Soluzione della prova scritta di Calcolo Numerico del 9/6/2016

Esercizio 1

(a) Il coefficiente di amplificazione risulta

$$c_x = \frac{x}{f(x)}f'(x) = \frac{2x}{\tan(2x)\cos^2(2x)} = \frac{4x}{\sin(4x)}.$$

Poiché $\sin(4x)$ si annulla in $x = k\pi/4$, con $k \in \mathbb{Z}$, occorre studiare il limite per $x \to 0, x \to \pi/4, x \to \pi/2$. Si nota che $|c_x|$ tende a 1 per $x \to 0$, mentre per $x \to \pi/4$ e $x \to \pi/2$ $|c_x|$ diverge e quindi abbiamo malcondizionamento.

(b) L'errore algoritmico del primo metodo è dato da

$$\epsilon^{(1)} = \epsilon_1,$$

dove ϵ_1 è l'errore locale dovuto al calcolo di $\tan(2x)$. Si noti che il calcolo di 2x non introduce alcun errore perché la moltiplicazione per due si implementa con un incremento dell'esponente a partire dalla rappresentazione di x.

L'algoritmo è quindi sempre stabile.

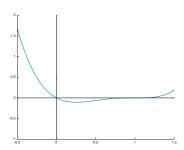
L'errore algoritmico del secondo metodo è dato da

$$\epsilon^{(2)} = \epsilon_4 - (\epsilon_3 - \frac{\tan^2(x)}{1 - \tan^2(x)}(\epsilon_2 + 2\epsilon_1) + \epsilon_1$$

dove ϵ_1 è l'errore locale dovuto al calcolo di $\tan(x)$, ϵ_2 è dovuto al calcolo di $\tan^2(x)$, ϵ_3 è l'errore locale per il calcolo di $1 - \tan^2(x)$ e ϵ_4 è l'errore locale per il calcolo del rapporto $2\tan(x)/(1-\tan^2(x))$. Poiché $|\epsilon_i| < u$, abbiamo che $|\epsilon^{(2)}| < 3u(1+\left|\frac{\tan^2(x)}{1-\tan^2(x)}\right|$. Per studiare la stabilità occorre analizzare il comportamento di $g(x) = \left|\frac{\tan^2(x)}{1-\tan^2(x)}\right|$. Il denominatore si annulla per $x = \pi/4$, quindi l'algoritmo è instabile per $x \to \pi/4$. Per $x \to \pi/2$ il numeratore tende a $+\infty$ ma $\lim_{x\to \frac{\pi}{2}} -g(x) = 1$, e quindi l'algoritmo è stabile in un intorno sinistro di $\pi/2$. Si può quindi concludere che è sempre da preferire l'algoritmo 1.

Esercizio 2

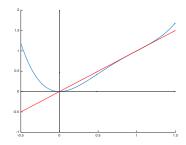
(a) Le soluzioni reali di f(x)=0 sono $\alpha=0$ con molteplicità 1 e $\beta=1$ con molteplicità 3.



(b) Studiando le derivate di f(x) abbiamo che $f'(x) = (x-1)^2(4x-1)$ che si annulla in x=1 (infatti la soluzione β ha molteplicità 3) e in $x_m=1/4$ che risulta un punto di minimo. f''(x)=2(x-1)(8x-4), per cui abbiamo un flesso per x=1/2 e per x=1. Il grafico di f(x) risulta

Applicando il teorema di convergenza in largo abbiamo che scegliendo $x_0 < 0$ otteniamo soluzioni monotone decrescente ad α . Dal grafico si vede che la convergenza si ha a partire da un qualsiasi $x_0 < x_m = 1/4$. L'ordine di convergenza è 2. Per il teorema di convergenza in largo, poiché f(x)f''(x) > 0 per $x \in (1/2, \beta)$ e $x \in (\beta, +\infty)$ abbiamo convergenza a β partendo da un qualsiasi $x_0 > 1/2$. L'ordine di convergenza è lineare poiché la radice β ha molteplicità maggiore di 1.

(c) Tramite sostituzione si verifica che α e β sono punti fissi di $x_{i+1} = g(x_i)$. Calcolando la derivata prima otteniamo $g'(x) = x(4x^2 - 9x + 6)$. Osserviamo che $g'(\alpha) = g'(0) = 0$ quindi per il teorema del punto fisso, poiché g(x) è di classe C^{∞} , esiste un intervallo chiuso e circolare di α per cui |g'(x)| < 1. $g'(\beta) = g'(1) = 1$ quindi potremmo avere convergenza o meno a seconda del comportamento di g'(x) nell'intorno destro e sinistro di β . Analizzando $g''(x) = 12x^2 - 18x + 6$ si nota che $x = \beta$ è punto di minimo per g'(x), quindi g'(x) > 1 in un intorno destro e sinistro di 1. Non ho quindi convergenza locale a β . Analizzando il grafico si osserva che abbiamo convergenza ad α per ogni $x_0 \in (\bar{x}, 1)$



dove \bar{x} è la soluzione diversa da 1 di g(x) = 1. L'ordine di convergenza è 2.

