
Code GenerationCode Generation

•• Syntax Directed translationSyntax Directed translation: : Attribute Attribute codecode vsvs
Side Side EffectsEffects

•• The intermediateThe intermediate language language: 3AC: 3AC
•• Code GenerationCode Generation for for non control transfer code non control transfer code

An Intermediate LanguageAn Intermediate Language
3-address code - 3AC3-address code - 3AC

S≡<Sρ,SM> |- loc(x) -> lx=Sρ(x)
 S |- r(y) -> ry= SM(Sρ(y))
 S |- r(z) -> rz
 |- [op](ry,rz)=v
S |- x:=y op z -> S[lx/v]= SM(lx)<-v

x:= y op z
x:= op z

 S |- loc(x) -> lx
 S |- r(z) -> rz
S |- x:=y -> S[lx/ry]

x:=y

1. (assignment)1. (assignment)

2. (copy)2. (copy)

3. (location names - values)3. (location names - values)
newtempnewtemp- a meta operator for fresh location names, e.g. - a meta operator for fresh location names, e.g. newtempnewtemp:=-:=-newtempnewtemp
values - scalar values of the meta prefixed by #, e.g. values - scalar values of the meta prefixed by #, e.g. newtempnewtemp:=#3+:=#3+newtempnewtemp

3-address code/23-address code/2

 S |- code(l) -> P = Sρ(l)
 S |- P -> S’
 S |- goto(l) || Ps -> S’

goto l

If x opr y goto l

4. (4. (uncoditioned uncoditioned jump)jump)

5. (conditioned jump)5. (conditioned jump)

 S |- code(l) -> P
 S |- r(x) -> rx
 S |- r(y) -> ry
 |- [opr](rx,ry)=false
 S |- Ps -> S’
S |- if x opr y goto l || Ps -> S’

?

3-address code/33-address code/3

x:=y[i]
x[i]:=y

6. (i-structure)6. (i-structure)

 S |- loc(x) -> lx
 S |- loc(y) -> ly
 S |- r(i) -> ri
 |- ly+ri = add
 S |- SM(add) -> lv
S |- x:=y[i] -> SM(lx)<-lv

complete with the other statementcomplete with the other statement

3-address code/43-address code/4

x:=&y
x:=*y
*x:=y

7. (pointer)7. (pointer) S |- loc(x) -> lx
 S |- loc(y) -> ly
S |- x:=&y -> SM(lx)<- ly

 S |- loc(x) -> lx
 S |- r(y) -> ry
 S |- SM(ry) -> v
 S |- x:=*y -> SM(lx) <- v

 S |- r(x) -> rx
 S |- r(y) -> ry
S |- *x:=y -> SM(rx) <- rv

wherewhere::
- - SSMM(l/r) = (l/r) = SSMM(l)<-r = (l)<-r = updade updade of of cell cell l l with value with value rr
- . = location of the - . = location of the current current statement of the programstatement of the program
- || = code - || = code concatenation concatenation ((sequencingsequencing))

3-address code/53-address code/5

param x1
param x2
…
param xn
call p n

8. (P-call)8. (P-call) S |- r(x) -> rx
 S |- param x -> SM(.)<-rx

 S |- code(p) -> P
 S |- P -> S',v
 <Sρ,SM'|v> |- Ps -> S''
 S |- call p n || Ps -> S''

return v
9. (call-ret)9. (call-ret)

 S |- return v || ps -> S,v

--The caller puts the arguments before the invocation and waits for a result in the word that is located The caller puts the arguments before the invocation and waits for a result in the word that is located
 immediately, following the invocation immediately, following the invocation
--The The callee callee has a copy of the arguments immediately before its first statementhas a copy of the arguments immediately before its first statement
--The return from the The return from the calleecallee, puts the result immediately below the caller invocation statement, puts the result immediately below the caller invocation statement
-The store is updated accordingly:The store is updated accordingly:SM'|v isis SM' where the word following invocation is set to vwhere the word following invocation is set to v

3-address code/63-address code/6
caller-caller-calleecallee

……
param param n1n1
....
paramparam nknk
call p call p kk
000000
……

000 000
....
000000
return .[-#1]return .[-#1]

Two sections of
the store: Caller is
the section on the
top of the fig.

