$f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad D \subseteq \mathbb{R}^{n}$ convesio

$$
x, y \in D, \lambda \in[0,1] \quad f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

(f conceva

Operazioni gulle funzioni convesse

- somma: f_{i} converse, $i \in I,|I|<+\infty \Rightarrow f(x)=\sum_{i \in I} f_{i}(x)$ convessa
- molt. Scalare: f convessa, $\mu \geqslant 0 \Rightarrow(\mu f)(x)=\mu f(x)$ éonvessa
- composifione

Affine $\quad A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^{n}, f$ conves) $\Rightarrow x \mapsto f(A x+b)$ convessa
Convesid $\quad h: \mathbb{R} \rightarrow \mathbb{R}$

- F convesasa, h convessa non decrexcente $\} \Rightarrow(h \circ f 7(x)=h(f(x))$ convessa (possibile considerare anche composizane tra fa. vetlociali a omp. convesse)
- estremo superiore puntuale
f_{i} convesse, $i \in I \Rightarrow\left(\sup _{i \in I} f_{i}\right)(x)=\operatorname{urp}_{k I} f_{i}(x)$ convessa $\xlongequal{\binom{\text { dim. .tiperviso) }}{\text { ept }}}$
Nota.cor $|I|=+\infty$ puö darsi che $\sup _{1 \in I} f_{i}(x)=+\infty$ per qualche $x \quad \rightarrow\{$. canvesse $\mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty$) - necessil) dominintodure dominio fz poliedielicomester $\equiv \operatorname{dup}$ \# finto di fz. effini $\operatorname{don} f=\{x \mid f(a)<+\infty\}$

Proprieta' e Caratteriztazioni

- Epigrafico: (epif) $\cap[D \times \mathbb{R}]=\{(x, t) \in D \times \mathbb{R}) t \geqslant f(x)\}$ convesso $a=b$ convessis so D
- Sottolivellir f convessa $r ~ D=0 \frac{\left\langle x \in \mathbb{R}^{n}: f(x) \leq \alpha\right\} \cap D}{\| \quad \forall \alpha \in \mathbb{R}}$ (quesiconvesitio) $\rightarrow S_{S_{f}^{\prime \prime}(\alpha)}^{"} \forall \alpha \in \mathbb{R}$
FZ CONVESSE "SHOOTH"
- Carattesiazarone "piano tangente al gafico"
- Caratteritazseoni del secondo adine.
- monotonir del gradiente

Prop $=S_{12} f$ differentizbile so D. Allore
E) f convess $r D \quad \Delta(\nabla \hat{f}(y)-\nabla f(x))^{\top}(y-x) \geqslant 0 \quad \forall x, y \in D$
ii) f stheth.nte convestare $D \Leftrightarrow(\nabla f(y)-\nabla f(x))^{\top}(y-x)>0 \quad \begin{gathered}\forall x, y \in D) \\ y \neq x\end{gathered}$

dim i) \Rightarrow la convessità garentisce

$$
\begin{aligned}
& f(y) \geqslant f(x)+\langle\nabla f(x), y-x\rangle \\
& f(x) \geqslant f(y)+\langle\nabla f(y), x-y\rangle
\end{aligned}
$$

la teri seque sommando membro a membro
(1) Siz $g(t)=f(x+t(y-x)), x, y \in D$
f differentizale $\Rightarrow g$ derivabile e $g^{\prime}(t)=\nabla f(x+t(y-x))^{\top}(y-x)$
L^{\prime} 'potesi puó essere niscritla come $g^{\prime}\left(\boldsymbol{l}^{\lambda}\right) \geqslant g^{\prime}(0) \quad \forall A \in[0,1]$

$$
f(y)=g(1)=\begin{aligned}
& L^{\prime} \text { ipotesi puo essere niscritt? come } g^{\prime}(\boldsymbol{k}) \geqslant g^{(0)} \\
& g(0)+\int_{0}^{1} g^{\prime}(\lambda) d \lambda \geqslant g(0)+g^{\prime}(0)=f(x)+\nabla f(x)^{\top}(y-x)
\end{aligned}
$$

Dall'arbitrareta-di x ey sepue la convessitio di f xu D.
ii) ansloge
iii) Applezre i) a $f(x)-\mu / 2\|x\|^{2}$

Teo $S_{12,0 D} \leq \mathbb{R}^{n}$ converso con int $D \neq \varnothing$ e f convesse ro D. Allora
i) $f \bar{e}$ localmente lipschitrand vicino ad agni $\bar{x} \in$ int D
[ii) f é glohalimente lipsehitarasa su garii $D^{\prime} \subseteq D$ compatto]
Cor f convessa so $D \Rightarrow f$ continus in ogni $x \in$ ent $D \quad\binom{$ Nota: f puö essere }{ discoantinva so $\partial D}$

Per dimostrare il teorema, si una il seguente
Lenm? f convespa du $D \Rightarrow f$ limitata in un intorno di ogni $\bar{x} \in$ int D
dim

$$
\begin{aligned}
& \left.\begin{array}{l}
x^{i}=\bar{x}+\delta e_{i} \\
x^{n+i}=\bar{x}-\delta e_{i}
\end{array}\right\} \text { con } \delta>0 \text { t.c. } x^{i} \in D \quad \Leftrightarrow 1, \ldots n \\
& x^{n+i}=\bar{x}-\delta e_{i} \\
& T=\left\{\sum_{i=1}^{2 n} \lambda_{i} x^{i} \mid \lambda_{i} \geqslant 0 \quad \sum_{i=1}^{2 n} \lambda_{i}=1\right\} \\
& x \in T \text {, } \quad \text { in } T \neq \varnothing \quad(B(x, \sqrt{2} / 2 \delta) \leq T) \\
& \text { (, } x=\sum_{i=1}^{\ln } \lambda_{i} x^{i} \quad f(x) \leq \sum_{i=1}^{2 n} \lambda_{i} f\left(x_{i}^{i}\right) \leq \max _{i=1 \ldots 2 n} f\left(x^{i}\right)=: M \\
& \bar{x}=\frac{x}{2}+(2 \bar{x}-x) / 2 \quad \hat{x}=2 \bar{x}-x \quad \rightarrow \hat{x} \in T \\
& f(\bar{x}) \leqslant 1 / 2 f(x)+1 / 2 f(\hat{x}) \rightarrow f(x) \geqslant 2 f(\bar{x})-f(\hat{x}) \geqslant 2 f(\bar{x})-M
\end{aligned}
$$

