Chapter 1

Topology and calculus background

We consider \mathbb{R}^{n} endowed with the scalar (or inner) product

$$
x^{T} y=\sum_{i=1}^{n} x_{i} y_{i}
$$

which induces the Euclidean norm

$$
\|x\|_{2}=\sqrt{x^{T} x}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

The following properties hold for any $x, y \in \mathbb{R}^{n}$ and any $\alpha \in \mathbb{R}$:

$$
\begin{aligned}
& \|x\|_{2} \geq 0 \\
& \|\alpha x\|_{2}=|\alpha|\|x\|_{2} \\
& \|x\|_{2}=0 \Longleftrightarrow x=0 \\
& \|x+y\|_{2} \leq\|x\|_{2}+\|y\|_{2} \\
& \left(\|x-y\|_{2} \leq\|x\|_{2}+\|y\|_{2}\right) \\
& \left|x^{T} y\right| \leq\|x\|_{2}\|y\|_{2} . \text { (Schwarz inequality). }
\end{aligned}
$$

In turn, the Euclidean norm induces the well-known Euclidean distance between the points $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{n}$:

$$
d(x, y)=\|x-y\|_{2}
$$

and the following properties can be deduced from the above ones:

$$
\begin{aligned}
& d(x, y) \geq 0 \\
& d(x, y)=0 \Longleftrightarrow x=y \\
& d(x, y) \leq d(x, z)+d(z, x) .
\end{aligned}
$$

1.1 Sequences

A family of points $\left\{x^{k}\right\}_{k \in \mathbb{N}} \subseteq \mathbb{R}^{n}$ (i.e., $\left\{x^{1}, x^{2}, \ldots, x^{k}, \ldots\right\}$) is called a sequence. For instance, the family of points $x^{k}=\left(1 / k, 1 / k^{2}\right)$ is a sequence in \mathbb{R}^{2}.

Definition 1.1. $\bar{x} \in \mathbb{R}^{n}$ is the limit of a sequence $\left\{x^{k}\right\}_{k \in \mathbb{N}}$ if for each $\varepsilon>0$ there exists $\bar{k} \in \mathbb{N}$ such that $d\left(x^{k}, \bar{x}\right) \leq \varepsilon$ for all $k \geq \bar{k}$, or equivalently

$$
\forall \varepsilon>0 \quad \exists \bar{k} \in \mathbb{N} \quad \text { s.t. } \quad\left\|x^{k}-\bar{x}\right\|_{2} \leq \varepsilon \quad \forall k \geq \bar{k} .
$$

If it exists, the limit of a sequence is unique. Standard notations to denote a limit are the following: $\lim _{k \rightarrow+\infty} x^{k}=\bar{x}, x^{k} \longrightarrow \bar{x}(k \rightarrow+\infty$ below the arrow is often omitted $)$.

Example 1.1. The limit of the sequence $\left(1 / k, 1 / k^{2}\right)$ is $\bar{x}=(0,0)$, while the sequence $x^{k}=\left(1 / k,(-1)^{k}\right)$ does not have a limit. Take the sequence obtained just considering odd indices: $x^{1}, x^{3}, x^{5}, \ldots$ This sequence converges to $(0,-1)$. Analogously, the sequence obtained considering just even indices converges to $(0,1)$.
Definition 1.2. $\left\{x^{k_{j}}\right\}_{j \in \mathbb{N}} \subseteq\left\{x^{k}\right\}_{k \in \mathbb{N}}$ is a subsequence if $k_{j} \rightarrow+\infty$ as $j \rightarrow+\infty$.
Definition 1.3. $\bar{x} \in \mathbb{R}^{n}$ is a cluster point of $\left\{x^{k}\right\}_{k \in \mathbb{N}}$ if there exists a subsequence $\left\{x^{k_{j}}\right\}_{j \in \mathbb{N}}$ such that \bar{x} is its limit, i.e., $\lim _{j \rightarrow+\infty} x^{k_{j}}=\bar{x}$, or equivalently

$$
\forall \varepsilon>0 \quad \forall k \in \mathbb{N} \quad \exists \bar{k} \geq k \quad \text { s.t. }\left\|x^{\bar{k}}-\bar{x}\right\|_{2} \leq \varepsilon
$$

If a sequence has a limit, then it is the unique cluster point of the sequence.
Example 1.2. The last sequence of Example 1.1 has 2 cluster points: $(0,1)$ and $(0,-1)$, while the sequence $y^{k}=(k, 1 / k)$ does not have any cluster point.

