} \geq\left(\lambda_{\min } / 2-\varepsilon\right) .
$$

Setting $\gamma=\lambda_{\text {min }} / 2-\varepsilon$, the thesis follows from the above inequality.
If f is a strictly convex quadratic function, then the above theorem holds with $\gamma=\lambda_{\text {min }} / 2$ (where $\lambda_{\text {min }}$ is the minimum eigenvalue of Q) and any $\delta>0$. In fact, $\bar{x}=-Q^{-1} b$ is the unique stationary point of f and

$$
\forall x \in \mathbb{R}^{n}: f(x)-f(\bar{x})=\frac{1}{2}(x-\bar{x})^{T} Q(x-\bar{x}) .
$$

3.2 Optimality conditions in the convex case

Theorem 3.3. Let f be convex and differentiable (on \mathbb{R}^{n}). Then, $\bar{x} \in \mathbb{R}^{n}$ is a minimum point of (P) if and only if $\nabla f(\bar{x})=0$.

[^0]Proof. Only if) It is just Theorem 3.1(i).
If) By Theorem 2.3 the convexity of f guarantees

$$
f(y) \geq f(\bar{x})+\nabla f(\bar{x})^{T}(y-\bar{x})
$$

for any $y \in \mathbb{R}^{n}$. Since $\nabla f(\bar{x})=0$, the optimality of \bar{x} follows immediately.
Notice that any (twice continuously differentiable) convex function f satisfies the second-order optimality condition of Theorem 3.1 at any point (see Theorem 2.5). Moreover, it does not have any global maximum point unless it is a constant function: in fact, a maximum point is a stationary point (just apply Theorem 3.1 to $-f$) and hence it is also a minimum point by Theorem 3.3. The same reasoning applies to local maximum points, which may exist if they are actually also minimum points.

The minimum points of the convex quadratic function $f(x)=\frac{1}{2} x^{T} Q x+b^{T} x+c$ are the solutions of the linear system $Q x+b=0$. If Q is positive definite, then $-Q^{-1} b$ is the unique minimum point. If Q is positive semidefinite but not positive definite, there are infinitely many minimum points if at least one exists but f could be unbounded by below.

Proposition 3.1. Let $f(x)=\frac{1}{2} x^{T} Q x+b^{T} x+c$ be convex. Then, f is unbounded by below if and only if there exists $\hat{x} \in \mathbb{R}^{n}$ such that $Q \hat{x}=0$ and $b^{T} \hat{x} \neq 0$.

Proof. If) Take $x(t)=t \hat{x}$. If $b^{T} \hat{x}>0(<0)$, then

$$
f(x(t))=t\left(b^{T} \hat{x}\right)+c \rightarrow-\infty \quad \text { as } t \rightarrow-\infty(+\infty)
$$

Only if) Since Q is symmetric, there exists an orthonormal basis $\left\{x^{1}, \ldots, x^{n}\right\}$ of \mathbb{R}^{n} composed by eigenvectors of Q, that is $x^{i^{T}} x^{j}=0$ for all $i \neq j$ and $Q x^{i}=\lambda_{i} x^{i}$ for all $i=1, \ldots, n$ where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of Q. Given any $x \in \mathbb{R}^{n}$, there exist $\gamma_{1}, \ldots, \gamma_{n} \in \mathbb{R}$ such that $x=\sum_{i=1}^{n} \gamma_{i} x^{i}$. Therefore,

$$
f(x)=\frac{1}{2} \sum_{i=1}^{n} \lambda_{i} \gamma_{i}^{2}+\sum_{i=1}^{n}\left(b^{T} x^{i}\right) \gamma_{i}=\sum_{i=1}^{n}\left[\frac{1}{2} \lambda_{i} \gamma_{i}^{2}+\left(b^{T} x^{i}\right) \gamma_{i}\right] .
$$

Ab absurdo, suppose $b^{T} x=0$ whenever $Q x=0$, which implies that $b^{T} x^{i}=0$ if $\lambda_{i}=0$. Therefore, each nonzero term in the above sum gets its minimum value for $\gamma_{i}=\bar{\gamma}_{i}=-b^{T} x^{i} \lambda_{i}$, and f is bounded by below since

$$
f(x) \geq \sum_{i \in I}\left[\frac{1}{2} \lambda_{i} \bar{\gamma}_{i}^{2}+\left(b^{T} x^{i}\right) \bar{\gamma}_{i}\right]=-\sum_{i \in I}\left(b^{T} x^{i}\right)^{2} / 2 \lambda_{i}
$$

where $I=\left\{i: \mid \lambda_{i} \neq 0\right\}$.

