
Chapter 1

Topology and calculus background

We consider Rn endowed with the scalar (or inner) product

xT y =
n∑
i=1

xiyi

which induces the Euclidean norm

‖x‖2 =
√
xTx =

√√√√ n∑
i=1

x2
i .

The following properties hold for any x, y ∈ Rn and any α ∈ R:

‖x‖2 ≥ 0

‖αx‖2 = |α|‖x‖2

‖x‖2 = 0 ⇐⇒ x = 0

‖x+ y‖2 ≤ ‖x‖2 + ‖y‖2

(‖x− y‖2 ≤ ‖x‖2 + ‖y‖2)

|xT y| ≤ ‖x‖2‖y‖2 . (Schwarz inequality).

In turn, the Euclidean norm induces the well-known Euclidean distance between the
points x ∈ Rn and y ∈ Rn:

d(x, y) = ‖x− y‖2

and the following properties can be deduced from the above ones:

d(x, y) ≥ 0

d(x, y) = 0 ⇐⇒ x = y

d(x, y) ≤ d(x, z) + d(z, x).
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1.1 Sequences

A family of points {xk}k∈N ⊆ Rn (i.e., {x1, x2, . . . , xk, . . . }) is called a sequence. For
instance, the family of points xk = (1/k, 1/k2) is a sequence in R2.

Definition 1.1. x̄ ∈ Rn is the limit of a sequence {xk}k∈N if for each ε > 0 there
exists k̄ ∈ N such that d(xk, x̄) ≤ ε for all k ≥ k̄, or equivalently

∀ ε > 0 ∃ k̄ ∈ N s.t. ‖xk − x̄‖2 ≤ ε ∀ k ≥ k̄.

If it exists, the limit of a sequence is unique. Standard notations to denote a limit are
the following: lim

k→+∞
xk = x̄, xk −→ x̄ (k → +∞ below the arrow is often omitted).

Example 1.1.The limit of the sequence (1/k, 1/k2) is x̄ = (0, 0), while the sequence
xk = (1/k, (−1)k) does not have a limit. Take the sequence obtained just considering
odd indices: x1, x3, x5, . . . This sequence converges to (0,−1). Analogously, the
sequence obtained considering just even indices converges to (0, 1).

Definition 1.2. {xkj}j∈N ⊆ {xk}k∈N is a subsequence if kj → +∞ as j → +∞.

Definition 1.3. x̄ ∈ Rn is a cluster point of {xk}k∈N if there exists a subsequence
{xkj}j∈N such that x̄ is its limit, i.e., lim

j→+∞
xkj = x̄, or equivalently

∀ ε > 0 ∀ k ∈ N ∃ k̄ ≥ k s.t. ‖xk̄ − x̄‖2 ≤ ε.

If a sequence has a limit, then it is the unique cluster point of the sequence.

Example 1.2. The last sequence of Example 1.1 has 2 cluster points: (0, 1) and
(0,−1), while the sequence yk = (k, 1/k) does not have any cluster point.

Theorem 1.1. (Bolzano-Weierstrass) If the norm of all the points of a se-
quence {xk}k∈N do not exceed a threshold value, i.e., there exists M > 0 such that
‖xk‖2 ≤ M holds for all k ∈ N, then the sequence has at least one cluster point.

1.2 Topological properties in the Euclidean space

The open ball of centre x ∈ Rn and radius ε > 0 is the set

B(x, ε) = {y ∈ Rn : ‖y − x‖2 < ε}.

Definition 1.4.

(i) D ⊆ Rn is called open if

∀ x ∈ D ∃ ε > 0 s.t. B(x, ε) ⊆ D.

(ii) x ∈ D is called an interior point of D if

∃ ε > 0 s.t. B(x, ε) ⊆ D.
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The set of the interior points of D is called the interior of D and it is generally
denoted by intD. Notice that a set D is open if and only if D = intD.

Example 1.3. B(x, ε), Rn, ∅ are open sets in Rn while the interval ] − 1, 1[ is an
open set in R.

Proposition 1.1.

(i) The union of a family of open sets is an open set.

(ii) The intersection of a finite family of open sets is an open set.