Theorem 1.1. (Bolzano-Weierstrass) If the norm of all the points of a sequence $\left\{x^{k}\right\}_{k \in \mathbb{N}}$ do not exceed a threshold value, i.e., there exists $M>0$ such that $\left\|x^{k}\right\|_{2} \leq M$ holds for all $k \in \mathbb{N}$, then the sequence has at least one cluster point.

1.2 Topological properties in the Euclidean space

The open ball of centre $x \in \mathbb{R}^{n}$ and radius $\varepsilon>0$ is the set

$$
B(x, \varepsilon)=\left\{y \in \mathbb{R}^{n}:\|y-x\|_{2}<\varepsilon\right\} .
$$

Definition 1.4.

(i) $D \subseteq \mathbb{R}^{n}$ is called open if

$$
\forall x \in D \quad \exists \varepsilon>0 \quad \text { s.t. } \quad B(x, \varepsilon) \subseteq D .
$$

(ii) $x \in D$ is called an interior point of D if

$$
\exists \varepsilon>0 \quad \text { s.t. } \quad B(x, \varepsilon) \subseteq D .
$$

The set of the interior points of D is called the interior of D and it is generally denoted by int D. Notice that a set D is open if and only if $D=\operatorname{int} D$.

Example 1.3. $B(x, \varepsilon), \mathbb{R}^{n}, \emptyset$ are open sets in \mathbb{R}^{n} while the interval $]-1,1[$ is an open set in \mathbb{R}.

Proposition 1.1.

(i) The union of a family of open sets is an open set.
(ii) The intersection of a finite family of open sets is an open set.

The finiteness of the family is crucial for the intersection property:

$$
\bigcap_{k=1}^{+\infty} B(0,1 / k)=\{0\} .
$$

Definition 1.5.

(i) $D \subseteq \mathbb{R}^{n}$ is called closed if $\mathbb{R}^{n} \backslash D=\left\{x \in \mathbb{R}^{n}: x \notin D\right\}$ is open.
(ii) $x \in \mathbb{R}^{n}$ is called an closure point of D if

$$
\forall \varepsilon>0: B(x, \varepsilon) \cap D \neq \emptyset .
$$

The set of the closure points of D is called the closure of D and it is generally denoted by cl D or \bar{D}.

Proposition 1.2.

(i) D is closed if and only if $D=\operatorname{cl} D$.
(ii) D is closed if and only if the limit of any convergent sequence contained in D belongs to D as well, i.e.,

$$
\forall\left\{x^{k}\right\}_{k \in \mathbb{N}} \subseteq D \quad \text { s.t. } \quad \exists \bar{x} \in \mathbb{R}^{n} \quad \text { s.t. } \quad x^{k} \longrightarrow \bar{x}: \bar{x} \in D .
$$

Example 1.4. $\mathbb{R}^{n}, \emptyset,\left\{y \in \mathbb{R}^{n}:\|y-x\|_{2} \leq \varepsilon\right\}=\overline{B(x, \varepsilon)}$ are closed sets in \mathbb{R}^{n} while the interval $[-1,1]$ is a closed set in \mathbb{R}. There exist sets which are neither closed nor open, for instance the interval $[-1,1[$ in \mathbb{R} and

$$
D=[-1,0] \times[-1,1] \cup B(0,1) \subseteq \mathbb{R}^{2}
$$

In fact, $(-1-\varepsilon, 0) \notin D$ but $(-1-\varepsilon, 0) \in B((-1,0), \varepsilon)$ for any $\varepsilon>0$ so that D is not open, and $x^{k}=(1-1 / k, 0) \in D$ for any $k \in \mathbb{N}$ while $x^{k} \rightarrow(1,0) \notin D$ so that D is not closed.

Proposition 1.3.

(i) The union of a finite family of closed sets is an closed set.
(ii) The intersection of a family of closed sets is a closed set.

The finiteness of the family is crucial for the union property:

$$
\bigcup_{k=2}^{+\infty} \overline{B(0,1-1 / k)}=B(0,1) .
$$

Definition 1.6. $x \in \mathbb{R}^{n}$ is called a boundary point of D if both

$$
B(x, \varepsilon) \cap D \neq \emptyset \quad \text { and } \quad B(x, \varepsilon) \nsubseteq D
$$

hold for any $\varepsilon>0$.
The set of the boundary points of D is called the boundary (or frontier) of D and it is generally denoted by ∂D. Notice that $\partial D=\bar{D} \cap \overline{\left(\mathbb{R}^{n} \backslash D\right)}$.

