
JLex:
A lexical analyzer generator for Java(TM)

Elliot Berk
Department of Computer Science, Princeton University

Version 1.2, May 5, 1997

Manual revision October 29, 1997

Last updated September 6, 2000 for JLex 1.2.5

(latest version can be obtained from http://www.cs.princeton.edu/~appel/modern/java/JLex/)

Contents
1. Introduction
2. JLex Specifications

2.1 User Code
2.2 JLex Directives

2.2.1 Internal Code to Lexical Analyzer Class
2.2.2 Initialization Code for Lexical Analyzer Class
2.2.3 End-of-File Code for Lexical Analyzer Class
2.2.4 Macro Definitions
2.2.5 State Declarations
2.2.6 Character Counting
2.2.7 Line Counting
2.2.8 Java CUP Compatibility
2.2.9 Lexical Analyzer Component Titles
2.2.10 Default Token Type
2.2.11 Default Token Type II: Wrapped Integer
2.2.12 YYEOF on End-of-File
2.2.13 Newlines and Operating System Compatibility
2.2.14 Character Sets
2.2.15 Character Format To and From File
2.2.16 Exceptions Generated by Lexical Actions
2.2.17 Specifying the Return Value on End-of-File
2.2.18 Specifying an interface to implement
2.2.19 Making the Generated Class Public

2.3 Regular Expression Rules
2.3.1 Lexical States
2.3.2 Regular Expressions
2.3.3 Associated Actions

2.3.3.1 Actions and Recursion:
2.3.3.2 State Transitions:
2.3.3.3 Available Lexical Values:

3. Generated Lexical Analyzers
4. Performance

5. Implementation Issues
5.1 Unimplemented Features
5.2 Unicode vs Ascii
5.3 Commas in State Lists
5.4 Wish List of Unimplemented Features

6. Credits and Copyrights
6.1 Credits
6.2 Copyright

1. Introduction
A lexical analyzer breaks an input stream of characters into tokens. Writing lexical analyzers by hand can
be a tedious process, so software tools have been developed to ease this task.

Perhaps the best known such utility is Lex. Lex is a lexical analyzer generator for the UNIX operating
system, targeted to the C programming language. Lex takes a specially-formatted specification file
containing the details of a lexical analyzer. This tool then creates a C source file for the associated table-
driven lexer.

The JLex utility is based upon the Lex lexical analyzer generator model. JLex takes a specification file
similar to that accepted by Lex, then creates a Java source file for the corresponding lexical analyzer.

2. JLex Specifications
A JLex input file is organized into three sections, separated by double-percent directives (``%%''). A
proper JLex specification has the following format.
user code
%%
JLex directives
%%
regular expression rules
The ``%%'' directives distinguish sections of the input file and must be placed at the beginning of their
line. The remainder of the line containing the ``%%'' directives may be discarded and should not be used
to house additional declarations or code.

The user code section - the first section of the specification file - is copied directly into the resulting
output file. This area of the specification provides space for the implementation of utility classes or
return types.

The JLex directives section is the second part of the input file. Here, macros definitions are given and
state names are declared.

The third section contains the rules of lexical analysis, each of which consists of three parts: an optional

state list, a regular expression, and an action.

2.1 User Code
User code precedes the first double-percent directive (``%%'). This code is copied verbatim into the
lexical analyzer source file that JLex outputs, at the top of the file. Therefore, if the lexer source file
needs to begin with a package declaration or with the importation of an external class, the user code
section should begin with the corresponding declaration. This declaration will then be copied onto the
top of the generated source file.

2.2 JLex Directives
The JLex directive section begins after the first ``%%'' and continues until the second ``%%'' delimiter.
Each JLex directive should be contained on a single line and should begin that line.

2.2.1 Internal Code to Lexical Analyzer Class

The %{...%} directive allows the user to write Java code to be copied into the lexical analyzer class. This
directive is used as follows.
%{
<code>
%}
To be properly recognized, the %{ and %} should each be situated at the beginning of a line. The
specified Java code in <code> will be then copied into the lexical analyzer class created by JLex.
class Yylex {
... <code> ...
}
This permits the declaration of variables and functions internal to the generated lexical analyzer class.
Variable names beginning with yy should be avoided, as these are reserved for use by the generated
lexical analyzer class.