$$
X=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \leqslant 0, h,(x)=0, i \in I, j \in J\right\} \quad I=\{1, \ldots, p\} \quad J=\{1, \ldots, p\}
$$

$I(\bar{x})=\left\{i \in I \mid g_{i}(\bar{x})=0\right\}, g_{i}, h,: \mathbb{R}^{n} \rightarrow \mathbb{R}$ diff. con continuità, $\bar{x} \in X$ $g_{i}(x) \approx g_{i}(\bar{x})+\left\langle\nabla g_{i}(\bar{x}), x-\bar{x}\right\rangle, \quad h_{1}(x) \approx h_{,}(\bar{x})+\left\langle\nabla h_{j}(\bar{x}), x-\bar{x}\right\rangle$

$$
L_{<}^{\frac{d}{c}}(X, \bar{x})=\left\{d \in \mathbb{R}^{n} \mid\left\langle\nabla g_{i}(\bar{x}), d\right\rangle \lll \ll i \in I(\bar{x}),\left\langle\nabla h_{1}(\bar{x}), d\right\rangle=0\right\}
$$

Prop (i) $T(X, \bar{x}) \subseteq L_{\leq} \leq(X, \bar{x})$ (ii) $\left\{\nabla h_{j}(\bar{x})\right\}_{j \in J} \ln n$. indip. $\Rightarrow L_{<}(X, \bar{x}) \subseteq T(x, \bar{x})$
dim (i) Sia $d \in T(X, \bar{x}): \exists t_{n} d 0, d_{n} \rightarrow d$ t.c. $\bar{x}+t_{n} d_{n} \in X$. $S_{12} i \in I(\bar{x})=$ $0 \geqslant\left[g_{i}\left(\bar{x}+t_{n} d_{n}\right)-g_{i}(\bar{x})\right] / t_{n}=\left\langle\nabla_{g_{i}}(\bar{x}), d_{n}\right\rangle+r\left(t_{n} d_{n}\right) / t_{n} \rightarrow\left\langle\nabla_{g_{i}}(\bar{x}), d\right\rangle$
Aralogamente $j \in J: 0=\left[h_{j}\left(\bar{x}+f_{n} d_{n}\right)-h_{j}(\bar{x})\right] / t_{n} \longrightarrow\langle\nabla h,(\bar{x}), d\rangle$.
(ii) $S_{12} h=\left(h_{1}, \ldots, h_{q}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{9}: h(\bar{x})=0, J_{h}(\bar{x})=\left[\begin{array}{c}-\nabla h_{1}(\overline{(})^{\top}- \\ \vdots \\ -\nabla h_{q}(\bar{x})^{\top}-\end{array}\right]$
$J_{h}(\bar{x}) \in \mathbb{R}^{9 \times n} h_{2}$ rango massimo $=q$ per $l_{\text {'potesi su }\left\{\nabla h_{j}(\bar{x})\right\}_{j \in J}, ~}^{\text {in }}$ Sic $d \in L_{<}(X, \bar{x}):\left\langle\nabla h_{j}(\bar{x}), d\right\rangle=0 \Rightarrow J_{h}(\bar{x}) d=0$
Sia $K: \mathbb{R}^{1+9} \rightarrow \mathbb{R}^{9}$ data de $K(t, \mu)=h\left(\bar{x}+t d+J_{h}(\bar{x})^{\top} \mu\right): K(0,0)=h(\bar{x})=0$
$e\left(J_{k}\right)_{\mu}(0,0)=J_{h}(\bar{x}) J_{h}(\bar{x})^{\top} \in \mathbb{R}^{9 \times 9}$ è definte positiva (e quindi invertiblle) in quanto
$J_{h}(\bar{x})$ ha rango max : $\left.\left\langle v,\left(J_{k}\right)_{\mu}(0,0) v\right\rangle=\left\langle J_{h}(\bar{x})^{\top} v, J_{h}(\bar{x})^{\top} v\right\rangle=\left\|J_{h}(\bar{x})^{\top} v\right\|^{2}\right\rangle 0$
Per il teo (funzione impliata - Dini) esistono $\delta>0$ e
$\left(v \neq 0 \Rightarrow J_{h}(\bar{x})^{\top} y \neq 0\right)$
$\mu:]-\delta, \delta\left[\rightarrow \mathbb{R}^{9}\right.$ diff. con continuite- t.c. $\left.\left.K(t, \mu(t))=0 \quad \forall t \in\right]-\delta\right]$ e $\mu(0)=0$ Sic $\left.x(t)=\bar{x}+t d+J_{h}(\bar{x})^{\top} \mu(t): \quad h(x(t))=0 \quad \forall t \in\right]-\delta, \delta[$ garentisce $0=\left.\frac{d}{d t} h(x(t))\right|_{t=0}=J_{h}(\bar{x})\left[d+J_{h}(\bar{x})^{\top} \mu^{\prime}(0)\right]=J_{h}(\bar{x}) J_{h}(\bar{x})^{\top} \mu^{\prime}(0)$ da wi $\mu^{\prime}(0)=0$ dove $\mu^{\prime}(0)=\left(\mu_{1}^{\prime}(0), \ldots, \mu_{q}^{\prime}(0)\right)$. Pertento $x^{\prime}(0)=d, x(t)=\bar{x}+t d_{t}$ con
$d_{t} \rightarrow d$ per $t \rightarrow 0$, con $h\left(\bar{x}+t d_{t}\right)=0$. In particolare $\forall t_{n} \downarrow 0 \quad d_{n}=d_{t_{n}} \rightarrow d$ $e h_{,}\left(\bar{x}+t_{n} d_{n}\right)=0 \quad j \in J$.
$i \notin I(\bar{x}): \quad g_{i}\left(\bar{x}+t_{n} d_{n}\right) \rightarrow g_{i}(\bar{x})<0$, da wi $g_{i}\left(\bar{x}+t_{n} d_{n}\right)<0$ se n é suff.nte grande