Proposition 1.4. $D \subseteq \mathbb{R}^{n}$ is both closed and open if and only if $D=\mathbb{R}^{n}$ or $D=\emptyset$.

Definition 1.7.

(i) $D \subseteq \mathbb{R}^{n}$ is called bounded if

$$
\exists M>0 \quad \text { s.t. } \quad \forall x \in D:\|x\|_{2} \leq M .
$$

(ii) $D \subseteq \mathbb{R}^{n}$ is called compact if it is bounded and closed.

The set D in Example 1.4 is bounded but it is not compact (since it is not closed).
The Bolzano-Weierstrass' theorem can be enhanced in the following way.
Theorem 1.2. (Bolzano-Weierstrass) A set is compact if and only if any sequence contained in the set has at least one cluster point and all its cluster points belong to the set.

1.3 Functions of several variables

1.3.1 Continuity

Definition 1.8. $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called continuous at $\bar{x} \in \mathbb{R}^{n}$ if $f(\bar{x})$ is the limit of $f(x)$ as $x \rightarrow \bar{x}$, i.e.,

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \text { s.t. } \quad\|x-\bar{x}\|_{2} \leq \delta \Longrightarrow|f(x)-f(\bar{x})| \leq \varepsilon .
$$

f is continuous on a set $D \subseteq \mathbb{R}^{n}$ if it is continuous at every $x \in D$.
Proposition 1.5. f is continuous at $\bar{x} \in \mathbb{R}^{n}$ if and only if any sequence $\left\{x^{k}\right\}_{k \in \mathbb{N}}$ such that $x^{k} \longrightarrow \bar{x}$ satisfies $f\left(x^{k}\right) \longrightarrow f(\bar{x})$.

Example 1.5. $f(x)=\|x\|_{2}$ is a continuous function on $\mathbb{R}^{n}, f\left(x_{1}, x_{1}\right)=\sin \left(\pi x_{1} x_{2}\right)$ is a continuous function on \mathbb{R}^{2}.

Theorem 1.3. (Weierstrass) Let $D \subseteq \mathbb{R}^{n}$ be compact and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ continuous on D. Then, there exist at least one minimum point $\bar{x} \in D$ and one maximum point $\hat{x} \in D$ for f over D, i.e.,

$$
f(\bar{x})=\min \{f(x): x \in D\} \quad \text { and } \quad f(\hat{x})=\max \{f(x): x \in D\} .
$$

Proof. Let $\ell=\inf \{f(x): x \in D\} \in[-\infty+\infty[$ and consider any minimizing sequence, that is any $\left\{x^{k}\right\}_{k \in \mathbb{N}}$ such that $f\left(x^{k}\right) \rightarrow \ell$. Since D is compact, there exist a subsequence $\left\{x^{k_{j}}\right\}_{j \in \mathbb{N}}$ and $\bar{x} \in D$ such that $x^{k_{j}} \rightarrow \bar{x}$ (as $j \rightarrow+\infty$) by Theorem 1.2. Since f is continuous, $f\left(x^{k_{j}}\right) \rightarrow f(\bar{x})$ and therefore $f(\bar{x})=\ell$ by the uniqueness of the limit. As a consequence, $\ell \neq-\infty$ and $f(\bar{x})=\min \{f(x): x \in D\}$. The existence of \hat{x} can be proved analogously.

Example 1.6. Take $n=1, f(x)=e^{-x}$ and $D=\mathbb{R}_{+}: f$ is continuous on D, $\inf \{f(x): x \in D\}=0$ but there exists no $x \in D$ such that $f(x)=0$. Indeed, D is not compact as it is not bounded.

1.3.2 Partial derivatives and differentiability

A point $d \in \mathbb{R}^{n}$ such that $\|d\|_{2}=1$ is also called a direction, and the set

$$
\{\bar{x}+t d: t \in \mathbb{R}\}
$$

describes the line of direction d passing through $\bar{x} \in \mathbb{R}^{n}$. If only $t \in \mathbb{R}_{+}$are considered, the set describes the corresponding half-line.