The finiteness of the family is crucial for the intersection property:

+∞⋂
k=1

B(0, 1/k) = {0}.

Definition 1.5.

(i) D ⊆ Rn is called closed if Rn \D = {x ∈ Rn : x /∈ D} is open.

(ii) x ∈ Rn is called an closure point of D if

∀ ε > 0 : B(x, ε) ∩D 6= ∅.

The set of the closure points of D is called the closure of D and it is generally
denoted by clD or D.

Proposition 1.2.

(i) D is closed if and only if D = clD.

(ii) D is closed if and only if the limit of any convergent sequence contained in D
belongs to D as well, i.e.,

∀ {xk}k∈N ⊆ D s.t. ∃ x̄ ∈ Rn s.t. xk −→ x̄ : x̄ ∈ D.

Example 1.4. Rn, ∅, {y ∈ Rn : ‖y − x‖2 ≤ ε} = B(x, ε) are closed sets in Rn
while the interval [−1, 1] is a closed set in R. There exist sets which are neither
closed nor open, for instance the interval [-1,1[ in R and

D = [−1, 0]× [−1, 1] ∪B(0, 1) ⊆ R2.

In fact, (−1 − ε, 0) /∈ D but (−1 − ε, 0) ∈ B((−1, 0), ε) for any ε > 0 so that D is
not open, and xk = (1− 1/k, 0) ∈ D for any k ∈ N while xk → (1, 0) /∈ D so that D
is not closed.

Proposition 1.3.

(i) The union of a finite family of closed sets is an closed set.
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(ii) The intersection of a family of closed sets is a closed set.

The finiteness of the family is crucial for the union property:

+∞⋃
k=2

B(0, 1− 1/k) = B(0, 1).

Definition 1.6. x ∈ Rn is called a boundary point of D if both

B(x, ε) ∩D 6= ∅ and B(x, ε) * D

hold for any ε > 0.

The set of the boundary points of D is called the boundary (or frontier) of D and
it is generally denoted by ∂D. Notice that ∂D = D ∩ (Rn \D).

Proposition 1.4. D ⊆ Rn is both closed and open if and only if D = Rn or D = ∅.

Definition 1.7.

(i) D ⊆ Rn is called bounded if

∃ M > 0 s.t. ∀ x ∈ D : ‖x‖2 ≤M.

(ii) D ⊆ Rn is called compact if it is bounded and closed.

The set D in Example 1.4 is bounded but it is not compact (since it is not closed).

The Bolzano-Weierstrass’ theorem can be enhanced in the following way.

Theorem 1.2. (Bolzano-Weierstrass) A set is compact if and only if any se-
quence contained in the set has at least one cluster point and all its cluster points
belong to the set.

1.3 Functions of several variables

1.3.1 Continuity

Definition 1.8. f : Rn → R is called continuous at x̄ ∈ Rn if f(x̄) is the limit of
f(x) as x→ x̄, i.e.,

∀ ε > 0 ∃ δ > 0 s.t. ‖x− x̄‖2 ≤ δ =⇒ |f(x)− f(x̄)| ≤ ε.

f is continuous on a set D ⊆ Rn if it is continuous at every x ∈ D.

Proposition 1.5. f is continuous at x̄ ∈ Rn if and only if any sequence {xk}k∈N
such that xk −→ x̄ satisfies f(xk) −→ f(x̄).

Example 1.5. f(x) = ‖x‖2 is a continuous function on Rn, f(x1, x1) = sin(πx1x2)
is a continuous function on R2.



Partial derivatives and differentiability (11/11/2015) 9

Theorem 1.3. (Weierstrass) Let D ⊆ Rn be compact and f : Rn → R continuous
on D. Then, there exist at least one minimum point x̄ ∈ D and one maximum point
x̂ ∈ D for f over D, i.e.,

f(x̄) = min{f(x) : x ∈ D} and f(x̂) = max{f(x) : x ∈ D}.