$$
\begin{aligned}
i \in I(\bar{x}): g_{i}\left(\bar{x}+t_{n} d_{n}\right) / t_{n} & =g_{i}(\bar{x}) / t_{n}+\left\langle\nabla_{g i}(\bar{x}), d_{n}\right\rangle+r\left(t_{n} d_{n}\right) / t_{n}=d \in L_{<}(x, \bar{x}) \\
& =\left\langle\nabla_{g_{i}}(\bar{x}), d_{n}\right\rangle+r\left(t_{n} d_{n}\right) / t_{n} \rightarrow\left\langle\nabla_{i}(\bar{x}), d\right\rangle<0
\end{aligned}
$$

da wi $g_{i}\left(\bar{x}+t_{n} d_{n}\right)<0$ se n è suff.nte grande.
In conclusione $\bar{x}+\hbar_{n} d_{n} \in X$ se n é suff.ate grande, e quindi $d \in T(X, \bar{x})$
Sia H il sottospezo affire generato de $\left\{d \in \mathbb{R}^{n} \mid\langle\nabla h,(\bar{x}), d\rangle=0 \quad j \in J\right\}$
$L_{L}(X, \bar{x}) \leq H$ è eperto in H

$$
\Rightarrow \quad L_{<}(X, \bar{x}) \neq T(X, \bar{x})
$$

$T(X, \bar{x}) \leq H$ è chiuso
(a meno che $L_{\zeta}(X, \bar{x})=H=T(X, \bar{x})$)

Es: $X=\left\{x \in \mathbb{R}^{2} \mid X_{1}^{2}-X_{2}^{2} \leqslant 0\right\}, \bar{x}=(0,0): T(X, \bar{x})=X$ $g_{1}(x)=x_{1}^{2}-X_{2}^{2}, \quad \nabla g_{1}(0,0)=(0,0) \rightarrow L_{C}(X, \bar{x})=\varnothing, L_{\leqslant}(X, \bar{x})=\mathbb{R}^{2}$
$\bar{x} \in X$ ponto di minimo loczle di $(P) \Rightarrow\langle\bar{\nabla} f(\bar{x}), d\rangle \geqslant 0 \quad \forall d \in T(x, \bar{x})$

$$
\begin{aligned}
& \text { III }
\end{aligned}
$$

$O_{S S}\left\{\nabla h_{j}(\bar{x})\right\}_{j \in J} \operatorname{lin} . d_{1 p} \Rightarrow$ regola vale con $\theta=\lambda_{i}=0$ e μ_{j} opportuni.