2.2.2 Initialization Code for Lexical Analyzer Class

The %init{ ... %init} directive allows the user to write Java code to be copied into the constructor for the
lexical analyzer class.

%init{
<code>
%init}
The %init{ and %init} directives should be situated at the beginning of a line. The specified Java code in
<code> will be then copied into the lexical analyzer class constructor.
class Yylex {
Yylex () {
... <code> ...
}
}
This directive permits one-time initializations of the lexical analyzer class from inside its constructor.
Variable names beginning with yy should be avoided, as these are reserved for use by the generated
lexical analyzer class.

The code given in the %init{ ... %init} directive may potentially throw an exception, or propagate it from
another function. To declare this exception, use the %initthrow{ ... %initthrow} directive.
%initthrow{
<exception[1]>[, <exception[2]>, ...]
%initthrow}
The Java code specified here will be copied into the declaration of the lexical analyzer constructor.
Yylex ()
throws <exception[1]>[, <exception[2]>, ...]
{
... <code> ...
}
If the Java code given in the %init{ ... %init} directive throws an exception that is not declared, the
resulting lexical analyzer source file may not compile successfully.

2.2.3 End-of-File Code for Lexical Analyzer Class

The %eof{ ... %eof} directive allows the user to write Java code to be copied into the lexical analyzer
class for execution after the end-of-file is reached.
%eof{
<code>
%eof}
The %eof{ and %eof} directives should be situated at the beginning of a line. The specified Java code in
<code> will be executed at most once, and immediately after the end-of-file is reached for the input file
the lexical analyzer class is processing.

The code given in the %eof{ ... %eof} directive may potentially throw an exception, or propagate it from
another function. To declare this exception, use the %eofthrow{ ... %eofthrow} directive.
%eofthrow{
<exception[1]>[, <exception[2]>, ...]
%eofthrow}
The Java code specified here will be copied into the declaration of the lexical analyzer function called to
clean-up upon reaching end-of-file.
private void yy_do_eof ()
throws <exception[1]>[, <exception[2]>, ...]
{
... <code> ...

}
The Java code in <code> that makes up the body of this function will, in part, come from the code given
in the %eof{ ... %eof} directive. If this code throws an exception that is not declared using the
%eofthrow{ ... %eofthrow} directive, the resulting lexer may not compile successfully.

2.2.4 Macro Definitions

Macro definitions are given in the JLex directives section of the specification. Each macro definition is
contained on a single line and consists of a macro name followed by an equal sign (=), then by its
associated definition. The format can therefore be summarized as follows.
<name> = <definition>
Non-newline white space, e.g. blanks and tabs, is optional between the macro name and the equal sign
and between the equal sign and the macro definition. Each macro definition should be contained on a
single line.

Macro names should be valid identifiers, e.g. sequences of letters, digits, and underscores beginning with
a letter or underscore.

Macro definitions should be valid regular expressions, the details of which are described in another
section below.

Macro definitions can contain other macro expansions, in the standard
{<name>} format for macros within regular expressions. However, the user should note that these
expressions are macros - not functions or nonterminals - so mutually recursive constructs using macros
are illegal. Therefore, cycles in macro definitions will have unpredictable results.

2.2.5 State Declarations

Lexical states are used to control when certain regular expressions are matched. These are declared in the
JLex directives in the following way.
%state state[0][, state[1], state[2], ...]
Each declaration of a series of lexical states should be contained on a single line. Multiple declarations
can be included in the same JLex specification, so the declaration of many states can be broken into
many declarations over multiple lines.

State names should be valid identifiers, e.g. sequences of letters, digits, and underscores beginning with a
letter or underscore.

A single lexical state is implicitly declared by JLex. This state is called YYINITIAL, and the generated
lexer begins lexical analysis in this state.

Rules of lexical analysis begin with an optional state list. If a state list is given, the lexical rule is
matched only when the lexical analyzer is in one of the specified states. If a state list is not given, the
lexical rule is matched when the lexical analyzer is in any state.