Just like the case $n=1$, the key tool for developing calculus for a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the incremental ratio

$$
\operatorname{icr}_{(f, x, d)}(t)=[f(x+t d)-f(x)] / t .
$$

Definition 1.9. f has a derivative at \bar{x} in the direction d if the derivative of the function of one variable $i c r_{(f, \bar{x}, d)}$ at $t=0$ exists, that is $\lim _{t \rightarrow 0}[f(\bar{x}+t d)-f(\bar{x})] / t$ exists. In that case

$$
\frac{\partial f}{\partial d}(\bar{x})=\lim _{t \rightarrow 0} \frac{f(\bar{x}+t d)-f(\bar{x})}{t}
$$

is called the (directional) derivative of f at \bar{x} in the direction d. For $n=1$ there exists a unique (up to the sign) direction and the directional derivative coincides with the (usual) derivative and it is also denoted by $f^{\prime}(\bar{x})$.

If d is one of the vectors of the canonical basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of \mathbb{R}^{n}, namely $d=e_{i}$, then the corresponding directional derivative is called partial derivative and denoted by $\partial f(x) / \partial x_{i}$ rather than $\partial f(x) / \partial e_{i}$. Indeed, the derivative can be computed considering f as a function of x_{i} while the other variables are kept fixed like parameters:

$$
\frac{\partial f}{\partial x_{i}}(\bar{x})=\lim _{t \rightarrow 0} \frac{f\left(\bar{x}_{1}, \ldots, \bar{x}_{i-1}, \bar{x}_{i}+t, \bar{x}_{i+1}, \ldots, \bar{x}_{n}\right)-f(\bar{x})}{t}
$$

Definition 1.10. If f has all the partial derivatives at $\bar{x} \in \mathbb{R}^{n}$, the vector

$$
\nabla f(\bar{x})=\left(\frac{\partial f}{\partial x_{1}}(\bar{x}), \frac{\partial f}{\partial x_{2}}(\bar{x}), \ldots, \frac{\partial f}{\partial x_{n}}(\bar{x})\right)^{T}
$$

is called the gradient of f at \bar{x}.
Example 1.7. Take $n=2$ and $f\left(x_{1}, x_{2}\right)=\sin \left(\pi x_{1} x_{2}\right)$:

$$
\frac{\partial f}{\partial x_{1}}(x)=\pi x_{2} \cos \left(\pi x_{1} x_{2}\right), \quad \frac{\partial f}{\partial x_{2}}(\bar{x})=\pi x_{1} \cos \left(\pi x_{1} x_{2}\right) .
$$

Other directional derivatives can be defined just considering the limit of the incremental ratio as $t \rightarrow 0^{+}$, that is $t \rightarrow 0$ for only positive $t(t>0)$.

Definition 1.11. The limit

$$
f^{\prime}(\bar{x} ; d)=\lim _{t \rightarrow 0^{+}} \frac{f(\bar{x}+t d)-f(\bar{x})}{t}
$$

is called the one-sided directional derivative of f at \bar{x} in the direction d.
Clearly, $f^{\prime}(\bar{x} ; d)=\partial f(\bar{x}) / \partial d$ if the latter exists but this is not always the case.
Example 1.8. Consider $f(x)=\|x\|_{2}$ and take $\bar{x}=0$:

$$
[f(\bar{x}+t d)-f(\bar{x})] / t=\|t d\|_{2} / t=|t|\|d\|_{2} / t=\operatorname{sgn}(t)\|d\|_{2}
$$

where $\operatorname{sgn}(t)$ denotes the sign of $t(\operatorname{sgn}(t)=1$ if $t \geq 0$ and $\operatorname{sgn}(t)=-1$ if $t<0)$. Therefore, $f^{\prime}(\bar{x} ; d)=\|v\|_{2}=1$ while $\partial f(\bar{x}) / \partial d$ does not exist.

Unlike the case $n=1$, the existence of the directional/partial derivatives does not guarantee the continuity of the function.

Example 1.9. Take $n=2$ and

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}{\left[x_{1}^{2} x_{2} /\left(x_{1}^{4}+x_{2}^{2}\right)\right]^{2}} & \text { if }\left(x_{1}, x_{2}\right) \neq(0,0) \\ 0 & \text { if }\left(x_{1}, x_{2}\right)=(0,0)\end{cases}
$$

Consider the parabola $x_{2}=\alpha x_{1}^{2}$ for $x_{1} \neq 0$:

$$
f\left(x_{1}, \alpha x_{1}^{2}\right)=\left[\alpha x_{1}^{4} /\left(x_{1}^{4}+\alpha^{2} x_{1}^{4}\right)\right]=\alpha^{2} /\left(1+\alpha^{2}\right)^{2} .
$$

