CORSO DI LAUREA IN CHIMICA

NOME

COGNOME

Esercizio 1. Si consideri l'applicazione lineare f da \mathbb{R}^4 in \mathbb{R}^4 così definita:

$$f(\mathbf{x}) = \begin{bmatrix} x_1 + x_4 \\ x_2 + x_3 \\ x_3 + x_2 \\ x_4 + x_1 \end{bmatrix},$$

per ogni vettore $\boldsymbol{x} = [x_1 \ x_2 \ x_3 \ x_4]^T \text{ di } \mathbb{R}^4.$

- (a) Si determini la matrice A che rappresenta f, se si sceglie come base di \mathbb{R}^4 la base canonica. L'applicazione f è invertibile?
- (b) Si determinino le dimensioni e delle basi di S(A) e di N(A).
- (c) Detta f' la restrizione di f a S(A), ovvero l'applicazione lineare definita come $f'(\mathbf{x}) = f(\mathbf{x})$, per $\mathbf{x} \in S(A)$, si trovi la matrice B che la rappresenta, rispetto alla base di S(A) scelta al punto (b).
- (d) Per quale ragione B è necessariamente invertibile?

Esercizio 2. Detti e_i , i = 1, 2, 3, i vettori della base canonica di \mathbb{R}^3 , si consideri l'insieme ordinato $\{x_1, x_2, x_3\}$ con $x_1 = e_1 + e_2 + e_3$, $x_2 = e_2 + e_3$, $x_3 = e_3$.

- (a) Si verifichi che i vettori assegnati sono linearmente indipendenti, e si costruisca, a partire da loro, un insieme di vettori ortonormali $\{y_1, y_2, y_3\}$, con il procedimento di Gram-Schmidt.
- (b) Detta Y la matrice $[\boldsymbol{y}_1|\boldsymbol{y}_2|\boldsymbol{y}_3]$ e detto \boldsymbol{e} il vettore $[1,\ 1,\ 1]^T$, si verifichi che i vettori \boldsymbol{e} e $Y\boldsymbol{e}$ hanno la stessa lunghezza. Qual è la ragione di questa proprietà?

Esercizio 3. È dato il sistema lineare Ax = b, dove

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 1 & k \end{bmatrix}, \quad \mathbf{e} \quad \boldsymbol{b} = \begin{bmatrix} 5 \\ 2 \\ 5 \end{bmatrix},$$

 $con k \in \mathbb{R}$.

- (a) Si determini un valore di k per cui il sistema ha infinite soluzioni.
- (b) Per tale valore di k si esprimano tutte le soluzioni nella forma $\mathbf{x} = \mathbf{u} + \alpha \mathbf{v}$, con $\alpha \in \mathbb{R}$, $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ e tali che $\mathbf{u}^T \mathbf{v} = 1$.