Quindi f élimitata su T
dimteoi) Grase al lemma, esstano $M=\mu(\bar{x}), \varepsilon=\varepsilon(\bar{z})>0$ t.c.

$$
|f(x)| \leqslant M \quad \forall x \in B(\bar{x}, 2 \varepsilon)
$$

Sieno $x, y \in B(\bar{x}, \varepsilon)$ con $x \neq y$, e sipoige $\alpha=\|x-y\|$. Allora

$$
z=x+\frac{\varepsilon}{\alpha}(y-y) \in B(\bar{x}, 2 \varepsilon)
$$

$\frac{\alpha+\varepsilon}{\alpha} x=\frac{\varepsilon}{\alpha} y \quad d z$ aui $\quad x=\frac{\varepsilon^{\alpha}}{\alpha+\varepsilon} z+\frac{\varepsilon}{\alpha+\varepsilon} y$
e $f(x) \leq \frac{\alpha}{\alpha+\varepsilon} f(z)+\frac{\varepsilon}{\alpha+\varepsilon} f(y)$. Sottraendo $f(y)$ ad ambo memhri:

$$
f(x)-f(y) \leqslant \frac{\alpha}{\alpha+\varepsilon}[f(z)-f(y)] \leqslant \frac{\alpha}{\varepsilon}|f(z)-f(y)| \leq \frac{2 M}{\varepsilon} \alpha=\frac{2 M}{\varepsilon}\|x-y\|
$$

Invertendo i sudi dix ey F ot otere anche $f(y)-f(x) \leq 2 \pi / \varepsilon\|x-y\|$, e quirdi

$$
|f(x)-f(y)| \leq \frac{2 H}{\varepsilon}\|x-y\| \quad \forall x, y \in B(\bar{x}, \varepsilon)
$$

Oss $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convesia io $\mathbb{R}^{n}=0$ epi $f, S_{f}(\alpha)$ sono chicsi $(\alpha \in \mathbb{R})$
Nota Anche in assenta di convessita vale:
f inf.nte semicontinua \ll epif chivso $\Delta=D S_{f}(\alpha)$ chivso $\forall \alpha \in \mathbb{R}$ (le f inforte semicontinue vengono unche chisonste chiose)

ESISTENZA DERIVATA DIREZIONALE

$$
\left.f^{\prime}(\bar{x} ; d)=\lim _{t \not 0}[f(\bar{x}+t d)-f(\bar{x})] / t \quad \text { (se } \exists \lim \right)
$$

Prop Una $f z$ convessa su $D \subseteq \mathbb{R}^{n}$ ammette derivata direzionale $f^{\prime}(\bar{x} ; d)$ in ogni direzane $d \in \mathbb{R}^{n}$ in ogni, punto $\bar{x} \in$ int D.
dim Sia $g(t)=[f(\bar{x}+t d)-f(\bar{x})] / t \quad($ se t uff-ste precolo $\bar{x}+t d \in D)$ f loc.nte lips. $\Rightarrow|g(t)|=|f(\bar{x}+t d)-f(\bar{x})|\left\|_{1+1} \leq M\right\| d \|$ se t suff.ate piceslo Sinno $0<t_{2}<t_{1}$ t.e. $\bar{x}+t_{1} d \in D$:

$$
\left.\left.\begin{array}{l}
\bar{x}+t_{2} d=\left(1-t_{2} / t_{1}\right) \bar{x}+t_{2} / t_{1}\left(\bar{x}+t_{1} d\right) \\
f\left(\bar{x}+t_{2} d\right) \leq\left(1-t_{2} / t_{1}\right) f(\bar{x})+t_{2} / t_{1} \\
f\left(\bar{x}+t_{1} d\right) \\
f\left(\bar{x}+t_{2} d\right)-f(\bar{x}) \leq t_{2} / t_{1}
\end{array} f\left(\bar{x}+t_{1} d\right)-f(\bar{x})\right] \rightarrow g\left(t_{2}\right)<g\left(t_{1}\right)\right)
$$

g limitate e crexente su $\left[0, t_{1}\right] \Rightarrow \exists f^{\prime}(\bar{x} ; d)=\lim _{t \rightarrow 0} g(t)=\operatorname{lnf}_{t>0} g(t)$
SOTTOGRADIENTI E SOTTODIFFERENZIALE

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R} \text { convessa so } D \subseteq \mathbb{R}^{n} \quad(D \text { convesso })
$$

Def $s \in \mathbb{R}^{n}$ si dice SOTTOGRADIENTE di f in $\bar{x} \in D$ se

$$
f(x) \geqslant f(\bar{x})+\langle s, x-\bar{x}\rangle \quad \forall x \in D
$$

Def $\partial f(\bar{x})=\left\{\delta \in \mathbb{R}^{n} \mid\right.$ s è sottogradiente difin $\left.\bar{x}\right\}$ si dice SOTTODIFFERENZIALE dif in $\bar{x} \in D$

Prop Sir f differentizile in $\bar{x} \in$ int D. Allora $\partial f(\bar{x})=\{\nabla f(\bar{x})\}$
dim Siano $s \in \partial f(\bar{x}), d=s-\nabla f(\bar{x})$ e $t>0$ t.c. $\bar{x}+t d \in D$.