Therefore, f is not continuous at $\bar{x}=(0,0)$: take the sequence $x^{k}=\left(1 / k, 1 / k^{2}\right)$ to get $x^{k} \rightarrow \bar{x}$ while $f\left(x^{k}\right) \equiv 1 / 4$. On the other hand, f has the directional derivative at \bar{x} in each direction d :

$$
\frac{\partial f}{\partial d}(\bar{x})=\lim _{t \rightarrow 0}\left[t^{3} d_{1}^{2} d_{2} / t^{2}\left(t^{2} d_{1}^{4}+d_{2}^{2}\right)\right]^{2} / t=\lim _{t \rightarrow 0} t d_{1}^{4} d_{2}^{2} /\left(\left(t^{2} d_{1}^{4}+d_{2}^{2}\right)^{2}=0 .\right.
$$

Definition 1.12. f is called differentiable at $\bar{x} \in \mathbb{R}^{n}$ if there exists a linear function $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
\forall v \in \mathbb{R}^{n}: f(\bar{x}+v)=f(\bar{x})+L(v)+r(v)
$$

for some residual function r such that $r(v) /\|v\|_{2} \rightarrow 0$ as $\|v\|_{2} \rightarrow 0$. If f is differentiable at \bar{x}, L is called the differential of f at \bar{x}. Notice that both L and r depend not only on f but also on the considered point \bar{x}.
f is differentiable on a set $D \subseteq \mathbb{R}^{n}$ if it is differentiable at every $x \in D$.
Recall that $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is linear if

$$
\forall x, y \in \mathbb{R}^{n} \forall \alpha, \beta \in \mathbb{R}: L(\alpha x+\beta y)=\alpha L(x)+\beta L(y)
$$

L is linear if and only if there exists $\ell \in \mathbb{R}^{n}$ such that $L(x)=\ell^{T} x$ for all $x \in \mathbb{R}^{n}$.
Proposition 1.6. Suppose f is differentiable at $\bar{x} \in \mathbb{R}^{n}$. Then,
(i) f is continuous at \bar{x};
(ii) f has directional derivatives at \bar{x} in each direction d and $\frac{\partial f}{\partial d}(\bar{x})=L(d)$;
(iii) $L(d)=\nabla f(\bar{x})^{T} d$.

Proof. (i) It is enough to apply Definition 1.12 just taking $h=x-\bar{x}$ as $x \rightarrow \bar{x}$.
(ii) Take any direction $d \in \mathbb{R}^{n}$. Then, Definition 1.12 implies

$$
\begin{aligned}
\frac{\partial f}{\partial d}(\bar{x}) & =\lim _{t \rightarrow 0}(f(\bar{x}+t d)-f(\bar{x})) / t \\
& =\lim _{t \rightarrow 0}(L(t d)+r(t d)) / t \\
& =\lim _{t \rightarrow 0}(t L(d)+r(t d)) / t \\
& =L(d)+\lim _{t \rightarrow 0} r(t d) / t \\
& \left.=L(d)+\lim _{t \rightarrow 0} \operatorname{sgn}(t)(r(t d)) /\|t d\|_{2}\right)=L(d) .
\end{aligned}
$$

(iii) Since $d=\sum_{i=1}^{n} d_{i} e_{i},($ ii $)$ implies

$$
\frac{\partial f}{\partial d}(\bar{x})=L(d)=L\left(\sum_{i=1}^{n} d_{i} e_{i}\right)=\sum_{i=1}^{n} d_{i} L\left(e_{i}\right)=\sum_{i=1}^{n} d_{i} \frac{\partial f}{\partial x_{i}}(\bar{x})=\nabla f(\bar{x})^{T} d
$$

Proposition 1.6 (iii) allows to restate the definition of differentiability through (the first order) Taylor's formula:

Taylor's formula $f(\bar{x}+v)=f(\bar{x})+\nabla f(\bar{x})^{T} v+r(v) \quad\left(r(v) /\|v\|_{2} \rightarrow 0\right)$
Considering any $v=x-\bar{x} \approx 0$, Taylor's formula states that $f(x)$ can be approximated by an affine function, namely $f(x) \approx f(\bar{x})+\nabla f(\bar{x})^{T}(x-\bar{x})$, and the closer x is to \bar{x} the better the approximation is. Indeed, the set

$$
\left\{\left(x, f(\bar{x})+\nabla f(\bar{x})^{T}(x-\bar{x})\right): x \in \mathbb{R}^{n}\right\}
$$

is the tangent hyperplane to the graph $\left\{(x, f(x)): x \in \mathbb{R}^{n}\right\}$ of f at $(\bar{x}, f(\bar{x}))$.