Proof. Let ` = inf{f(x) : x ∈ D} ∈ [−∞ +∞[ and consider any minimizing
sequence, that is any {xk}k∈N such that f(xk)→ `. Since D is compact, there exist
a subsequence {xkj}j∈N and x̄ ∈ D such that xkj → x̄ (as j → +∞) by Theorem 1.2.
Since f is continuous, f(xkj ) → f(x̄) and therefore f(x̄) = ` by the uniqueness of
the limit. As a consequence, ` 6= −∞ and f(x̄) = min{f(x) : x ∈ D}. The
existence of x̂ can be proved analogously. �

Example 1.6. Take n = 1, f(x) = e−x and D = R+: f is continuous on D,
inf{f(x) : x ∈ D} = 0 but there exists no x ∈ D such that f(x) = 0. Indeed, D is
not compact as it is not bounded.

1.3.2 Partial derivatives and differentiability

A point d ∈ Rn such that ‖d‖2 = 1 is also called a direction, and the set

{x̄+ td : t ∈ R}

describes the line of direction d passing through x̄ ∈ Rn. If only t ∈ R+ are
considered, the set describes the corresponding half-line.

Just like the case n = 1, the key tool for developing calculus for a function
f : Rn → R is the incremental ratio

icr(f,x,d)(t) = [f(x+ td)− f(x)]/t.

Definition 1.9. f has a derivative at x̄ in the direction d if the derivative of the
function of one variable icr(f,x̄,d) at t = 0 exists, that is lim

t→0
[f(x̄ + td) − f(x̄)]/t

exists. In that case
∂f

∂d
(x̄) = lim

t→0

f(x̄+ td)− f(x̄)

t

is called the (directional) derivative of f at x̄ in the direction d. For n = 1 there
exists a unique (up to the sign) direction and the directional derivative coincides
with the (usual) derivative and it is also denoted by f ′(x̄).

If d is one of the vectors of the canonical basis {e1, . . . , en} of Rn, namely d = ei,
then the corresponding directional derivative is called partial derivative and denoted
by ∂f(x)/∂xi rather than ∂f(x)/∂ei. Indeed, the derivative can be computed con-
sidering f as a function of xi while the other variables are kept fixed like parameters:

∂f

∂xi
(x̄) = lim

t→0

f(x̄1, . . . , x̄i−1, x̄i + t, x̄i+1, . . . , x̄n)− f(x̄)

t
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Definition 1.10. If f has all the partial derivatives at x̄ ∈ Rn, the vector

∇f(x̄) =
( ∂f
∂x1

(x̄),
∂f

∂x2
(x̄), . . . ,

∂f

∂xn
(x̄)
)T

is called the gradient of f at x̄.

Example 1.7. Take n = 2 and f(x1, x2) = sin(πx1x2):

∂f

∂x1
(x) = πx2 cos(πx1x2),

∂f

∂x2
(x̄) = πx1 cos(πx1x2).

Other directional derivatives can be defined just considering the limit of the
incremental ratio as t→ 0+, that is t→ 0 for only positive t (t > 0).

Definition 1.11. The limit

f ′(x̄; d) = lim
t→0+

f(x̄+ td)− f(x̄)

t

is called the one-sided directional derivative of f at x̄ in the direction d.

Clearly, f ′(x̄; d) = ∂f(x̄)/∂d if the latter exists but this is not always the case.

Example 1.8. Consider f(x) = ‖x‖2 and take x̄ = 0:

[f(x̄+ td)− f(x̄)]/t = ‖td‖2/t = |t|‖d‖2/t = sgn(t)‖d‖2

where sgn(t) denotes the sign of t (sgn(t) = 1 if t ≥ 0 and sgn(t) = −1 if t < 0).
Therefore, f ′(x̄; d) = ‖v‖2 = 1 while ∂f(x̄)/∂d does not exist.

Unlike the case n = 1, the existence of the directional/partial derivatives does
not guarantee the continuity of the function.

Example 1.9. Take n = 2 and

f(x1, x2) =


[x2

1x2/(x
4
1 + x2

2)]2 if (x1, x2) 6= (0, 0)

0 if (x1, x2) = (0, 0).

Consider the parabola x2 = αx2
1 for x1 6= 0:

f(x1, αx
2
1) = [αx4

1/(x
4
1 + α2x4

1)] = α2/(1 + α2)2.