$$
\begin{aligned}
& \delta \in \partial f(\bar{x}) \Rightarrow f(\bar{x}+t d) \geqslant f(\bar{x})+t\langle s, d\rangle \\
& f \text { diff. } \Rightarrow f(\bar{x}+t d)=f(\bar{x})+t\langle\nabla f(\bar{x}), d)+r(t d) \\
& d \geq \omega i \quad 0 \geqslant t\langle s-\nabla f(\bar{x}), d)+r(t d) \text { e } \quad 0 \geqslant\langle s-\nabla f(\bar{x}), d\rangle+r(t d) / t
\end{aligned}
$$

Considerando $t \downarrow 0$ si othere $0 \geqslant\langle s-\nabla f(\bar{x}), d\rangle=\|s-\nabla f(\bar{x})\|^{2}$ owero $s=\nabla f(\bar{x})$

Teo $\partial f(\bar{x})$ é non vuoto, wavesso e competto per ogni $\bar{x} \in$ int D.
$d m s_{1}, s_{2} \in \partial f(\bar{x}), \lambda \in[0,1]$

$$
\begin{aligned}
f(\bar{x})+\left\langle\lambda s_{1}+(1-\lambda) s_{2}, x-\bar{x}\right\rangle & =\lambda\left[f(\bar{x})+\left\langle s_{1}, x-\bar{x}\right\rangle\right]+(1-\lambda)\left[f(\bar{x})+\left\langle s_{2}, x-\bar{x}\right\rangle \leq\right. \\
& \leq \lambda f(x)+(1-\lambda) f(x)=f(x)
\end{aligned}
$$

$\partial f(\bar{x})$ è chusio per la continutè di $s \mapsto\langle s, x-\bar{x}\rangle$
$\partial f(\bar{x})$ é limitato pocché $f \bar{e}$ localmente lipsehitiana viano a \bar{x} :

$$
\begin{aligned}
& \langle s, x-\bar{x}\rangle \leq f(x)-f(\bar{x}) \leq L\|x-\bar{x}\| \text { se } x \in B(\bar{x}, \varepsilon) \text { per } \varepsilon>0 \text { oppoitono } \\
& x=\bar{x}+\frac{\varepsilon}{\|s i\|} s: \frac{\varepsilon}{\|\mid s i\|} \|\langle s, s\rangle \leq \frac{\varepsilon L\|s\| \rightarrow\|s\|}{\|\mid s\|} \rightarrow L
\end{aligned}
$$

$\partial f(\bar{x}) \neq \varnothing$ richiede il sejuente corollario del teoremz di separasione stretta: Cor $A \subseteq \mathbb{R}^{m}$ convesso, $\bar{z} \in \partial A \Rightarrow \exists z^{*} \in \mathbb{R}^{m}, z^{*} \neq 0$ t.c. $\left\langle z^{*^{*}}, z\right\rangle \leqslant\left\langle z^{*}, \bar{z}\right\rangle \forall z \in A$. $(\bar{x}, f(\bar{x})) \in \partial($ epif $)$, quindi $\exists\left(s^{*}, \mu^{*}\right) \in \mathbb{R}^{n} \times \mathbb{R} \quad\left(s^{*}, a^{*}\right) \neq(0,0)$ t.c.

$$
\begin{align*}
& \left\langle s^{*}, x\right\rangle+\mu^{*} \leq\left\langle s^{*}, \bar{x}\right\rangle+\mu^{*} f(\bar{x}) \quad \forall x \in D \quad \forall t \geqslant f(x) \\
& \left\langle s^{*}, x-\bar{x}\right\rangle+\mu^{*}(t-f(\bar{x})) \leq 0 \quad \text { ® }
\end{align*}
$$

$u^{*} \leq 0$, altriment, $t \uparrow+\infty$ contraddice \circledast.
Se forse $\mu^{*}=0$, risulterebbe $\left\langle s^{*}, x-\bar{x}\right\rangle \leqslant 0 \quad \forall x \in D$ e quindi $\delta^{*}=0$ parche $\bar{x} \in$ ent D Quindi $\mu^{*}<0$ e possizmo xupherere $\mu^{*}=-1$: $\left\langle s^{k}, x-x^{*}\right\rangle+f(\bar{x})-t \leqslant 0$
da wi per $t=f(x)$ si ottiene $f(x) \geqslant f(\bar{x})+\left\langle s^{*}, x-x^{*}\right\rangle$, ovvero $s^{*} \in \partial f(\bar{a})$ (6)
Prop Sizno f stett.ate convesia su D e $s^{*} \in \partial f(\bar{x})$ per $\bar{x} \in$ int D. Allora

$$
f(x)>f(\bar{x})+\left\langle s^{+}, x-\bar{x}\right\rangle \quad \forall x \in D, x \neq \bar{x} .
$$

dim Per def. $f(x) \geqslant f(\bar{x})+\left\langle s^{\star}, x-\bar{x}\right\rangle \quad \forall x \in D \quad \boxplus$
Supponiemo esiste $\underset{\substack{(\hat{x} \neq \bar{x})}}{\hat{c}}$ t.c. $f(\hat{x})=f(\bar{x})+\left\langle s^{\star}, \hat{x} \cdot \bar{x}\right\rangle$. Sir $\left.\lambda \in\right] 0,1 \bar{L}$:

$$
f(\lambda \hat{x}+(1-\lambda) \bar{x})\left\langle\lambda f(\hat{x})+(1-\lambda) f(\bar{x})=f(\bar{x})+\lambda\left\langle s^{*}, \hat{x}-\bar{x}\right\rangle\right.
$$

in contraddizione con | |
| :---: |
| per |
| x |$=\lambda \hat{x}+(1-\lambda) \bar{x}$.