If a JLex specification does not make use of states, by neither declaring states nor preceding lexical rules

with state lists, the resulting lexer will remain in state YYINITIAL throughout execution. Since lexical
rules are not prefaced by state lists, these rules are matched in all existing states, including the implicitly
declared state YYINITIAL. Therefore, everything works as expected if states are not used at all.

States are declared as constant integers within the generated lexical analyzer class. The constant integer
declared for a declared state has the same name as that state. The user should be careful to avoid name
conflict between state names and variables declared in the action portion of rules or elsewhere within the
lexical analyzer class. A convenient convention would be to declare state names in all capitals, as a
reminder that these identifiers effectively become constants.

2.2.6 Character Counting

Character counting is turned off by default, but can be activated with the %char directive.
%char
The zero-based character index of the first character in the matched region of text is then placed in the
integer variable yychar.

2.2.7 Line Counting

Line counting is turned off by default, but can be activated with the %line directive.
%line
The zero-based line index at the beginning of the matched region of text is then placed in the integer
variable yyline.

2.2.8 Java CUP Compatibility

Java CUP is a parser generator for Java originally written by Scott Hudson of Georgia Tech University,
and maintained and extended by Frank Flannery, Dan Wang, and C. Scott Ananian. Details of this
software tool are on the World Wide Web at
http://www.cs.princeton.edu/~appel/modern/java/CUP/.
Java CUP compatibility is turned off by default, but can be activated with the following JLex directive.
%cup
When given, this directive makes the generated scanner conform to the java_cup.runtime.Scanner
interface. It has the same effect as the following three directives:
%implements java_cup.runtime.Scanner
%function next_token
%type java_cup.runtime.Symbol
See the next section for more details on these three directives, and the CUP manual for more details on
using CUP and JLex together.

2.2.9 Lexical Analyzer Component Titles

The following directives can be used to change the name of the generated lexical analyzer class, the
tokenizing function, and the token return type. To change the name of the lexical analyzer class from
Yylex, use the %class directive.
%class <name>
To change the name of the tokenizing function from yylex, use the %function directive.
%function <name>
To change the name of the return type from the tokenizing function from Yytoken, use the %type
directive.
%type <name>
If the default names are not altering using these directives, the tokenizing function is envoked with a call
to Yylex.yylex(), which returns the Ytoken type.

To avoid scoping conflicts, names beginning with yy are normally reserved for lexical analyzer internal
functions and variables.

2.2.10 Default Token Type

To make the 32-bit primitive integer type int, the return type for the tokenizing function (and therefore
the token type), use the %integer directive.
%integer
Under default settings, Yytoken is the return type of the tokenizing function
Yylex.yylex(), as in the following code fragment.
class Yylex { ...
public Yytoken yylex () {
... }
The %integer directive replaces the previous code with a revised declaration, in which the token type has
been changed to int.
class Yylex { ...
public int yylex () {
... }
This declaration allows lexical actions to return integer codes, as in the following code fragment from a
hypothetical lexical action.
{ ...
return 7;
... }

The integer return type forces changes the behavior at end of file. Under default settings, objects -
subclasses of the java.lang.Object class - are returned by Yylex.yylex(). During execution of the generated
lexer Yylex, a special object value must be reserved for end-of-file. Therefore, when the end-of-file is
reached for the processed input file (and from then onward), Yylex.yylex() returns null.

When int is the return type of Yylex.yylex(), null can no longer be returned. Instead, Yylex.yylex() returns
the value -1, corresponding to constant integer
Yylex.YYEOF. The %integer directive implies %yyeof; see below.

2.2.11 Default Token Type II: Wrapped Integer

To make java.lang.Integer the return type for the tokenizing function (and therefore the token type), use
the %intwrap directive.
%intwrap
Under default settings, Yytoken is the return type of the tokenizing function
Yylex.yylex(), as in the following code fragment.
class Yylex { ...
public Yytoken yylex () {
... }
The %intwrap directive replaces the previous code with a revised declaration, in which the token type
has been changed to java.lang.Integer.
class Yylex { ...
public java.lang.Integer yylex () {
... }
This declaration allows lexical actions to return wrapped integer codes, as in the following code
fragment from a hypothetical lexical action.
{ ...
return new java.lang.Integer(0);
... }

Notice that the effect of %intwrap directive can be equivalently accomplished using the %type directive,
as follows.
%type java.lang.Integer
This manually changes the name of the return type from Yylex.yylex() to
java.lang.Integer.