Therefore, f is not continuous at x̄ = (0, 0): take the sequence xk = (1/k, 1/k2) to
get xk → x̄ while f(xk) ≡ 1/4. On the other hand, f has the directional derivative
at x̄ in each direction d:

∂f

∂d
(x̄) = lim

t→0
[t3d2

1d2/t
2(t2d4

1 + d2
2)]2/t = lim

t→0
td4

1d
2
2/((t

2d4
1 + d2

2)2 = 0.
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Definition 1.12. f is called differentiable at x̄ ∈ Rn if there exists a linear function
L : Rn → R such that

∀ v ∈ Rn : f(x̄+ v) = f(x̄) + L(v) + r(v)

for some residual function r such that r(v)/‖v‖2 → 0 as ‖v‖2 → 0. If f is differen-
tiable at x̄, L is called the differential of f at x̄. Notice that both L and r depend
not only on f but also on the considered point x̄.
f is differentiable on a set D ⊆ Rn if it is differentiable at every x ∈ D.

Recall that L : Rn → R is linear if

∀ x, y ∈ Rn ∀ α, β ∈ R : L(αx+ βy) = αL(x) + βL(y).

L is linear if and only if there exists ` ∈ Rn such that L(x) = `Tx for all x ∈ Rn.

Proposition 1.6. Suppose f is differentiable at x̄ ∈ Rn. Then,

(i) f is continuous at x̄;

(ii) f has directional derivatives at x̄ in each direction d and
∂f

∂d
(x̄) = L(d);

(iii) L(d) = ∇f(x̄)Td.

Proof. (i) It is enough to apply Definition 1.12 just taking h = x− x̄ as x→ x̄.
(ii) Take any direction d ∈ Rn. Then, Definition 1.12 implies

∂f

∂d
(x̄) = lim

t→0
(f(x̄+ td)− f(x̄))/t

= lim
t→0

(L(td) + r(td))/t

= lim
t→0

(tL(d) + r(td))/t

= L(d) + lim
t→0

r(td)/t

= L(d) + lim
t→0

sgn(t) (r(td))/‖td‖2) = L(d).

(iii) Since d =
n∑
i=1

diei, (ii) implies

∂f

∂d
(x̄) = L(d) = L

( n∑
i=1

diei

)
=

n∑
i=1

diL(ei) =
n∑
i=1

di
∂f

∂xi
(x̄) = ∇f(x̄)Td. �

Proposition 1.6 (iii) allows to restate the definition of differentiability through (the
first order) Taylor’s formula:

Taylor’s formula f(x̄+ v) = f(x̄) +∇f(x̄)T v + r(v) (r(v)/‖v‖2 → 0)

Considering any v = x− x̄ ≈ 0, Taylor’s formula states that f(x) can be approx-
imated by an affine function, namely f(x) ≈ f(x̄) +∇f(x̄)T (x− x̄), and the closer
x is to x̄ the better the approximation is. Indeed, the set

{
(
x, f(x̄) +∇f(x̄)T (x− x̄)

)
: x ∈ Rn}

is the tangent hyperplane to the graph {(x, f(x)) : x ∈ Rn} of f at (x̄, f(x̄)).
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Theorem 1.4. Let x̄ ∈ Rn and suppose f has all the partial derivatives at each
x ∈ B(x̄, ε) for some ε > 0. Then, if the functions x 7→ ∂f(x)/∂xi are continuous
at x̄ for all i = 1, ..., n, then f is differentiable at x̄.

Example 1.10. Take n = 2 and

f(x1, x2) =


x2

1x2/(x
2
1 + x2

2) if (x1, x2) 6= (0, 0)

0 if (x1, x2) = (0, 0)

and consider x̄ = (0, 0): f is continuous but not differentiable at x̄. In fact, the
derivative of f at x̄ in the direction d is

∂f

∂d
(x̄) = lim

t→0
[t3d2

1d2/t
2(d2

1 + d2
2)]/t = d2

1d2

since 1 = ‖d‖2
2

= d2
1 + d2

2. As a consequence, ∂f(x̄)/∂x1 = ∂f(x̄)/∂x2 = 0 while
∂f(x̄)/∂d 6= 0 for all d 6= e1, e2 so that ∂f(x̄)/∂d 6= ∇f(x̄)Td (see Proposition 1.6).