Theorem 1.4. Let $\bar{x} \in \mathbb{R}^{n}$ and suppose f has all the partial derivatives at each $x \in B(\bar{x}, \varepsilon)$ for some $\varepsilon>0$. Then, if the functions $x \mapsto \partial f(x) / \partial x_{i}$ are continuous at \bar{x} for all $i=1, \ldots, n$, then f is differentiable at \bar{x}.

Example 1.10. Take $n=2$ and

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}x_{1}^{2} x_{2} /\left(x_{1}^{2}+x_{2}^{2}\right) & \text { if }\left(x_{1}, x_{2}\right) \neq(0,0) \\ 0 & \text { if }\left(x_{1}, x_{2}\right)=(0,0)\end{cases}
$$

and consider $\bar{x}=(0,0): f$ is continuous but not differentiable at \bar{x}. In fact, the derivative of f at \bar{x} in the direction d is

$$
\frac{\partial f}{\partial d}(\bar{x})=\lim _{t \rightarrow 0}\left[t^{3} d_{1}^{2} d_{2} / t^{2}\left(d_{1}^{2}+d_{2}^{2}\right)\right] / t=d_{1}^{2} d_{2}
$$

since $1=\|d\|_{2}^{2}=d_{1}^{2}+d_{2}^{2}$. As a consequence, $\partial f(\bar{x}) / \partial x_{1}=\partial f(\bar{x}) / \partial x_{2}=0$ while $\partial f(\bar{x}) / \partial d \neq 0$ for all $d \neq e_{1}, e_{2}$ so that $\partial f(\bar{x}) / \partial d \neq \nabla f(\bar{x})^{T} d$ (see Proposition 1.6).

Notice that

$$
\frac{\partial f}{\partial x_{1}}(x)=2 x_{1} x_{2}^{3} /\left(x_{1}^{2}+x_{2}^{2}\right)^{2} \quad(x \neq \bar{x})
$$

is not continuous at \bar{x} (in accordance with Theorem 1.4): $x^{k}=(1 / k, 1 / k) \rightarrow \bar{x}$ while $\partial f\left(x^{k}\right) / \partial x_{1} \equiv 1 / 2$ and $\partial f(\bar{x}) / \partial x_{1}=0$.
Definition 1.13. f is called continuously differentiable at $\bar{x} \in \mathbb{R}^{n}$ if there exists $\varepsilon>0$ such that f is differentiable at each $x \in B(\bar{x}, \varepsilon)$ and the partial derivatives are continuous at \bar{x}. f is continuously differentiable on a set $D \subseteq \mathbb{R}^{n}$ if it is continuously differentiable at every $x \in D$.

Theorem 1.5. (mean value) Suppose f is continuously differentiable (on \mathbb{R}^{n}). Given any $\bar{x}, v \in \mathbb{R}^{n}$, there exists $\left.t \in\right] 0,1[$ such that

$$
f(\bar{x}+v)=f(\bar{x})+\nabla f(\bar{x}+t v)^{T} v .
$$

Theorem 1.6. (upper estimate) Suppose f is continuously differentiable (on \mathbb{R}^{n}) and the gradient mapping ∇f is Lipschitz with modulus $L>0$, i.e.,

$$
\forall x, v \in \mathbb{R}^{n}:\|\nabla f(x)-\nabla f(v)\|_{2} \leq L\|x-v\|_{2} .
$$

Then, any $x, v \in \mathbb{R}^{n}$ satisfy $f(x+v) \leq f(x)+\nabla f(\bar{x}+v)^{T} v+L\|v\|_{2}^{2} / 2$.

Proposition 1.7. (chain rules)

(i) If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at $\bar{x} \in \mathbb{R}^{n}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$ has a derivative at $f(\bar{x})$, then $f=h \circ g$ is differentiable at \bar{x} and $\nabla f(\bar{x})=h^{\prime}(g(\bar{x})) \nabla g(\bar{x})$.
(ii) Let $h=\left(h_{1}, \ldots, h_{n}\right): \mathbb{R} \rightarrow \mathbb{R}^{n}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$. If the functions $h_{i}: \mathbb{R} \rightarrow \mathbb{R}$ have a derivative at $\bar{t} \in \mathbb{R}$ for all $i=1, \ldots, n$ and g is differentiable at $h(\bar{t}) \in \mathbb{R}^{n}$, then $g \circ h$ has a derivative at \bar{t} and $(g \circ h)^{\prime}(\bar{t})=\nabla g(h(\bar{t}))^{T} h^{\prime}(\bar{t})$ where $h^{\prime}(\bar{t})=\left(h_{1}^{\prime}(\bar{t}), \ldots, h_{n}^{\prime}(\bar{t})\right)^{T}$.