2.2.12 YYEOF on End-of-File

The %yyeof directive causes the constant integer Yylex.YYEOF to be declared. If the %integer directive is
present, Yylex.YYEOF is returned upon end-of-file.
%yyeof
This directive causes Yylex.YYEOF to be declared as follows:
public final int YYEOF = -1;
The %integer directive implies %yyeof.

2.2.13 Newlines and Operating System Compatibility

In UNIX operating systems, the character code sequence representing a newline is the single character
``\n''. Conversely, in DOS-based operating systems, the newline is the two-character sequence ``\r\n''
consisting of the carriage return followed by the newline. The %notunix directive results in either the

carriage return or the newline being recognized as a newline.
%notunix
This issue of recognizing the proper sequence of characters as a newline is important in ensuring Java
platform independence.

2.2.14 Character Sets

The default settings support an alphabet of character codes between 0 and 127 inclusive. If the generated
lexical analyzer receives an input character code that falls outside of these bounds, the lexer may fail.

The %full directive can be used to extend this alphabet to include all 8-bit values.
%full
If the %full directive is given, JLex will generate a lexical analyzer that supports an alphabet of character
codes between 0 and 255 inclusive.

The %unicode can be used to extend the alphabet to include the full 16-bit Unicode alphabet.
%unicode
If the %unicode directive is given, JLex will generate a lexical analyzer that supports an alphabet of
character codes between 0 and 2^16-1 inclusive.

The %ignorecase directive can be given to generate case-insensitive lexers.
%ignorecase
If the %ignorecase directive is given, CUP will expand all character classes in a unicode-friendly way to
match both upper, lower, and title-case letters.

2.2.15 Character Format To and From File

Under the status quo, JLex and the lexical analyzer it generates read from and write to Ascii text files,
with byte sized characters. However, to support further extensions on the JLex tool, all internal
processing of characters is done using the 16-bit Java character type, although the full range of 16-bit
values is not supported.

2.2.16 Exceptions Generated by Lexical Actions

The code given in the action portion of the regular expression rules, in section three of the JLex
specification, may potentially throw an exception, or propagate it from another function. To declare these
exceptions, use the %yylexthrow{ ... %yylexthrow} directive.
%yylexthrow{
<exception[1]>[, <exception[2]>, ...]
%yylexthrow}
The Java code specified here will be copied into the declaration of the lexical analyzer tokenizing

function Yylex.yylex(), as follows.
public Yytoken yylex ()
throws <exception[1]>[, <exception[2]>, ...]
{
...
}
If the code given in the action portion of the regular expression rules throws an exception that is not
declared using the %yylexthrow{ ... %yylexthrow} directive, the resulting lexer may not compile
successfully.

2.2.17 Specifying the Return Value on End-of-File

The %eofval{ ... %eofval} directive specifies the return value on end-of-file. This directive allows the
user to write Java code to be copied into the lexical analyzer tokenizing function Yylex.yylex() for
execution when the end-of-file is reached. This code must return a value compatible with the type of the
tokenizing function Yylex.yylex().
%eofval{
<code>
%eofval}
The specified Java code in <code> determines the return value of Yylex.yylex() when the end-of-file is
reached for the input file the lexical analyzer class is processing. This will also be the value returned by
Yylex.yylex() each additional time this function is called after end-of-file is initially reached, so <code>
may be executed more than once. Finally, the %eofval{ and %eofval} directives should be situated at the
beginning of a line.

An example of usage is given below. Suppose the return value desired on end-of-file is (new
token(sym.EOF)) rather than the default value null. The user adds the following declaration to the
specification file.
%eofval{
return (new token(sym.EOF));
%eofval}
The code is then copied into Yylex.yylex() into the appropriate place.
public Yytoken yylex () { ...
return (new token(sym.EOF));
... }
The value returned by Yylex.yylex() upon end-of-file and from that point onward is now (new
token(sym.EOF)).