Analogamente al caro differentabile si dimostra:
Prop Se per ogni $\bar{x} \in \operatorname{nt} D, \partial f(\bar{x}) \neq \varnothing$, allore $f e^{-}$convessa su int D.
Per sempliatè d'or in eventi supponizmo $\quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convesse su \mathbb{R}^{n}
Prop $=\partial f(\bar{x})=\left\{s \in \mathbb{R}^{n} \mid f^{\prime}(\bar{x} ; d) \geqslant\langle s, d\rangle \forall d \in \mathbb{R}^{n}\right\}$
$\stackrel{d i m}{=}$ c) $s \in \partial f(\bar{x}) \rightarrow f\left(\bar{x}+t_{d}\right) \geqslant f(\bar{x})+t\langle s, d\rangle \rightarrow \frac{f\left(\bar{x}+d_{d}\right)}{t}-f(\bar{x}) \geqslant\langle s, d\rangle$

$$
t \downarrow 0 \rightarrow f^{\prime}(\bar{x} ; d) \geqslant\langle s, d\rangle
$$

2) $S i a s \in \mathbb{R}^{n}$ t.c. $\left.f^{\prime}(\bar{x} ; d) \geqslant<s, d\right) \quad \forall d \in \mathbb{R}^{n}$.

$$
\left\langle S_{1} d\right\rangle \leq f^{\prime}(\bar{x} ; d)=\operatorname{lin}_{t \rightarrow 0} \frac{f(\bar{x}+t d)-f(\bar{x})}{t} \leq \frac{f(\bar{x}+d)-f(\bar{x})}{t=1}
$$

de wi con $d=y-x: \quad f(y) \geqslant f(\bar{x})+\langle s, y-x\rangle \quad \forall y \in \mathbb{R}^{n}$ ovvero $s \in \partial f(\bar{x})$

Lemms $d \longmapsto f^{\prime}(\bar{x} ; d)$ è sublineare per goni $\bar{x} \in \mathbb{R}^{n}$
dim $S_{12} \gamma>0: f^{\prime}(\bar{x} ; \gamma d)=\lim _{t \downarrow 0} \gamma \frac{f(\bar{x}+\gamma t d)-f(\bar{x})}{\gamma t}=\gamma \lim _{\tau \downarrow 0} \frac{f(\bar{x}+\tau d)-f(\bar{x})}{\tau}$ Siano $d_{1}, d_{2} \in \mathbb{R}^{n}$:

$$
\gamma f^{\prime \prime}(\bar{x} ; d)
$$

$$
\bar{x}+t\left(d_{1}+d_{2}\right)=\frac{1}{2}\left(\bar{x}+2 t d_{1}\right)+1 / 2\left(\bar{x}+2 t d_{2}\right)
$$

$f\left(\bar{x}+t\left(d_{1}+d_{2}\right)\right) \leq 1 / 2 f\left(\bar{x}+2 t d_{1}\right)+1 / 2 f\left(\bar{x}+2 t d_{2}\right) \quad$ da wi
$\frac{f\left(\bar{x}+t\left(d_{1}+d_{2}\right)\right)-f(\bar{x})}{t} \leq \frac{f\left(\bar{x}+2 t d_{1}\right)-f(\bar{x})}{2 t}+\frac{f\left(\bar{x}+2 t d_{2}\right)-f(\bar{x})}{2 t}$ de wi tbo:

$$
f^{\prime}\left(\bar{x} ; d_{1}+d_{2}\right) \leq f^{\prime}\left(\bar{x} ; d_{1}\right)+f^{\prime}\left(\bar{x} ; d_{2}\right)
$$

Teo $f^{\prime}(\bar{x}, \cdot)$ é la funtione di uppoito di $\partial f(\bar{x})$ per ogni $\bar{x} \in \mathbb{R}^{n}$, ovvero

$$
\left.\left.f^{\prime}(\bar{x} ; d)=\max \right\}\langle s, d\rangle \quad \mid s \in \partial f(\bar{x})\right\} \quad \forall d \in \mathbb{R}^{n} .
$$

$\operatorname{dim} \operatorname{Sinan} s \in \partial f(\bar{x}), d \in \mathbb{R}^{n}$

$$
f^{\prime}(\bar{x} ; d)=\inf _{t>0} \frac{f(\bar{x}+t d)-f(\bar{x})}{t} \geqslant \operatorname{mif}_{t>0} \frac{t\langle s, d\rangle}{t}=\langle s, d\rangle
$$

Dall'arbitraietżdis sepue $f^{\prime}(\bar{x} ; d) \geqslant \max \{<s, d>\mid s \in \partial f(\bar{x}$,$\} .$
Supponizmo che esiste $\bar{d} \in \mathbb{R}^{n}$ t.c.

$$
\left.f^{\prime}(\bar{x} ; \bar{d})\right\rangle \max \{\langle s, \bar{d}\rangle \mid s \in \partial f(\bar{x})\}=\langle\bar{s}, \bar{d}\rangle
$$

per l'oppatuno $\bar{j} \in \partial f(\bar{x})$. Sentz perdere di peneralità possiamo supporre $\|\bar{d}\|=1$
$S_{12 n 0} \gamma=f^{\prime}(\bar{x} ; \bar{d})-\langle\bar{s}, \bar{d}\rangle>0$ e $\hat{s}=\bar{s}+\gamma \bar{d}:\left(\begin{array}{c}\text { perla positiva omapeneitla di } \\ F(\bar{x} \cdot \vec{j})\end{array}\right.$

$$
\begin{aligned}
&\langle\hat{s}, \bar{d}\rangle=\langle\bar{s}, \bar{d}\rangle+\gamma\langle\bar{d}, \bar{d}\rangle=\langle\bar{s}, \bar{d}\rangle+\gamma=f^{\prime}(\bar{x} ; \bar{d}) \\
&\langle\hat{s},-\bar{d}\rangle=-\langle\hat{s}, \bar{d}\rangle=-f^{\prime}(\bar{x} ; \bar{d}) \leq f^{\prime}(\bar{x},-\bar{d}) \\
&\left(0=f^{\prime}(\bar{x} ; 0)=f^{\prime}(\bar{x} ; \bar{d}-\bar{d}) \leq f^{\prime}(\bar{x}, \bar{d})+f^{\prime}(\bar{x} ;-\bar{d})\right)
\end{aligned}
$$