Definition 1.14. Let $F=\left(f_{1}, \ldots, f_{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. If the functions $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ have all the partial derivatives at $\bar{x} \in \mathbb{R}^{n}$ for all $i=1, \ldots, n$, then

$$
J F(\bar{x})=\left[\begin{array}{c}
\nabla f_{1}(\bar{x})^{T} \\
\vdots \\
\nabla f_{n}(\bar{x})^{T}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(\bar{x}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\bar{x}) \\
\vdots & \vdots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}}(\bar{x}) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(\bar{x})
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

is called the Jacobian matrix of F at \bar{x}.

1.3.3 Second-order derivatives

If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable on the whole \mathbb{R}^{n}, then each directional derivative exists at each point $x \in \mathbb{R}^{n}$. In this case, the derivative in the direction d is the function $\partial f / \partial d: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $(\partial f / \partial d)(x)=\partial f(x) / \partial d$. If it has a derivative in the direction v, then

$$
\frac{\partial}{\partial v}\left(\frac{\partial f}{\partial d}\right)(x)=\lim _{t \rightarrow 0}\left[\frac{\partial f}{\partial d}(x+t v)-\frac{\partial f}{\partial d}(x)\right] / t
$$

is generally denoted by $\partial^{2} f(x) / \partial v \partial d$.
Definition 1.15. f has second-order partial derivatives at $\bar{x} \in \mathbb{R}^{n}$ if it has the (first-order) partial derivatives at each $x \in B(\bar{x}, \varepsilon)$ for some $\varepsilon>0$ and they have partial derivatives at \bar{x} as well, namely

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)=\lim _{t \rightarrow 0}\left[\frac{\partial f}{\partial x_{j}}(\bar{x}+t v)-\frac{\partial f}{\partial x_{j}}(\bar{x})\right] / t
$$

for all $i, j=1, \ldots, n$. If $i=j$, then the derivative is generally denoted by $\partial^{2} f(\bar{x}) / \partial x_{i}^{2}$. For $n=1$ there exists a unique second-order directional derivative which coincides with the (usual) second-order derivative and it is also denoted by $f^{\prime \prime}(\bar{x})$.

Example 1.11. Take the function of Example 1.7:

$$
\begin{gathered}
\frac{\partial f}{\partial x_{1}}(x)=\pi x_{2} \cos \left(\pi x_{1} x_{2}\right), \quad \frac{\partial f}{\partial x_{2}}(\bar{x})=\pi x_{1} \cos \left(\pi x_{1} x_{2}\right) \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}}(x)=\pi \cos \left(\pi x_{1} x_{2}\right)-\pi^{2} x_{1} x_{2} \sin \left(\pi x_{1} x_{2}\right)=\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}(x) \\
\frac{\partial^{2} f}{\partial x_{1}^{2}}(x)=-\pi^{2} x_{2}^{2} \sin \left(\pi x_{1} x_{2}\right), \quad \frac{\partial^{2} f}{\partial x_{2}^{2}}(x)=-\pi^{2} x_{1}^{2} \sin \left(\pi x_{1} x_{2}\right)
\end{gathered}
$$

Theorem 1.7. (Schwarz) Let $\bar{x} \in \mathbb{R}^{n}$ and suppose f has the second-order partial derivatives $\partial^{2} f / \partial x_{i} \partial x_{j}$ and $\partial^{2} f / \partial x_{j} \partial x_{i}$ at each $x \in B(\bar{x}, \varepsilon)$ for some $\varepsilon>0$. If both the derivatives are continuous at \bar{x}, then

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\bar{x})=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(\bar{x})
$$

Definition 1.16. If f has second-order partial derivatives at $\bar{x} \in \mathbb{R}^{n}$, then

$$
\nabla^{2} f(\bar{x})=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}}(\bar{x}) & \cdots & \frac{\partial f}{\partial x_{1} \partial x_{n}}(\bar{x}) \\
\vdots & \vdots & \vdots \\
\frac{\partial f}{\partial x_{n} \partial x_{1}}(\bar{x}) & \cdots & \frac{\partial f}{\partial x_{n}^{2}}(\bar{x})
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

is called the Hessian matrix of f at \bar{x}.
Definition 1.17. f is called twice continuously differentiable at $\bar{x} \in \mathbb{R}^{n}$ if it has second-order partial derivatives at each $x \in B(\bar{x}, \varepsilon)$ for some $\varepsilon>0$ and they are continuous at \bar{x}. f is twice continuously differentiable on a set $D \subseteq \mathbb{R}^{n}$ if it is twice continuously differentiable at every $x \in D$.