2.2.18 Specifying an interface to implement

JLex allows the user to specify an interface which the Yylex class will implement. By adding the
following declaration to the input file:
%implements <classname>
the user specifies that Yylex will implement classname. The generated parser class declaration will look
like:
class Yylex implements classname { ...

2.2.19 Making the Generated Class Public

The %public directive causes the lexical analyzer class generated by JLex to be a public class.
%public
The default behavior adds no access specifier to the generated class, resulting in the class being visible
only from the current package.

2.3 Regular Expression Rules
The third part of the JLex specification consists of a series of rules for breaking the input stream into
tokens. These rules specify regular expressions, then associate these expressions with actions consisting
of Java source code.

The rules have three distinct parts: the optional state list, the regular expression, and the associated
action. This format is represented as follows.
[<states>] <expression> { <action> }
Each part of the rule is discussed in a section below.

If more than one rule matches strings from its input, the generated lexer resolves conflicts between rules
by greedily choosing the rule that matches the longest string. If more than one rule matches strings of the
same length, the lexer will choose the rule that is given first in the JLex specification. Therefore, rules
appearing earlier in the specification are given a higher priority by the generated lexer.

The rules given in a JLex specification should match all possible input. If the generated lexical analyzer
receives input that does not match any of its rules, an error will be raised.

Therefore, all input should be matched by at least one rule. This can be guaranteed by placing the
following rule at the bottom of a JLex specification:
. { java.lang.System.out.println("Unmatched input: " + yytext()); }
The dot (.), as described below, will match any input except for the newline.

2.3.1 Lexical States

An optional lexical state list preceeds each rule. This list should be in the following form:
<state[0][, state[1], state[2], ...]>
The outer set of brackets ([]) indicate that multiple states are optional. The greater than (<) and less than
(>) symbols represent themselves and should surround the state list, preceding the regular expression.
The state list specifies under which initial states the rule can be matched.

For instance, if yylex() is called with the lexer at state A, the lexer will attempt to match the input only

against those rules that have A in their state list.

If no state list is specified for a given rule, the rule is matched against in all lexical states.

2.3.2 Regular Expressions

Regular expressions should not contain any white space, as white space is interpreted as the end of the
current regular expression. There is one exception; if (non-newline) white space characters appear from
within double quotes, these characters are taken to represent themselves. For instance, `` '' is interpreted
as a blank space.

The alphabet for JLex is the Ascii character set, meaning character codes between 0 and 127 inclusive.

The following characters are metacharacters, with special meanings in JLex regular expressions.

? * + | () ^ $. [] { } " \

Otherwise, individual characters stand for themselves.

ef Consecutive regular expressions represents their concatenation.

e|f The vertical bar (|) represents an option between the regular expressions that surround it, so matches
either expression e or f.

The following escape sequences are recognized and expanded:
\b Backspace
\n newline
\t Tab
\f Formfeed
\r Carriage return
\ddd The character code corresponding to the number formed by three octal digits ddd
\xdd The character code corresponding to the number formed by two hexadecimal digits dd

\udddd The Unicode character code corresponding to the number formed by four hexidecimal digits
dddd.

\^C Control character
\c A backslash followed by any other character c matches itself
$ The dollar sign ($) denotes the end of a line. If the dollar sign ends a regular expression, the expression
is matched only at the end of a line.

. The dot (.) matches any character except the newline, so this expression is equivalent to [^\n].

"..." Metacharacters lose their meaning within double quotes and represent themselves. The sequence \"
(which represents the single character ") is the only exception.

{name} Curly braces denote a macro expansion, with name the declared name of the associated macro.

* The star (*) represents Kleene closure and matches zero or more repetitions of the preceding regular

expression.

+ The plus (+) matches one or more repetitions of the preceding regular expression, so e+ is equivalent
to ee*.

? The question mark (?) matches zero or one repetitions of the preceding regular expression.

(...) Parentheses are used for grouping within regular expressions.

[...] Square backets denote a class of characters and match any one character enclosed in the backets. If
the first character following the left bracket ([) is the up arrow (^), the set is negated and the expression
matches any character except those enclosed in the backets. Different metacharacter rules hold inside the
backets, with the following expressions having special meanings:
{name} Macro expansion
a - b Range of character codes from a to b to be included in character set

"..." All metacharacters within double quotes lose their special meanings. The sequence \" (which
represents the single character ") is the only exception.