Qundi $\langle\hat{s}, \gamma \bar{d}\rangle \leqslant f^{\prime}(\bar{x} ; \gamma d) \quad \forall \gamma \in \mathbb{R}$
D_{∂} teo (Hahn-Brnach) segue che esiste $s \in \mathbb{R}^{n}$ t.e. $\left\{\begin{array}{l}\langle s, \bar{d}\rangle=\langle\hat{s}, \bar{d}\rangle \\ f^{\prime}(\bar{x} ; d) \geqslant\langle s, d\rangle \quad \forall d \in \mathbb{R}^{n}\end{array}\right.$ Quindi $s \in \partial f(\bar{x}), m a\langle s, \bar{d}\rangle=\langle\hat{s}, \bar{d}\rangle\rangle\langle\bar{s}, \bar{d}\rangle$
in contraddinione con la scelta di \bar{s}

Prop Siano $t>0, f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convessas su $\mathbb{R}^{n} 1=1,2$. Allor2 per ogni $\bar{x} \in \mathbb{R}^{n} .(8)$ valgono:
i) $\partial\left(t f_{1}\right)(\bar{x})=t \partial f_{1}(\bar{x})$
ii) $\partial\left(f_{1}+f_{2}\right)(\bar{x})=\partial f_{1}(\bar{x})+\partial f_{2}(\bar{x})$
dim i) Immediatz conseguenta della definizione o equivalentemente della positiva omogenerta di $f^{\prime}(\bar{x} ; \cdot 0)$.
(i) I due insiemi hanno la stessa funzione di suppoato:

$$
\begin{aligned}
& \sigma_{\partial\left(f_{1}+f_{2}\right)(\bar{x})}(d) \max \left\{\langle s, d\rangle \mid s \in \partial\left(f_{1}+f_{2}\right)(\bar{x})\right\}=\left(f_{1}+f_{2}\right)^{\prime}(\bar{x} ; d)= \\
& =f_{1}^{\prime}(\bar{x} ; d)+f_{2}^{\prime}(\bar{x}, d)=\max \left\{\langle s, d\rangle \mid s \in \partial f_{1}(\bar{x})\right\}+\max \left\{\langle s, d\rangle \mid s \in \partial f_{2}(\bar{x})\right\} \\
& =\max \left\{\langle s, d\rangle \mid s \in \partial f_{1}(\bar{x})+\partial f_{2}(\bar{x})\right\}=\sigma_{\partial f_{1}(\bar{x})+\partial f_{2}\left(\bar{x}_{e}\right)} \quad \forall d \in \mathbb{R}^{n} .
\end{aligned}
$$

$\partial f_{i}(\bar{x})$ compatto, convesso $\Rightarrow \partial f_{1}(\bar{x})+\partial f_{2}(\bar{x})$ compdtt, convesso.
Due insiemi convessi e compitt, hanno la stessa funtione di ropproto se e solo se sono uguzli**, pertento $\partial\left(f_{1}+f_{2}\right)(\bar{x})=\partial f_{1}(\bar{x})+\partial f_{2}(\bar{x})$

$$
\max \{\langle s, d\rangle \mid s \in A\} \leq \max \{\langle s, d\rangle \mid s \in B\} \quad \forall d \in \mathbb{R}^{n} \quad a=p \quad A \subseteq B
$$

$\underset{=}{\operatorname{dim}} \Delta=$) ovvio

$$
\sigma_{A}^{\prime \prime}(d) \quad \sigma_{B}^{\prime \prime}(d)
$$

\Rightarrow) Supponizmo che esote $\bar{s} \in A$ t.c. $\bar{s} \notin B$. Per il teo (seperazune stetta) esistoro $\bar{d} \in \mathbb{R}^{n}, \gamma \in \mathbb{R}$ tali he

$$
\langle\bar{s}, \bar{d}\rangle \geqslant \gamma\rangle\langle s, \bar{d}\rangle \quad \forall s \in B
$$

da wi lacontreddacone

$$
\begin{aligned}
& \text { wi } l_{2} \text { contreddivione } \\
& \left.\sigma_{A}(\bar{d}) \geqslant\langle\bar{s}, \bar{d}\rangle>\gamma \geqslant \max \langle\langle s, \bar{d}\rangle| s \in B\right\}=\sigma_{B}(\bar{d}) .
\end{aligned}
$$

Prop ${ }^{* *} S_{\text {lano }} S_{l, \ldots,}, \delta_{k} \subseteq \mathbb{R}^{n}$ convessi e computtr e siz $S=\bigcup_{i=1}^{k} S_{i}$. Allore

$$
\begin{equation*}
\max _{i=1 \ldots k} \sigma_{S_{i}}(d)=\sigma_{\text {conv }}(d) \quad \forall d \in \mathbb{R}^{n} \tag{:}
\end{equation*}
$$

dove conv $S=\left\{\sum_{i=1}^{n+1} \lambda_{i}^{\epsilon} s^{i} \mid s^{i} \in S, \lambda_{c} \geqslant 0 \sum_{i=1}^{n+1} \lambda_{l}=1\right\}$.
$\operatorname{dim} S_{i} \leq \operatorname{conv} S \Rightarrow \sigma_{S_{i}}(d)=\max \left\{\langle s, d\rangle \mid s e S_{i}\right\} \leq \max \{\langle s, d\rangle \mid$ seconvs $\}=\sigma_{4}$
$S \in$ cony $S=0 \quad S=\sum_{i=1}^{n+1} \lambda_{i} s^{i}:\langle s, d\rangle=\sum_{i=1}^{n+1} \lambda_{i}\left\langle S^{i}, d\right\rangle \leq\left(\sum_{i=1}^{n+1} \lambda_{i}\right) \max _{i=1,1+1)}\left\langle s^{i}, d\right\rangle=$ $=\max _{i}\left\langle s^{i}, d\right\rangle \leq \sigma_{S_{\bar{k}}}(d) \leq \max _{i} \sigma_{S_{i}}(d)$ dove $\bar{k} t_{c} . \max _{i}\left\langle s^{i}, d\right\rangle=\left\langle s^{i}, d\right\rangle$ $e^{c} S^{i} \in S_{\bar{k}}$.
$\stackrel{\text { Prop }}{=}$ Siano $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convessa su $\mathbb{R}^{n}\left(=1, \ldots\right.$, m n e $f(x)=\max \left\{f_{1}(x), f_{2}(x), \ldots, f_{1}(x)\right\}$, Allora per ogni $\bar{x} \in \mathbb{R}^{n}$ risulta