Notice that the Hessian matrix of a twice continuously differentiable function is symmetric and therefore all its eigenvalues are real numbers.
Theorem 1.8. (Taylor's formulas) Suppose f is twice continuously differentiable (on \mathbb{R}^{n}). The following statements hold for any $\bar{x} \in \mathbb{R}^{n}$:
(i) $\left.\forall v \in \mathbb{R}^{n} \exists t \in\right] 0,1\left[\right.$ such that $f(\bar{x}+v)=f(\bar{x})+\nabla f(\bar{x})^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(\bar{x}+t v) v$;
(ii) $\forall v \in \mathbb{R}^{n}: f(\bar{x}+v)=f(\bar{x})+\nabla f(\bar{x})^{T} v+\frac{1}{2} v^{T} \nabla^{2} f(\bar{x}) v+r(v)$ for some residual function r such that $r(v) /\|v\|_{2}^{2} \rightarrow 0$ as $\|v\|_{2} \rightarrow 0$.
Definition 1.18. f is called quadratic if there exist $Q \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$ such that

$$
f(x)=\frac{1}{2} x^{T} Q x+b^{T} x+c=\frac{1}{2} \sum_{k=1}^{\ell} \sum_{\ell=1}^{n} q_{k \ell} x_{k} x_{\ell}+\sum_{k=1}^{n} b_{k} x_{k}+c .
$$

Without loss of generality, Q can be taken symmetric, eventually replacing it by $\left(Q+Q^{T}\right) / 2$ since $q_{k \ell} x_{k} x_{\ell}+q_{\ell k} x_{\ell} x_{k}=\left(q_{k \ell}+q_{\ell k}\right) x_{k} x_{\ell} / 2+\left(q_{k \ell}+q_{\ell k}\right) x_{\ell} x_{k} / 2$.

The partial derivatives of a quadratic function can be easily computed:

$$
\begin{gathered}
\frac{\partial f}{\partial x_{i}}(x)=\frac{1}{2}\left(\sum_{\ell=1}^{n} q_{i} x_{\ell}+\sum_{k=1}^{n} q_{k i} x_{k}\right)+b_{i}=\left(\sum_{\ell=1}^{n} q_{i \ell} x_{\ell}\right)+b_{i}=(Q x)_{i}+b_{i} \\
\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(x)=\frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{i}}\right)(x)=\frac{\partial f}{\partial x_{j}}\left(\sum_{\ell=1}^{n} q_{i} x_{\ell}+b_{i}\right)=q_{i j} .
\end{gathered}
$$

Therefore, $\nabla f(x)=Q x+b$ and $\nabla^{2} f(x)=Q$.
Considering any $v=x-\bar{x} \approx 0$, the second-order Taylor's formula states that $f(x)$ can be approximated by a quadratic function, namely $f(x) \approx q(x)$ with

$$
q(x)=f(\bar{x})+\nabla f(\bar{x})^{T}(x-\bar{x})+\frac{1}{2}(x-\bar{x})^{T} \nabla^{2} f(\bar{x})(x-\bar{x}),
$$

that is
$q(x)=\frac{1}{2} x^{T} \nabla^{2} f(\bar{x}) x+\left(\nabla f(\bar{x})-\nabla^{2} f(\bar{x}) \bar{x}\right)^{T} x+\left(f(\bar{x})-\nabla f(\bar{x})^{T} \bar{x}+\frac{1}{2} \bar{x}^{T} \nabla^{2} f(\bar{x}) \bar{x}\right)$.
Example 1.12. Take $n=2$ and $f\left(x_{1}, x_{2}\right)=-x_{1}^{4}-x_{2}^{2}$:

$$
\nabla f(x)=\binom{-4 x_{1}^{3}}{-2 x_{2}}, \quad \nabla^{2} f(x)=\left[\begin{array}{cr}
-12 x_{1}^{2} & 0 \\
0 & -2
\end{array}\right] .
$$

Considering $\bar{x}=(0,-2 / 5)$ the quadratic approximation of $f(x)$ near \bar{x} is given by

$$
q(x)=-2 x_{2}^{2}-12 x_{2} / 5-20 / 25
$$

