Esercizio 1

(a) Applicando il metodo di Gauss alla matrice A si ottiene facilmente la forma triangolare

$$
\begin{bmatrix}
1 & -2 & 1 & 4 \\
0 & 0 & -2 & -2 \\
0 & 0 & 0 & 0
\end{bmatrix},
$$
da cui si hanno i valori delle dimensioni dei sottospazi: \(\dim S(A) = 2, \)
\(\dim N(A) = 2, \dim N(A)^\perp = 2. \) Per $S(A)$ si può scegliere come base l’insieme formato dalla prima e dalla terza colonna di A:

$$
\begin{bmatrix}
1 \\
2 \\
-1
\end{bmatrix}, \begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}
$$

Dalla forma triangolare si ottiene la seguente rappresentazione dei vettori di $N(A)$:

$$
\begin{bmatrix}
-3\alpha + 2\beta \\
\beta \\
-\alpha \\
\alpha
\end{bmatrix},
$$

quindi una base è il sottoinsieme

$$
\begin{bmatrix}
-3 \\
0 \\
-1 \\
1
\end{bmatrix}, \begin{bmatrix}
2 \\
1 \\
0 \\
0
\end{bmatrix}
$$

Tenendo conto della relazione $N(A)^\perp = S(A^T)$, se si riporta A^T a forma triangolare con il metodo di Gauss si ottiene

$$
\begin{bmatrix}
1 & 2 & -1 \\
0 & -2 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix},
$$
da cui ha che una base di $N(A)^\perp$ è il sottoinsieme formatto dalla prima e dalla seconda colonna di A^T:

$$
\begin{bmatrix}
1 \\
-2 \\
1 \\
4
\end{bmatrix}, \begin{bmatrix}
2 \\
-4 \\
0 \\
6
\end{bmatrix}.
$$
(b) \textit{(facoltativo)} Siano v_1, v_2 i vettori della base di $N(A)^\perp$ ottenuta al punto (a), ovvero
\[v_1^T = [1, \, -2, \, 1, \, 4], \quad v_2^T = [2, \, -4, \, 0, \, 6], \]
e z_1, z_2 i vettori della base di $S(A)$ ottenuta al punto (a), ovvero
\[z_1^T = [1, \, 2, \, -1], \quad z_2^T = [1, \, 0, \, 1], \]
La matrice B richiesta è 2×2, e i suoi elementi b_{ij} si ottengono risolvendo i due sistemi lineari:
\[[z_1|z_2] \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix} = A,v_1, \quad [z_1|z_2] \begin{bmatrix} b_{12} \\ b_{22} \end{bmatrix} = A,v_2, \]
overo
\[
\begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix} = \begin{bmatrix} 22 \\ 34 \\ -12 \end{bmatrix}, \quad \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} b_{12} \\ b_{22} \end{bmatrix} = \begin{bmatrix} 34 \\ 56 \\ -22 \end{bmatrix}.
\]
La matrice B è dunque la seguente:
\[B = \begin{bmatrix} 17 & 28 \\ 5 & 6 \end{bmatrix}. \]
Si osservi che B è necessariamente invertibile perché rappresenta l’applicazione g, che è invertibile: infatti se $g(x) = 0$, allora $x \in N(A) \cap N(A)^\perp$, e quindi $x = 0$.

Esercizio 2

(a) Il determinante può essere calcolato usando l’espansione di Laplace, con regola di Sarrus (trattandosi di una matrice 3×3) o usando il metodo di Gauss. Con l’espansione di Laplace applicata alla prima colonna si ottiene
\[\det A = k(k^2) + (1 - k) = k^3 - k + 1. \]

(b) Per $k = 1$ det $A = 1$, pertanto la matrice è invertibile. Applicando il metodo di Gauss-Jordan si ottengono le seguenti matrici aumentate:
\[
\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 & 0 \end{bmatrix},
\]
\[
\begin{bmatrix} 1 & 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix}.\]
da cui risulta
\[
A^{-1} = \begin{bmatrix}
1 & -1 & 0 \\
1 & 0 & -1 \\
-1 & 1 & 1 \\
\end{bmatrix}.
\]

(c) Poiché
\[
\begin{align*}
A^2 &= \begin{bmatrix} 2 & 2 & 3 \\ 1 & 1 & 2 \\ 2 & 1 & 2 \end{bmatrix}, & 3A &= \begin{bmatrix} 3 & 3 & 3 \\ 0 & 3 & 3 \\ 3 & 0 & 3 \end{bmatrix}, & 2I &= \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix},
\end{align*}
\]
si verifica che
\[
A^2 - 3A + 2I = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\
-1 & 1 & 1 \end{bmatrix} = A^{-1}.
\]