$$
\partial f(\bar{x})=\operatorname{conv}\left\{\bigcup_{i \in I_{f}(\bar{x})} \partial f_{i}(\bar{x})\right\} \quad \text { dove } I_{f}(\bar{x})=\left\{i \mid f(\bar{x})=f_{i}(\bar{x})\right\}
$$

dim Siano $s \in \partial f_{i}(\bar{x})$ con $i \in I_{f}(\bar{x})$ e $y \in \mathbb{R}^{n}$:

$$
f(y) \geqslant f_{i}(y) \geqslant f_{i}(\bar{x})+\langle s, y-\bar{x}\rangle=f(\bar{x})+\langle s, y-\bar{x}\rangle
$$

da wi $s \in \partial f(\bar{x})$: Poiche' $\partial f(\bar{x})$ é convesio e $\partial f_{i}(\bar{x}) \subseteq \partial f(\bar{x})$ per $i \in I_{f}(\bar{x})$, segue che conv $\left\{\bigcup_{《 I I_{f}(\bar{x})} \partial f_{i}(\bar{x})\right\} \subseteq \partial f(\bar{x})$.
Per le due precedenti proposizioni l'incusione opposta vale se

$$
f^{\prime}(\bar{x} ; d) \leq \max \left\{f_{i}^{\prime}(\bar{x} ; d) \mid i \in I_{f}(\bar{x})\right\} \quad \forall d \in \mathbb{R}^{n} .
$$

Sizno $d \in \mathbb{R}^{n} e t_{k} \downarrow 0$: sia $I_{k}=I_{f}\left(\bar{x}+t_{k} d\right) ;$ per costruzune $I_{k} \neq \varnothing$ per onni k e la continuità delle f_{z}. f_{i} garentisce che $I_{k} \subseteq I_{f}(\bar{x})$ se k é suffinte grende.
Per la finitetaz del numero de f_{7} esistono $j \in I f(\bar{x})$ e una sottosuccessione $k e$ t.e. $j \in I_{k e}$ per ogni e. Quindi:

$$
\begin{aligned}
& f^{\prime}(\bar{x} ; d)=\lim _{e l-\infty+\infty}\left[f\left(\bar{x}+t_{k_{e}} d\right)-f(\bar{x})\right] / t_{k e}=\lim _{e \rightarrow+\infty}\left[f_{j}\left(\bar{x}+t_{k_{e}} d\right)-f_{g}(\bar{x})\right] / t_{k e}=f_{j}^{\prime}(\bar{x} ; d) \leq \\
& \leqslant \max \left\{f_{i}^{\prime}(\bar{x} ; d)\left\{i \in I_{f}(\bar{x})\right\}\right.
\end{aligned}
$$

Cor se f_{i} sono inothe differentribli in \bar{x}, ullers of $f(\bar{x})=\operatorname{conv}\left\{\nabla f_{i}(\bar{x}) \mid i \in I_{p}(\bar{x})\right\}$.

Prop Sir $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convessa so \mathbb{R}^{n}. Allors per ogni $\bar{x} \in \mathbb{R}^{n}$ risulta

$$
\begin{aligned}
& \partial f(\bar{x})=\left\{s \in \mathbb{R}^{n} \mid(s,-1) \in \mathbb{N}(\text { epi } f,(\bar{x}, f(\bar{x})))\right\} \\
& \xrightarrow{\operatorname{dim}}(s,-1) \in N(\text { epr } f,(\bar{x}, f(\bar{x})))<1=D \forall y \in \mathbb{R}^{n} \forall r \geqslant f(y):\langle s, y-\bar{x}\rangle+(-1)(r-f(\bar{x})) \leq 0 \\
& \left\langle=D \quad \forall y \in \mathbb{R}^{n} \forall r \geqslant f(y):\langle s, y-\bar{x}\rangle+f(\bar{x}) \leqslant r\right. \\
& \underset{\substack{\text { siperde } \\
r=f(y)}}{\Rightarrow} \Leftrightarrow d \in \partial f(\bar{x})
\end{aligned}
$$

TEOREMI DI SEPARAZIONE
Mangasarian, Nonlinear programming, siall 1994 (He Gow-Hill 1969)
Chp3 (richiede Chp 2 [teoremidialternative])
Bazaraa - Sherali-Shetty, Noolioear propramming: theory falporithms, Wiley 1993 Section 2.4

Teo (separazione stretta)
$A \subseteq \mathbb{R}^{m}$ convesso, chuso, $B \subseteq \mathbb{R}^{m}$ compatto.

$$
A \cap B=\varnothing \Rightarrow \exists z^{*} \in \mathbb{R}^{m}, \gamma \in \mathbb{R} \text { t.e. } \quad\left\langle z^{*}, z\right\rangle\left\langle\gamma \left\langle\left\langle z^{*}, w\right\rangle \quad \begin{array}{l}
\forall z \in A \\
\\
\forall w \in B
\end{array}\right.\right.
$$

Cor $A \subseteq \mathbb{R}^{m}$ convesso, $\bar{z} \in \partial A \Rightarrow \exists z^{*} \in \mathbb{R}^{m}, z^{*} \neq 0$ t.c. $\left\langle z^{*}, z-\bar{z}\right\rangle \leq 0 \quad \forall z \in A$
$\underline{\operatorname{dim}} \bar{z} \in \partial A \Rightarrow \exists z_{k} \rightarrow \bar{z}$ con $z_{k} \notin d A$
Si applica Il teo (separarone stretta) per dA e \{2k\} e si normplazz zk e ar passe ol limite $k \rightarrow+\infty$.