Notice that
∂f

∂x1
(x) = 2x1x

3
2/(x

2
1 + x2

2)2 (x 6= x̄)

is not continuous at x̄ (in accordance with Theorem 1.4): xk = (1/k, 1/k)→ x̄ while
∂f(xk)/∂x1 ≡ 1/2 and ∂f(x̄)/∂x1 = 0.

Definition 1.13. f is called continuously differentiable at x̄ ∈ Rn if there exists
ε > 0 such that f is differentiable at each x ∈ B(x̄, ε) and the partial derivatives are
continuous at x̄. f is continuously differentiable on a set D ⊆ Rn if it is continuously
differentiable at every x ∈ D.

Theorem 1.5. (mean value) Suppose f is continuously differentiable (on Rn).
Given any x̄, v ∈ Rn, there exists t ∈]0, 1[ such that

f(x̄+ v) = f(x̄) +∇f(x̄+ tv)T v.

Theorem 1.6. (upper estimate) Suppose f is continuously differentiable (on Rn)
and the gradient mapping ∇f is Lipschitz with modulus L > 0, i.e.,

∀x, v ∈ Rn : ‖∇f(x)−∇f(v)‖2 ≤ L‖x− v‖2 .

Then, any x, v ∈ Rn satisfy f(x+ v) ≤ f(x) +∇f(x̄+ v)T v + L‖v‖2
2
/2.

Proposition 1.7. (chain rules)

(i) If g : Rn → R is differentiable at x̄ ∈ Rn and h : R → R has a derivative at
f(x̄), then f = h ◦ g is differentiable at x̄ and ∇f(x̄) = h′(g(x̄))∇g(x̄).

(ii) Let h = (h1, . . . , hn) : R→ Rn and g : Rn → R. If the functions hi : R → R
have a derivative at t̄ ∈ R for all i = 1, ..., n and g is differentiable at
h(t̄) ∈ Rn, then g ◦ h has a derivative at t̄ and (g ◦ h)′(t̄) = ∇g(h(t̄))Th′(t̄)
where h′(t̄) = (h′1(t̄), . . . , h′n(t̄))T .
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Definition 1.14. Let F = (f1, . . . , fm) : Rn → Rm. If the functions fi : Rn → R
have all the partial derivatives at x̄ ∈ Rn for all i = 1, ..., n, then

JF (x̄) =

 ∇f1(x̄)T

...
∇fn(x̄)T

 =


∂f1

∂x1
(x̄) · · · ∂f1

∂xn
(x̄)

...
...

...
∂fm
∂x1

(x̄) · · · ∂fm
∂xn

(x̄)

 ∈ Rm×n

is called the Jacobian matrix of F at x̄.

1.3.3 Second-order derivatives

If a function f : Rn → R is differentiable on the whole Rn, then each directional
derivative exists at each point x ∈ Rn. In this case, the derivative in the direction
d is the function ∂f/∂d : Rn → R such that (∂f/∂d)(x) = ∂f(x)/∂d. If it has a
derivative in the direction v, then

∂

∂v

(∂f
∂d

)
(x) = lim

t→0

[∂f
∂d

(x+ tv)− ∂f

∂d
(x)
]
/t

is generally denoted by ∂2f(x)/∂v∂d.

Definition 1.15. f has second-order partial derivatives at x̄ ∈ Rn if it has the
(first-order) partial derivatives at each x ∈ B(x̄, ε) for some ε > 0 and they have
partial derivatives at x̄ as well, namely

∂2f

∂xi∂xj
(x) = lim

t→0

[ ∂f
∂xj

(x̄+ tv)− ∂f

∂xj
(x̄)
]
/t

for all i, j = 1, ..., n. If i = j, then the derivative is generally denoted by ∂2f(x̄)/∂x2
i .

For n = 1 there exists a unique second-order directional derivative which coincides
with the (usual) second-order derivative and it is also denoted by f ′′(x̄).

Example 1.11. Take the function of Example 1.7:

∂f

∂x1
(x) = πx2 cos(πx1x2),

∂f

∂x2
(x̄) = πx1 cos(πx1x2),

∂2f

∂x2∂x1
(x) = π cos(πx1x2)− π2x1x2 sin(πx1x2) =

∂2f

∂x1∂x2
(x)

∂2f

∂x2
1

(x) = −π2x2
2 sin(πx1x2),

∂2f

∂x2
2

(x) = −π2x2
1 sin(πx1x2).