\ Metacharacter following backslash(\) loses its special meaning

For example, [a-z] matches any lower-case letter, [^0-9] matches anything except a digit, and [0-9a-fA-
F] matches any hexadecimal digit. Inside character class brackets, a metacharacter following a backslash
loses its special meaning. Therefore, [\-\\] matches a dash or a backslash. Likewise ["A-Z"] matches one
of the three characters A, dash, or Z. Leading and trailing dashes in a character class also lose their
special meanings, so [+-] and [-+] do what you would expect them to (ie, match only '+' and '-').

2.3.3 Associated Actions

The action associated with a lexical rule consists of Java code enclosed inside block-delimiting curly
braces.
{ action }
The Java code action is copied, as given, into the state-driven lexical analyzer produced by JLex.

All curly braces contained in action not part of strings or comments should be balanced.

2.3.3.1 Actions and Recursion:

If no return value is returned in an action, the lexical analyzer will loop, searching for the next match
from the input stream and returning the value associated with that match.

The lexical analyzer can be made to recur explicitly with a call to yylex(), as in the following code
fragment.
{ ...
return yylex();
... }
This code fragment causes the lexical analyzer to recur, searching for the next match in the input and
returning the value associated with that match. The same effect can be had, however, by simply not
returning from a given action. This results in the lexer searching for the next match, without the

additional overhead of recursion.

The preceding code fragment is an example of tail recursion, since the recursive call comes at the end of
the calling function's execution. The following code fragment is an example of a recursive call that is not
tail recursive.
{ ...
next = yylex();
... }
Recursive actions that are not tail-recursive work in the expected way, except that variables such as
yyline and yychar may be changed during recursion.

2.3.3.2 State Transitions:

If lexical states are declared in the JLex directives section, transitions on these states can be declared
within the regular expression actions. State transitions are made by the following function call.
yybegin(state);
The void function yybegin() is passed the state name state and effects a transition to this lexical state.

The state state must be declared within the JLex directives section, or this call will result in a compiler
error in the generated source file. The one exception to this declaration requirement is state YYINITIAL,
the lexical state implicitly declared by JLex. The generated lexer begins lexical analysis in state
YYINITIAL and remains in this state until a transition is made.

2.3.3.3 Available Lexical Values:

The following values, internal to the Yylex class, are available within the action portion of the lexical
rules.
Variable or
Method ActivationDirective Description

java.lang.String
yytext(); Always active. Matched portion of the character input stream.

int yychar; %char Zero-based character index of the first character in the matched
portion of the input stream

int yyline; %line Zero-based line number of the start of the matched portion of
the input stream

3. Generated Lexical Analyzers

JLex will take a properly-formed specification and transform it into a Java source file for the
corresponding lexical analyzer.

The generated lexical analayzer resides in the class Yylex. There are two constructors to this class, both
requiring a single argument: the input stream to be tokenized. The input stream may either be of type
java.io.InputStream or java.io.Reader (such as StringReader). Note that the java.io.Reader
constructor should be used if you are generating a lexer accepting unicode characters, as the JDK 1.0
java.io.InputStream class does not always read unicode correctly.

The access function to the lexer is Yylex.yylex(), which returns the next token from the input stream. The
return type is Yytoken and the function is declared as follows.
class Yylex { ...
public Yytoken yylex () {
... }
The user must declare the type of Yytoken and can accomplish this conveniently in the first section of the
JLex specification, the user code section. For instance, to make Yylex.yylex() return a wrapper around
integers, the user would enter the following code somewhere preceding the first ``%%''.
class Yytoken { int field; Yytoken(int f) { field=f; } }
Then, in the lexical actions, wrapped integers would be returned, in something like this way.
{ ...
return new Yytoken(0);
... }
Likewise, in the user code section, a class could be defined declaring constants that correspond to each
of the token types.
class TokenCodes { ...
public static final STRING = 0;
public static final INTEGER = 1;
... }
Then, in the lexical actions, these token codes could be returned.
{ ...
return new Yytoken(STRING);
... }
These are simplified examples; in actual use, one would probably define a token class containing more
information than an integer code.