This is the preamble.
It has space for a co-
py of the arguments

……
param param n1n1
....
param nkparam nk
call p kcall p k
nknk
……

n1 n1
....
nknk
return .[-#1]return .[-#1]

Before the (first) invocation of pBefore the (first) invocation of p After an invocation of pAfter an invocation of p

Complete by giving a text that says whatComplete by giving a text that says what procedured procedured p is supposed to compute.p is supposed to compute.

3-address code3-address code
Defining a procedure for FactorialDefining a procedure for Factorial

000000
n = .[#-1]n = .[#-1]
rec rec = .+#3= .+#3
if nif n≠≠ 0 0 goto recgoto rec
return #1return #1
n1 = n-#1n1 = n-#1
param param n1n1
call p #1call p #1
000000
arg arg = .[-#3]= .[-#3]
arg arg = = arg arg +#1+#1
val = .[-#3]val = .[-#3]
r = r = arg arg * val* val
return rreturn r+ Use it in the computation of:+ Use it in the computation of:

 call p 3 call p 3
 where p is the address of the first statement;where p is the address of the first statement;
+ Show the "activation records" (that the machine executor+ Show the "activation records" (that the machine executor
 of 3AC is supposed to use) generated by the computation of 3AC is supposed to use) generated by the computation

procedure entry point,procedure entry point,
i.e. address p is herei.e. address p is here

x+y*3 is translated into: t1:= y.loc [*] #3
 t2:= x.loc [+] t1

where:
t1 and t2 = 3AC locations
.loc = attribute for 3AC locations
[op] is the 3AC operation that corresponds to p

Meta:
newtemp: -> loc -It is executedIt is executed at compile time and at compile time and furnishesfurnishes a a fresh fresh 3AC locatio3AC location
emit: string -> void -It is executedIt is executed at compile time and at compile time and updates updates the output code file (the output code file (called emitcalled emit-file)-file)
 by inserting by inserting, , as as thethe last last line, the 3AC line, the 3AC command command,, if any if any, , whose textual represenwhose textual represen

 tation is tation is the the argumentargument of of emit emit..

Translation of Expressions inTranslation of Expressions in
3-address code (compositional)3-address code (compositional)

 S |- e1 → (S,v1) S |- e2 → (S,v2) (Semantics of expressions without side-effects)
 S |- e1 op e2 → (S, op(v1,v2))

|- e1 => ([|e1|],l1) |- e2 => ([|e2|],l2) l=newtemp() (Code Translation of exps without
 |- e1 op e2 => ([|e1|]||[|e2|]||emit(l:=l1 [op] l2), l) side-effects)

How does it to do it ?

Translation of Expressions inTranslation of Expressions in
3-address code - 23-address code - 2

[15]E::= F [15]E::= F {E'.in = F.loc;}{E'.in = F.loc;}
 E' E' {E.loc:= E'.loc;} {E.loc:= E'.loc;}
[16]E'[16]E'11::= op-l F::= op-l F {l:= {l:=newtempnewtemp; emit(l":="E'; emit(l":="E'11.in [op-l] F.loc); E'.in [op-l] F.loc); E'22.in:=l;}.in:=l;}
 E' E'2 2 {E'{E'11.loc:= E'.loc:= E'22..locloc;};}
[17]E'::= [17]E'::= εε {{E'.loc = E'.in}E'.loc = E'.in}
[18]F::= T [18]F::= T {{……}}
 F' F' {{……}}
[19]F'::= op-h T [19]F'::= op-h T {{……}}
 F' F' { {……}}
[20]F'::= [20]F'::= εε {{……}}
[21]T::= num [21]T::= num {T.loc = num.loc;} {T.loc = num.loc;}
[22]T::= ide[22]T::= ide {T.loc = ide.loc;}{T.loc = ide.loc;}
[23]T::= (E) [23]T::= (E) {T.loc = E.loc;}{T.loc = E.loc;}

AttributesAttributes::
 loc:- location where the execution of the translated code, in the given state, will put the value of
 expression, in suc a state
 -synthesized of any grammatical deriving expressions, or parts of them {E,E',F,F',T,num,ide}
Side-effect: the translated code is put in the emit-file