Esempi $d_{1} f_{z}$. convesse

1) $x \mapsto\|x\| \quad$ [non differenziable in $\bar{x}=0$]
2) $x \longmapsto\|x\|^{2}$ [differentiabile]
la convessites segue iminediatamente dall'ugazglizna a

$$
\begin{aligned}
&\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2} \\
&(\lambda\langle x, x\rangle+(1-\lambda)\langle y, y\rangle-\lambda(1-\lambda)\langle x-y, x-y\rangle= \\
&= \lambda\langle x, x\rangle+(1-\lambda)\langle y, y\rangle-\lambda(1-\lambda)[\langle x, x\rangle+\langle y, y\rangle-2\langle x, y\rangle]= \\
&=\left.\lambda^{2}\langle x, x\rangle+(1-\lambda)^{2}\langle y, y\rangle+2 \lambda(1-\lambda)\langle x, y\rangle=\|\lambda x+(1-\lambda) y\|^{2}\right)
\end{aligned}
$$

3) $x \mapsto \frac{1}{2} x^{\top} Q x+b^{\top} x(x)$ con $Q \in \mathbb{R}^{n \times n}, Q=Q^{\top}$ semidefinita positiva
4) $\left.x \longmapsto \sqrt{\inf \left\{\|x-y\|^{2}: y \in C\right.}\right\}$ con C convesso

Nota $y \mapsto\|x-y\|^{2}$ è fartmente convesiz, quiadi inf $=$ min $>-\infty$. $\operatorname{Siz0} \varepsilon>0, \quad y_{1}, y_{2} \in C$ t.c. $\quad\left\|x_{i}-y_{i}\right\|^{2} \leqslant f\left(x_{i}\right)+\varepsilon \quad(=1,2, \quad \lambda \in[0,1]$

$$
\begin{aligned}
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) & \leq\left\|\lambda x_{1}+(1-\lambda) x_{2}-\lambda y_{1}-(1-\lambda) y_{2}\right\|^{2}= \\
& =\left\|\lambda\left(x_{1}-y_{1}\right)+(1-\lambda)\left(x_{2}-y_{2}\right)\right\|^{2} \leq \\
& \leq \lambda\left\|x_{1}-y_{1}\right\|^{2}+(1-\lambda)\left\|x_{2}-y_{2}\right\|^{2} \leq \\
& \leqslant \lambda f\left(x_{1}\right)+\lambda \varepsilon+(1-\lambda) f\left(x_{2}\right)+(1-\lambda) \varepsilon \\
& \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)+\varepsilon
\end{aligned}
$$

Dell'arbiternetà di $\varepsilon>0$ sepue la convessitz- di f
5) $x \mapsto \sup \{\langle x, y\rangle: y \in C\}$ funzione di xpporto di $C \subseteq \mathbb{R}^{n}$
6) $Q=Q^{\top} \in \mathbb{R}^{\times \times n}$ semide finita positiva
$f(Q)=\sup \left\{d^{\top} Q d: \| d n=1\right\}$ massimo aetovalore di Q.
(f deffinte sull'nasiene delle mathici semidef. pos. $\subseteq \mathbb{R}^{2 n}$)

Convexity for sets

$C \subseteq \mathbb{R}^{n}$ is a convex set if

$$
x, y \in C, \lambda \in[0,1] \Longrightarrow \lambda x+(1-\lambda) y \in C
$$

Operations preserving convexity

- Let $C \subseteq \mathbb{R}^{n}$ be convex.
- The closure and the (relative) interior of C are convex
- Let $A \in \mathbb{R}^{m \times n}$.
(i) If $C \subseteq \mathbb{R}^{n}$ is convex, then $A(C)=\{A x: x \in C\}$ is convex
(ii) If $D \subseteq \mathbb{R}^{m}$ is convex, then $A^{-1}(D)=\{x: A x \in D\}$ is convex
- Let $C_{i} \subseteq \mathbb{R}^{n_{i}}$ be convex and $\mu_{i} \in \mathbb{R}$ for all $i \in I$.
(i) $\prod_{i \in I} C_{i}$ is convex
(ii) If $n_{i}=n$, then $\bigcap_{i \in I} C_{i}$ is convex
(iii) If I is finite and $n_{i}=n$, then $\sum_{i \in I} \mu_{i} C_{i}$ is convex

Convexity for functions

Let $C \subseteq \mathbb{R}^{n}$ be convex. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function on C if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

holds for all $x, y \in C, \lambda \in[0,1]$.

Convexity for functions

Let $C \subseteq \mathbb{R}^{n}$ be convex. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function on C if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

holds for all $x, y \in C, \lambda \in[0,1]$.

Convexity for functions

Let $C \subseteq \mathbb{R}^{n}$ be convex. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function on C if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

holds for all $x, y \in C, \lambda \in[0,1]$.

Proposition

Let $C \subseteq \mathbb{R}^{n}$ be convex. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex on C if and only if (the restriction of) its epigraph (to C), namely

$$
\operatorname{epi}(f) \cap(C \times \mathbb{R})=\{(x, t) \in C \times \mathbb{R}: t \geq f(x)\}
$$

is a convex set in \mathbb{R}^{n+1}.

Convexity for functions

Let $C \subseteq \mathbb{R}^{n}$ be convex. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function on C if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

holds for all $x, y \in C, \lambda \in[0,1]$.

Proposition

Let $C \subseteq \mathbb{R}^{n}$ be convex. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex on C if and only if (the restriction of) its epigraph (to C), namely

$$
e p i(f) \cap(C \times \mathbb{R})=\{(x, t) \in C \times \mathbb{R}: t \geq f(x)\}
$$

is a convex set in \mathbb{R}^{n+1}. Morever, if f is convex on C, then the (the restriction of) its α-sublevel set (to C), namely

$$
S_{\alpha}(f) \cap C=\{x \in C: f(x) \leq \alpha\},
$$

is a convex set in \mathbb{R}^{n} for any $\alpha \in \mathbb{R}$.