Esercizio 3

(a) La matrice A risulta

$$A = \begin{bmatrix} 2 & 1 & & & 1 \\ & 2 & 1 & & & \\ & & 2 & \ddots & & \\ & & & \ddots & 1 \\ 1 & & & & 2 \end{bmatrix}$$

Indicato con A_i il minore principale di testa di ordine i, abbiamo che $\det(A_i) = 2^i$ per i = 1, 2, ..., n - 1. Quindi il metodo di Gauss può essere applicato senza scambi di righe perché i minori fino a ordine n - 1 sono nonsingolari. La complessità moltiplicativa risulta di circa 2n, e alla fine del procedimento abbiamo, per $n \geq 3$

$$A^{(n-1)} = \begin{bmatrix} 2 & 1 & & & 1 \\ & 2 & 1 & & & \\ & & 2 & \ddots & & \\ & & & \ddots & & 1 \\ 0 & & & & 3/2 + (-1/2)^{n-1} \end{bmatrix}.$$

(b) Per n=4 la matrice di Jacobi risulta

$$J = \begin{bmatrix} 0 & -1/2 & 0 & -1/2 \\ 0 & 0 & -1/2 & 0 \\ 0 & 0 & 0 & -1/2 \\ -1/2 & 0 & 0 & 0 \end{bmatrix}$$

Il polinomio caratteristico risulta $p(\lambda) = \lambda^4 - \frac{\lambda^2}{4} - \frac{1}{16}$. Essendo un'equazione biquadratica le radici possono essere trovate facendo la sostituzione $t = \lambda^2$. Otteniamo due autovalori reali e due complessi e $\rho(J) = \sqrt{\frac{1+\sqrt{5}}{8}} \approx 0.636 < 1$. Quindi il metodo di Jacobi converge.

La matrice di Gauss-Seidel è data da

$$G = \begin{bmatrix} 0 & -1/2 & 0 & -1/2 \\ 0 & 0 & -1/2 & 0 \\ 0 & 0 & 0 & -1/2 \\ 0 & 1/4 & 0 & 1/4 \end{bmatrix}$$

Il polinomio caratteristico risulta $p(\lambda)=-\lambda(-\lambda^3+\lambda^2/4+1/16)$. Gli autovalori sono quindi $\lambda_1=0, \lambda_2=1/2, \lambda_3=-1/8+\sqrt(7)/8\,i$ e $\lambda_4=-1/8-\sqrt(7)/8\,i$. Poiché $\rho(G)=1/2$ il metodo di Gauss-Seidel risulta convergente. Poiché $\rho(G)<\rho(J)<1$ il metodo di Gauss-Seidel converge più velocemente del metodo di Jacobi.

Esercizio 4

(a) Imponendo le condizioni di interpolazione su s(x) otteniamo il sistema lineare

$$a_0x_0 + a_1 + \frac{a_2}{x_0} = f(x_0)$$

$$a_0x_1 + a_1 + \frac{a_2}{x_1} = f(x_1)$$

$$a_0x_2 + a_1 + \frac{a_2}{x_2} = f(x_2)$$

Sostituendo i valori di $x_0 = -1, x_1 = 1, x_2 = 2$ e $f(x_0) = 1, f(x_1) = 1$ e $f(x_2) = 4$ otteniamo il sistema 3×3 di tipo Vandermonde

$$\begin{bmatrix} -1 & 1 & -1 \\ 1 & 1 & 1 \\ 2 & 1 & 1/2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$$

con soluzione $a_0 = 2, a_1 = 1, a_2 = -2$. Quindi s(x) = 2x + 1 - 2/x.

(b) Si nota che la funzione p(x) = x s(x) è un polinomio di grado 2. Affinché p(x) sia di interpolazione per g(x) sui nodi x_i , i = 0, 1, 2 è sufficiente che siano soddisfatte le condizioni di interpolazione $p(x_i) = g(x_i)$. Queste condizioni sono banalmente soddisfatte poiché $p(x_i) = x_i s(x_i) = x_i f(x_i) = x_i x_i^2 = x_i^3 = g(x_i)$.