Ponendo $\lambda_{i}=0$ per $i \notin I(\bar{x})$ si ottrene
Feo (Fritz-John) $S_{1 a} \bar{x} \in X$ un punto di minimolocale di (P). Allora esistono $\left.\theta \geqslant 0, \lambda_{i} \geqslant 0, \mu, \in \mathbb{R}(i \in I,) \in \bar{J}\right)$ non totl, noll, $t_{2 l}$, che

$$
\begin{gather*}
\theta \nabla f(\bar{x})+\sum_{i \in I} \lambda_{i} \nabla g_{i}(\bar{x})+\sum_{j \in J} \mu_{,} \nabla b_{j}(\bar{x})=0 \tag{FJ}\\
\lambda_{i} g_{i}(\bar{x})=0 \quad i \in I .
\end{gather*}
$$

OSS $\nabla f(\bar{x})=0 \Rightarrow(F J)$ valgono con $\theta=1, \lambda_{i}=\mu_{j}=0$

$$
[(F J) \operatorname{con} \theta \neq 0] \equiv\left\{\begin{array}{ll}
\langle\nabla f(\bar{x}), d\rangle<0 & \text { non 2mmette } \\
\left\langle\nabla g_{i}(\bar{x}), d>\leq 0\right. & \text { solvinone } \\
\langle\nabla h,(\bar{x}), d\rangle=0 & d \in \mid \mathbb{R}^{n}
\end{array}= \begin{cases}\langle\nabla f(\bar{x}), d\rangle<0 & \text { non 2mmette } \\
d \in L \leq(X, \bar{x}) & \text { jolupione } \\
\text { de } & d \in \mathbb{R}^{n}\end{cases}\right.
$$

Oss (i) $L_{\leqslant}(X, \bar{x})$ é convesso e chiuso: cl conv $T(X, \bar{x}) \leq L_{\leq}(X, \bar{x})$
(ii) $\langle\nabla f(\bar{x}), d\rangle \geqslant 0 \quad \forall d \in T(x, \bar{x}) \quad \Delta=0\langle\nabla f(\bar{x}), d\rangle \geqslant 0 \quad \forall d \in d \operatorname{conv} T(X, \bar{x})$

Teo (Karush-Kuhn-Tucker) Si2 $\bar{x} \in X$ un punto di minimo locale di (P) tele che \bar{c} conv $T(X, \bar{x})=L_{\leqslant}(X, \bar{x})$. Allora esistono $\lambda_{i} \geqslant 0, \mu, \in \mathbb{R}$ tali che conditione di Guignerd $\nabla f(\bar{x})+\sum_{c \in I}\left(\lambda_{i}\right) \nabla g_{i}(\bar{x})+\sum_{j \in J}(\mu) \nabla h_{\Gamma}(\bar{x})=0$ conderonidi
complementarite $\left(\begin{array}{l}\lambda_{i} g_{i}(\bar{x})=0 \\ \text { moltiplicatori }\end{array} \quad(\in I)\right.$ di Lagrange

QUALIFICA deI VINcoLl : condizione su X per wi cl conu $T(X, \bar{x})=L_{\leq}(X, \bar{x})$ $\left(g_{i}, h_{j}\right)$
LINEARE INDIPENDENZA (LI): $\left\{\bar{V}_{g_{i}}(\bar{x})\right\}_{i \in I(\bar{x})} \cup\left\{\nabla h_{j}(\bar{x})\right\}_{j \in J}$ lir. indip.
$\operatorname{SLATER}(S L): g_{i} \begin{gathered}\text { convesse } \\ L \in I(\bar{x})\end{gathered}, h$, affini, $\quad \exists \hat{x} \in \mathbb{R}^{n}$ t.c. $\begin{cases}g_{i}(\hat{x})<0 & i \in I(\bar{x}) \\ h,(\hat{x})=0 & j \in J\end{cases}$ MANGASARIAN-FROMOVITZ (MF): $\left\{\nabla h_{j}(\bar{x})\right\}_{J \in J} \operatorname{lin} . \operatorname{Ind} d_{1 p},, L_{<}(X, \bar{x}) \neq \varnothing$
Prop (i) (MF) vole in $\bar{x} \Rightarrow T(X, \bar{x})=L_{\leq}(X, \bar{x})$
(ii) $(L I) \Rightarrow(M F)$ (iii) $(S L) \Rightarrow$ (MF)
dim (i) $T(X, \bar{x})$ chiuso \Rightarrow cl $L_{L}(X, \bar{x}) \leq T(X, \bar{x}) \leq L_{\leq}(X, \bar{x})$
Sieno $\bar{d} \in L_{<}(X, \bar{x}), d \in L_{\leqslant}(X, \bar{x}): d_{n}=d+1 / n \bar{d} \in L_{L}(x, \bar{x})$
$\ln f_{a} t_{i}:\left\langle\nabla h,(\bar{x}), d_{n}\right\rangle=\langle\nabla h,(\bar{x}), d\rangle+1 / n\langle\nabla h,(\bar{x}), \bar{d}\rangle=0$