These examples begin to illustrate the object-oriented techniques a user could employ to define an
arbitrarily complex token type to be returned by Yylex.yylex(). In particular, inheritance permits the user
to return more than one token type. If a distinct token type was needed for strings and integers, the user
could make the following declarations.
class Yytoken { ... }
class IntegerToken extends Yytoken { ... }
class StringToken extends Yytoken { ... }
Then the user could return both IntegerToken and StringToken types from the lexical actions.

The names of the lexical analyzer class, the tokening function, and its return type each may be altered
using the JLex directives. See the section 2.2.9 for more details.

4. Performance
A benchmark experiment was conducted, comparing the performance of a lexical analyzer generated by

JLex to that of a hand-written lexical analyzer. The comparison was made for lexical analyzers of a
simple ``toy'' programming language. The hand-written lexical analyzer, like the lexical analyzer
generated by JLex, was written in Java.

The experiment consists of running each lexical analyzer on two source files written in the toy language,
then measuring the time required to process these files. Each lexical analyzer was invoked by a dummy
driver also written in Java.

The generated lexical analyzer proved to be quite quick, as the following results show.
Size of Source

File
JLex-Generated Lexical Analyzer:

Execution Time
Hand-Written Lexical Analyzer:

Execution Times
177 lines 0.42 seconds 0.53 seconds
897 lines 0.98 seconds 1.28 seconds

The JLex lexical analyzer soundly outperformed the hand-written lexer.

One of the biggest complaints about table-driven lexical analyzers generated by programs like JLex is
that these lexical analyzers do not perform as well as hand-written ones. Therefore, this experiment is
particularly important in demonstrating the relative speed of JLex lexical analyzers.

5. Implementation Issues

5.1 Unimplemented Features
The following is a (possibly incomplete) list of unimplemented features of JLex.

1. The regular expression lookahead operator is unimplemented, and not included in the list of
special regular expression metacharacters.

2. The start-of-line operator (^) assumes the following nonstandard behavior. A match on a regular
expression that uses this operator will cause the newline that precedes the match to be discarded.

5.2 Unicode vs Ascii
In contrast to the 8-bit character type (char) mandated by Ansi C, Java supports a 16-bit char and the
Unicode character set. Java provides a built-in String class to manipulate these Unicode characters.

As of version 1.2.5, JLex uses the JDK 1.1 Reader and Writer classes to read in the JLex specification
file and write out the lexical analyzer source file. This means that all unicode characters are allowed in

both of these. In order for the generated scanner to work with unicode characters, you must use the
java.io.Reader constructor of the generated scanner, and the Reader you provide must properly handle
the translation from OS-native format to unicode. You must also specify the %unicode directive in the
specification; see section 2.2.14.

5.3 Commas in State Lists
Commas between state names in declaration lists and lexical rules are optional. These lists will be
correctly parsed with white space between state names and without comma separators.

5.4 Wish List of Unimplemented Features
The following minor features would be nice to have as part of JLex, but have not been implemented due
to their scope or their negative impact upon performance.

1. Detection of unbalanced braces within the comment portion of lexical actions.
2. Detection of cycles in macro definitions.

6. Credits and Copyrights

6.1 Credits
The treatment of lexical analyzer generators given in Alan Holub's Compiler Design in C (Prentice-Hall,
1990) provided a starting point for my implementation.

Discussions with Professor Andrew Appel of the Princeton University Computer Science Department
provided guidance in the design of JLex.

Java is a trademark of Sun Microsystems Incorporated.

6.2 Copyright
JLex COPYRIGHT NOTICE, LICENSE AND DISCLAIMER.

Copyright 1996 by Elliot Joel Berk.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and
without fee is hereby granted, provided that the above copyright notice appear in all copies and that both
the copyright notice and this permission notice and warranty disclaimer appear in supporting
documentation, and that the name of Elliot Joel Berk not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

Elliot Joel Berk disclaims all warranties with regard to this software, including all implied warranties of
merchantability and fitness. In no event shall Elliot Joel Berk be liable for any special, indirect or
consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in
an action of contract, negligence or other tortious action, arising out of or in connection with the use or
performance of this software.

Frank Flannery
Wed Jul 24 00:27:39 EDT 1996