Esercizio 3

È
\[
V = \begin{bmatrix} x_0 & 1 \\ x_1 & 1 \end{bmatrix}.
\]

(a) Per studiare la diagonalizzabilità di \(V\) occorre controllare le molteplicità dei suoi autovalori, che sono gli zeri del polinomio \(p(\lambda) = \lambda^2 - (x_0 + 1)\lambda + x_0 - x_1\), ovvero
\[
\lambda_1 = \frac{1 + x_0 - \sqrt{(x_0 - 1)^2 + 4x_1}}{2}, \quad \lambda_2 = \frac{1 + x_0 + \sqrt{(x_0 - 1)^2 + 4x_1}}{2}.
\]
Perché \(V\) sia non diagonalizzabile è necessario che sia \(\lambda = \lambda_1 = \lambda_2 = (1 + x_0)/2\), e quindi che sia
\[
x_1 = \frac{-(x_0 - 1)^2}{4}.
\]
In tal caso \(V\) è non diagonalizzabile soltanto se la molteplicità geometrica \(\tau(\lambda) = \text{rank}(V - \lambda I)\) dell’unico autovalore è uno, cioè se
\[
\text{rank} \begin{bmatrix} x_0 - (1 + x_1)/2 & 1 \\ x_1 & 1 - (1 + x_1)/2 \end{bmatrix} = 1.
\]
Ma il rango della matrice in questione non può valere due, essendo singolare, né zero, essendo non nulla, quindi è necessariamente uno. Quindi \(V\) è non diagonalizzabile se e solo se vale la relazione \(x_1 = -(x_0 - 1)^2/4\). Una scelta dei nodi per la quale \(V\) è non diagonalizzabile è \(x_0 = 1, x_1 = 0\).
(b) Per \(x_0 = x_1 = 1\) la matrice \(V\) è diagonalizzabile perché è simmetrica, e i suoi autovalori sono \(\lambda_1 = 0\) e \(\lambda_2 = 2\). Con facili calcoli si ha che due autovettori relativi a \(\lambda_1\) e \(\lambda_2\) sono \([1, -1]^T\) e \([1, 1]^T\) rispettivamente, pertanto \(S\) può essere scelta come
\[
S = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.
\]

Esercizio 4

I valori di \(f(x) = \cos 2\pi x\) nei nodi sono \(f(-1/2) = -1\), \(f(0) = 1\), \(f(1/4) = 0\).

(a) I coefficienti del polinomio di interpolazione \(p(x)\) sono la soluzione \(a\) del sistema \(Va = f\), dove
\[
V = \begin{bmatrix} \frac{1}{16} & -\frac{1}{2} & 1 \\ 0 & 0 & 1 \\ 1 & \frac{1}{4} & 1 \end{bmatrix}, \quad e \quad f = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}.
\]
La matrice aumentata iniziale del sistema è
\[
[V | f] = \begin{bmatrix} \frac{1}{4} & -\frac{1}{2} & 1 & -1 \\ 0 & 0 & 1 & 1 \\ \frac{1}{16} & \frac{1}{2} & 1 & 0 \end{bmatrix},
\]
da cui, con il metodo di Gauss si ottiene
\[
\begin{bmatrix} \frac{1}{4} & -\frac{1}{2} & 1 & -1 \\ 0 & 0 & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 1 & 1 \end{bmatrix},
\]
e, sostituendo all’indietro, \(a = [-32/3, -4/3, 1]^T\), e quindi \(p(x) = -\frac{32}{3}x^2 - \frac{4}{3}x + 1\).

(b) I coefficienti del polinomio ai minimi quadrati di grado massimo uno \(q(x)\) sono la soluzione \(b\) del sistema \(WTWb = W^Tf\), dove
\[
W = \begin{bmatrix} -1/2 & 1 \\ 0 & 1 \\ 1/4 & 1 \end{bmatrix}.
\]
La matrice aumentata iniziale del sistema è
\[
[W^TW | W^Tf] = \begin{bmatrix} \frac{5}{16} & -\frac{1}{3} & \frac{1}{2} \\ -\frac{1}{3} & 3 & 0 \end{bmatrix},
\]
da cui, con il metodo di Gauss si ottiene
\[
\begin{bmatrix} \frac{5}{16} & -\frac{1}{3} & \frac{1}{2} \\ 0 & \frac{1}{3} & \frac{1}{2} \end{bmatrix},
\]
e, sostituendo all’indietro, \(b = [12/7, 1/7]^T\), e quindi \(q(x) = \frac{12}{7}x + \frac{1}{7}\).