$$
\left\langle\nabla_{g_{i}}(\bar{x}), d_{n}\right\rangle=\left\langle\nabla_{g_{i}}(\bar{x}), d\right\rangle+\frac{1}{n}\left\langle\nabla_{g_{i}}(\bar{x}), \bar{d}\right\rangle\left\langle\left\langle\nabla_{i}(\bar{x}), d\right\rangle \leq 0\right.
$$

Pertanto $d_{n} \rightarrow d$ garantisce $d \in d L_{<}(X, \bar{x})$, da wi $d L_{<}(X, \bar{x})=T(X, \bar{x})=L_{\leq}(X, \bar{x})$
(ii) Sc (MF) non vale, allora $\left\{\nabla b_{j}(\bar{x})\right\}_{j \in J}$ Sono lin. dip. oppuce $L_{<}(x, \bar{x})=\phi$. Nel primo ceso ovviamente anche (LI) non vale. Per il teo $($ MotzKin $) L_{<}(X, \bar{x})=\varnothing \varnothing$ equivale ella lin. dip. di $\left.\left\{\nabla_{g_{i}(\bar{x})}\right\}_{(\in I(\bar{x})} \cup\left\{\nabla h_{j}(\bar{x})\right\}\right\}_{j \in S}$
(iii) Poiche' h_{j} rono 2ffini, possiamo supporre $g \leq n$ e $\left\{\nabla h_{j}(\bar{x})\right\}_{j \in J} \ln$. indip(ivincoli $h_{j}(x)=0$ individizno iperpiani effini) g_{i} convesse

$$
0\rangle g_{i}(\hat{x}) \geqslant g_{i}(\bar{x})+\left\langle\nabla g_{i}(\bar{x}), x-\bar{x}\right\rangle=\left\langle\nabla g_{i}(\bar{x}), x-\bar{x}\right\rangle \text { se } i \in I(\bar{x})
$$

$h_{j}(x)=\left\langle a_{j}, x\right\rangle+b_{j}$ per opportuni $, j \in \mathbb{R}^{n}, b_{j} \in \mathbb{R}$:

$$
\left\langle\nabla h_{j}(\bar{x}), \hat{x}-\bar{x}\right\rangle=\left\langle a_{j}, \hat{x}\right\rangle-\langle d,, \bar{x}\rangle=b,-b,=0
$$