Let $C \subseteq \mathbb{R}^{n}$ be convex. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is

- convex on C if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

holds for all $x, y \in S, \lambda \in[0,1]$

- strictly convex on C if

$$
f(\lambda x+(1-\lambda) y)<\lambda f(x)+(1-\lambda) f(y)
$$

holds for all $x, y \in C$ with $x \neq y, \lambda \in] 0,1[$

- strongly convex on C with modulus μ if

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)-\frac{\mu}{2} \lambda(1-\lambda)\|x-y\|_{2}
$$

holds for all $x, y \in C, \lambda \in[0,1]$
f strongly convex on C if and only if $f-\frac{\mu}{2}\|\cdot\|_{2}^{2}$ is convex on C.

Operations preserving convexity

Let $C \subseteq \mathbb{R}^{n}$ be convex.

- Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex on C and $\mu_{i}>0$ for all $i \in I$.
(i) If I is finite, then $\left(\sum_{i \in I} \mu_{i} f_{i}\right)(x)=\sum_{i \in I} \mu_{i} f_{i}(x)$ is convex on C
(ii) If $\left(\sup _{i \in I} f_{i}\right)(x)=\sup _{i \in I} f_{i}(x)<+\infty$ for all $x \in C$, then the pointwise supremum function $\left(\sup _{i \in I} f_{i}\right)$ is convex on C
- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex on \mathbb{R}^{n}.
(i) $g(x)=f(A x+b)$ is convex on \mathbb{R}^{m} for any $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{n}$
(ii) $g(x)=h(f(x))$ is convex on \mathbb{R}^{n} if $h: \mathbb{R} \rightarrow \mathbb{R}$ is convex and non-decreasing
(iii) $g(x)=h(-f(x))$ is convex on \mathbb{R}^{n} if $h: \mathbb{R} \rightarrow \mathbb{R}$ is convex and non-increasing

Examples of convex functions

- $f(x)=\|x\|_{2}$ (nonsmooth at $x=0$)
- $f(x)=\|x\|_{2}^{2}$ (smooth)
- $f(x)=\|x\|_{1}$ (nonsmooth along the coordinate axes)
- $f(x)=\frac{1}{2} x^{T} Q x+b^{T} x+c$ with $Q=Q^{T} \in \mathbb{R}^{n \times n}$ positive semidefinite, $b \in \mathbb{R}^{n}, c \in \mathbb{R}$ (strongly convex if Q is positive definite)
- Let $C \subseteq \mathbb{R}^{n}$ be convex.
(i) $d_{C}(x)=\min \left\{\|y-x\|_{2}: y \in C\right\}$ (nonsmooth on the boundary)
(ii) $d_{C}^{2}(x)=\min \left\{\|y-x\|_{2}^{2}: y \in C\right\}$ (smooth)
(iii) $\sigma_{C}(x)=\sup \left\{y^{\top} x: y \in C\right\}[$ support function of C]

Convexity and optimization

Let $C \subseteq \mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$.

$$
\text { (P) } \quad \min \{f(x): x \in C\}
$$

Suppose C is convex. Then,

- If f is convex on C, then any local minimum point of (P) is also a global minimum point. Moreocer, the set of all the minima is a convex set.
- If f is strictly convex on C, there exists at most one minimum point of (P).
- If f is strongly convex on C, there exists exactly one minimum point of (P).

Differentiable convex functions

Let $C \subseteq \mathbb{R}^{n}$ be convex and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ differentiable on C.
(i) f is (strictly) convex on C if and only if

$$
\begin{equation*}
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \tag{>}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq 0 \tag{>}
\end{equation*}
$$

holds for all $x, y \in C($ with $x \neq y)$.

Differentiable convex functions

Let $C \subseteq \mathbb{R}^{n}$ be convex and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ differentiable on C.
(i) f is (strictly) convex on C if and only if

$$
\begin{equation*}
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \tag{>}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq 0 \tag{>}
\end{equation*}
$$

holds for all $x, y \in C($ with $x \neq y)$.
(ii) f is strongly convex on C with modulus $\mu>0$ if and only if

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{\mu}{2}\|y-x\|_{2}^{2}
$$

or equivalently

$$
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq \mu\|y-x\|_{2}^{2}
$$

holds for all $x, y \in C$.

Mean value theorem

Let f be convex on \mathbb{R}^{n}. Given any $x, y \in \mathbb{R}^{n}$ with $x \neq y$, then

- there exist $\lambda \in] 0,1\left[\right.$ and $s_{\lambda} \in \partial f(\lambda x+(1-\lambda) y)$ such that

$$
f(y)-f(x)=s_{\lambda}^{T}(y-x)
$$

- $f(y)-f(x)=\int_{0}^{1} s_{\lambda}^{T}(y-x) d \lambda$
for any choice of the subgradients $s_{\lambda} \in \partial f(\lambda x+(1-\lambda) y)$

Calculus rules

Let $f, f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex on \mathbb{R}^{n} for all $i \in I[\leftarrow$ finite index set $]$

- $\partial f(x)=\alpha \partial f(x)$ for all $\alpha>0$
- $\partial\left(\sum_{i \in I} f_{i}\right)(x)=\sum_{i \in I} \partial f_{i}(x)$
- Let $I(x)=\left\{j \in I: f_{j}(x)=\max _{i \in I} f_{i}(x)\right\}$

$$
\partial\left(\max _{i \in I} f_{i}\right)(x)=\operatorname{conv} \bigcup_{i \in I(x)} \partial f_{i}(x)
$$

- Let $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^{n}, g(x)=f(A x+b)$

$$
\partial g(x)=A^{T} \partial f(A x+b)
$$

- Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be convex, non-decreasing and differentiable

$$
\partial(h \circ f)(x)=h^{\prime}(f(x)) \partial f(x)
$$