Theorem 1.7. (Schwarz) Let x̄ ∈ Rn and suppose f has the second-order partial
derivatives ∂2f/∂xi∂xj and ∂2f/∂xj∂xi at each x ∈ B(x̄, ε) for some ε > 0. If both
the derivatives are continuous at x̄, then

∂2f

∂xi∂xj
(x̄) =

∂2f

∂xj∂xi
(x̄).
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Definition 1.16. If f has second-order partial derivatives at x̄ ∈ Rn, then

∇2f(x̄) =


∂2f

∂x2
1

(x̄) · · · ∂f

∂x1∂xn
(x̄)

...
...

...
∂f

∂xn∂x1
(x̄) · · · ∂f

∂x2
n

(x̄)

 ∈ Rn×n

is called the Hessian matrix of f at x̄.

Definition 1.17. f is called twice continuously differentiable at x̄ ∈ Rn if it has
second-order partial derivatives at each x ∈ B(x̄, ε) for some ε > 0 and they are
continuous at x̄. f is twice continuously differentiable on a set D ⊆ Rn if it is twice
continuously differentiable at every x ∈ D.

Notice that the Hessian matrix of a twice continuously differentiable function is
symmetric and therefore all its eigenvalues are real numbers.

Theorem 1.8. (Taylor’s formulas) Suppose f is twice continuously differentiable
(on Rn). The following statements hold for any x̄ ∈ Rn:

(i) ∀ v ∈ Rn ∃ t ∈]0, 1[ such that f(x̄+ v) = f(x̄) +∇f(x̄)T v+ 1
2v

T∇2f(x̄+ tv)v;

(ii) ∀ v ∈ Rn : f(x̄+ v) = f(x̄) +∇f(x̄)T v + 1
2v

T∇2f(x̄)v + r(v)

for some residual function r such that r(v)/‖v‖2
2
→ 0 as ‖v‖2 → 0.

Definition 1.18. f is called quadratic if there exist Q ∈ Rn×n, b ∈ Rn and c ∈ R
such that

f(x) =
1

2
xTQx+ bTx+ c =

1

2

∑̀
k=1

n∑
`=1

qk`xkx` +
n∑
k=1

bkxk + c.

Without loss of generality, Q can be taken symmetric, eventually replacing it by
(Q+QT )/2 since qk`xkx` + q`kx`xk = (qk` + q`k)xkx`/2 + (qk` + q`k)x`xk/2.

The partial derivatives of a quadratic function can be easily computed:

∂f

∂xi
(x) =

1

2

( n∑
`=1

qi`x` +
n∑
k=1

qkixk

)
+ bi =

( n∑
`=1

qi`x`

)
+ bi = (Qx)i + bi

∂2f

∂xj∂xi
(x) =

∂

∂xj

( ∂f
∂xi

)
(x) =

∂f

∂xj

( n∑
`=1

qi`x` + bi

)
= qij .

Therefore, ∇f(x) = Qx+ b and ∇2f(x) = Q.

Considering any v = x − x̄ ≈ 0, the second-order Taylor’s formula states that
f(x) can be approximated by a quadratic function, namely f(x) ≈ q(x) with

q(x) = f(x̄) +∇f(x̄)T (x− x̄) +
1

2
(x− x̄)T∇2f(x̄)(x− x̄),
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that is

q(x) =
1

2
xT∇2f(x̄)x+

(
∇f(x̄)−∇2f(x̄)x̄

)T
x+

(
f(x̄)−∇f(x̄)T x̄+

1

2
x̄T∇2f(x̄)x̄

)
.

Example 1.12. Take n = 2 and f(x1, x2) = −x4
1 − x2

2:

∇f(x) =

(
−4x3

1

−2x2

)
, ∇2f(x) =

[
−12x2

1 0
0 −2

]
.

Considering x̄ = (0,−2/5) the quadratic approximation of f(x) near x̄ is given by

q(x) = −2x2
2 − 12x2/5− 20/25.