Quindi $(\hat{x}-\bar{x})$ e $L_{<}(X, \bar{x})$

Sic $M(\bar{x})=\left\{(\lambda, \mu) \in \mathbb{R}_{+}^{p} \times \mathbb{R}^{9} \mid(\bar{x}, \lambda, \mu)\right.$ soddisfano le condizioni $\left.(k k T)\right\}$.
Prop (i) Supponizmo $M(\bar{x}) \neq \varnothing$. Allore $|\mu(\bar{x})|=14=$ (LI) vale in \bar{x}.
(ii) $M(\bar{x})$ è compotto $\Lambda \Rightarrow$ (MF) vale in \bar{x}
dim (i) $\sum_{i \in I(\bar{x})} \bar{X}_{i} \nabla g_{i}(\bar{x})+\sum_{j \in J} \bar{\mu}_{,} \nabla h_{j}(\bar{x})=0$ (1)
$\Delta \operatorname{Sizno}(\lambda, \mu),(\bar{\lambda}, \bar{\mu}) \in M(\bar{x})$. Sottizendo ura regola dei moltiplicatori dall' altra siothere $\sum_{i \in I(\bar{x})}\left(\lambda_{i}-\bar{\lambda}_{i}\right) \nabla g_{i}(\bar{x})+\sum_{j \in J}\left(\mu_{j}-\bar{\mu}\right) \nabla h_{j}(\bar{x})=0$, da aic $\lambda_{i}=\bar{\lambda}_{i}, \mu_{j}=\bar{\mu}_{j}$ per pegni $i \in I(\bar{x}), \in J$ per l^{\prime} 'potesi di lineare indipendenza.
$(i i) \Rightarrow D) \mathrm{Se}(\mathbb{M})$ non vale, allora teo $\left(M_{0} t_{z} K_{i n}\right)$ o la lin. dipendenaa di $\{\nabla h,(\bar{x})\}_{j \in J}$ garentiscono che (1) vale per opportuni $\bar{\lambda}_{i} \geqslant 0, \bar{e}_{j} \in \mathbb{R}$ non
toth, nulli. $S_{12}(\lambda, \mu) \in M(\bar{x}): m(t)=(\lambda+t \bar{\lambda}, \mu+t \bar{\mu}) \in M(\bar{x}) \forall t$ e $\|m(t)\| \rightarrow+\infty$ \Leftrightarrow Supponizmo $\exists\left\{\left(\lambda^{k}, \mu^{k}\right)\right\} \subseteq M(\bar{x})$ con $\gamma_{k}=\left\|\left(\lambda^{k}, \mu^{k}\right)\right\| \rightarrow+\infty$. se $t \rightarrow \pm \infty$ Considerando eventualmente l'opportura sottosuccessione, possiamo suppore $\gamma_{k}^{-1} \lambda^{k} \rightarrow \bar{\lambda}, \gamma_{k}^{-1} \mu^{k} \rightarrow \bar{\mu}$ per qualche $\bar{\lambda} \in \mathbb{R}_{+}^{p}, \bar{\mu} \in \mathbb{R}^{p}$ con $\|(\bar{\lambda}, \bar{\mu})\|=1$. Abbizmo inoltre $\gamma_{k}^{-1} \nabla f(\bar{x})+\sum_{i=1}^{p} \gamma_{k}^{-1}\left(\lambda^{k}\right)_{i} \nabla g_{i}(\bar{x})+\sum_{j=1}^{a} \gamma_{k}^{-1}\left(\mu^{k}\right), \nabla h_{1}(\bar{x})=0$ e passendo al limite: $\sum_{i=1}^{p} \bar{\lambda}_{i} \nabla g_{i}(\bar{x})+\sum_{j=1}^{Q} \bar{\mu}_{j} \nabla h_{j}(\bar{x})=0$. Se $\bar{\lambda}=0$, ellore $\bar{\mu} \neq 0$ e $\left\{\nabla h_{j}(\bar{x}\}_{j \in J}\right.$ sono lin. dip. Se $\bar{d} \neq 0$, iteo (MotzKin) gerantisce $L_{<}(X, \bar{x})=\phi$. In entrambi i casi (MF) non vale.
SUFFICIENZA DELLE CONDIZIONI KKT
Teo Siano fe g_{i} convesse con $i \in I(\bar{x})$ per qualche $\bar{x} \in X$, siano b,
affini $(, \in J)$. Se esistons $\lambda \in \mathbb{R}_{+}^{p}, \mu \in \mathbb{R}^{q}$ tzliche (\bar{x}, λ, μ) soddisfele condizioni $K K T$, allore \bar{x} è un punto di minimo globale di (P).
dim $S_{12} x \in X$:

$$
\begin{aligned}
& \text { dim }(x)-f(\bar{x}) \geqslant\langle\nabla f(\bar{x}), x-\bar{x}\rangle \stackrel{\downarrow}{=}-\sum_{i \in I \mid \bar{x})} \lambda_{i}\left\langle\nabla_{\left.g_{i}(\bar{x}), x-\bar{x}\right\rangle}\right\rangle-\sum_{j \in J} \mu_{j}\left\langle\nabla h_{j}(\bar{x}), x-\bar{x}\right\rangle \\
& \geqslant-\sum_{i \in I(\bar{x})} \lambda_{i}\left(g_{i}(x)-g_{i}(\bar{x})\right)-\sum_{j \in J} \mu_{j} h_{j}(x)=-\sum_{\in \in I(\bar{x})} \lambda_{i} g_{i}(x) \geqslant 0
\end{aligned}
$$

3_{i} convessa

$$
h, \text { effire } \rightarrow h,(x)=h,(\bar{x})+\langle\nabla h,(\bar{x}), x-\bar{x}\rangle=\langle\nabla h,(\bar{x}), x-\bar{x}\rangle
$$

[^0]: ${ }^{1}$ Given any symmetric matrix $Q \in \mathbb{R}^{n \times n}$ the inequality $y^{T} Q y \geq \lambda_{\text {min }}\|y\|_{2}^{2}$ holds for any $y \in \mathbb{R}^{n}$ where $\lambda_{\text {min }}$ denotes the minimum eigenvalue of Q

